| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ismgmn0 | Structured version Visualization version GIF version | ||
| Description: The predicate "is a magma" for a structure with a nonempty base set. (Contributed by AV, 29-Jan-2020.) |
| Ref | Expression |
|---|---|
| ismgmn0.b | ⊢ 𝐵 = (Base‘𝑀) |
| ismgmn0.o | ⊢ ⚬ = (+g‘𝑀) |
| Ref | Expression |
|---|---|
| ismgmn0 | ⊢ (𝐴 ∈ 𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismgmn0.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
| 2 | 1 | eleq2i 2825 | . . . 4 ⊢ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ (Base‘𝑀)) |
| 3 | 2 | biimpi 216 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (Base‘𝑀)) |
| 4 | 3 | elfvexd 6867 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝑀 ∈ V) |
| 5 | ismgmn0.o | . . 3 ⊢ ⚬ = (+g‘𝑀) | |
| 6 | 1, 5 | ismgm 18557 | . 2 ⊢ (𝑀 ∈ V → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
| 7 | 4, 6 | syl 17 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 ∀wral 3048 Vcvv 3437 ‘cfv 6489 (class class class)co 7355 Basecbs 17127 +gcplusg 17168 Mgmcmgm 18554 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-dm 5631 df-iota 6445 df-fv 6497 df-ov 7358 df-mgm 18556 |
| This theorem is referenced by: mgmpropd 18567 mgm1 18574 opifismgm 18575 issgrpn0 18638 xrsmgm 21352 opmpoismgm 48329 nnsgrpmgm 48338 2zrngamgm 48407 2zrngmmgm 48414 |
| Copyright terms: Public domain | W3C validator |