MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismgmn0 Structured version   Visualization version   GIF version

Theorem ismgmn0 18569
Description: The predicate "is a magma" for a structure with a nonempty base set. (Contributed by AV, 29-Jan-2020.)
Hypotheses
Ref Expression
ismgmn0.b 𝐵 = (Base‘𝑀)
ismgmn0.o = (+g𝑀)
Assertion
Ref Expression
ismgmn0 (𝐴𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑀,𝑦   𝑥, ,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem ismgmn0
StepHypRef Expression
1 ismgmn0.b . . . . 5 𝐵 = (Base‘𝑀)
21eleq2i 2820 . . . 4 (𝐴𝐵𝐴 ∈ (Base‘𝑀))
32biimpi 216 . . 3 (𝐴𝐵𝐴 ∈ (Base‘𝑀))
43elfvexd 6897 . 2 (𝐴𝐵𝑀 ∈ V)
5 ismgmn0.o . . 3 = (+g𝑀)
61, 5ismgm 18568 . 2 (𝑀 ∈ V → (𝑀 ∈ Mgm ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
74, 6syl 17 1 (𝐴𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  Mgmcmgm 18565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-dm 5648  df-iota 6464  df-fv 6519  df-ov 7390  df-mgm 18567
This theorem is referenced by:  mgmpropd  18578  mgm1  18585  opifismgm  18586  issgrpn0  18649  xrsmgm  21318  opmpoismgm  48155  nnsgrpmgm  48164  2zrngamgm  48233  2zrngmmgm  48240
  Copyright terms: Public domain W3C validator