MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismgmn0 Structured version   Visualization version   GIF version

Theorem ismgmn0 18668
Description: The predicate "is a magma" for a structure with a nonempty base set. (Contributed by AV, 29-Jan-2020.)
Hypotheses
Ref Expression
ismgmn0.b 𝐵 = (Base‘𝑀)
ismgmn0.o = (+g𝑀)
Assertion
Ref Expression
ismgmn0 (𝐴𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑀,𝑦   𝑥, ,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem ismgmn0
StepHypRef Expression
1 ismgmn0.b . . . . 5 𝐵 = (Base‘𝑀)
21eleq2i 2831 . . . 4 (𝐴𝐵𝐴 ∈ (Base‘𝑀))
32biimpi 216 . . 3 (𝐴𝐵𝐴 ∈ (Base‘𝑀))
43elfvexd 6946 . 2 (𝐴𝐵𝑀 ∈ V)
5 ismgmn0.o . . 3 = (+g𝑀)
61, 5ismgm 18667 . 2 (𝑀 ∈ V → (𝑀 ∈ Mgm ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
74, 6syl 17 1 (𝐴𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  Mgmcmgm 18664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-dm 5699  df-iota 6516  df-fv 6571  df-ov 7434  df-mgm 18666
This theorem is referenced by:  mgmpropd  18677  mgm1  18684  opifismgm  18685  issgrpn0  18748  xrsmgm  21437  opmpoismgm  48011  nnsgrpmgm  48020  2zrngamgm  48089  2zrngmmgm  48096
  Copyright terms: Public domain W3C validator