MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismgmn0 Structured version   Visualization version   GIF version

Theorem ismgmn0 18328
Description: The predicate "is a magma" for a structure with a nonempty base set. (Contributed by AV, 29-Jan-2020.)
Hypotheses
Ref Expression
ismgmn0.b 𝐵 = (Base‘𝑀)
ismgmn0.o = (+g𝑀)
Assertion
Ref Expression
ismgmn0 (𝐴𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑀,𝑦   𝑥, ,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem ismgmn0
StepHypRef Expression
1 ismgmn0.b . . . . 5 𝐵 = (Base‘𝑀)
21eleq2i 2830 . . . 4 (𝐴𝐵𝐴 ∈ (Base‘𝑀))
32biimpi 215 . . 3 (𝐴𝐵𝐴 ∈ (Base‘𝑀))
43elfvexd 6808 . 2 (𝐴𝐵𝑀 ∈ V)
5 ismgmn0.o . . 3 = (+g𝑀)
61, 5ismgm 18327 . 2 (𝑀 ∈ V → (𝑀 ∈ Mgm ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
74, 6syl 17 1 (𝐴𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  Mgmcmgm 18324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-dm 5599  df-iota 6391  df-fv 6441  df-ov 7278  df-mgm 18326
This theorem is referenced by:  mgm1  18342  opifismgm  18343  issgrpn0  18378  xrsmgm  20633  mgmpropd  45329  opmpoismgm  45361  nnsgrpmgm  45370  2zrngamgm  45497  2zrngmmgm  45504
  Copyright terms: Public domain W3C validator