Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ismgmn0 | Structured version Visualization version GIF version |
Description: The predicate "is a magma" for a structure with a nonempty base set. (Contributed by AV, 29-Jan-2020.) |
Ref | Expression |
---|---|
ismgmn0.b | ⊢ 𝐵 = (Base‘𝑀) |
ismgmn0.o | ⊢ ⚬ = (+g‘𝑀) |
Ref | Expression |
---|---|
ismgmn0 | ⊢ (𝐴 ∈ 𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismgmn0.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
2 | 1 | eleq2i 2830 | . . . 4 ⊢ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ (Base‘𝑀)) |
3 | 2 | biimpi 215 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (Base‘𝑀)) |
4 | 3 | elfvexd 6790 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝑀 ∈ V) |
5 | ismgmn0.o | . . 3 ⊢ ⚬ = (+g‘𝑀) | |
6 | 1, 5 | ismgm 18242 | . 2 ⊢ (𝑀 ∈ V → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
7 | 4, 6 | syl 17 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 Mgmcmgm 18239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-dm 5590 df-iota 6376 df-fv 6426 df-ov 7258 df-mgm 18241 |
This theorem is referenced by: mgm1 18257 opifismgm 18258 issgrpn0 18293 xrsmgm 20545 mgmpropd 45217 opmpoismgm 45249 nnsgrpmgm 45258 2zrngamgm 45385 2zrngmmgm 45392 |
Copyright terms: Public domain | W3C validator |