MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismgmn0 Structured version   Visualization version   GIF version

Theorem ismgmn0 18559
Description: The predicate "is a magma" for a structure with a nonempty base set. (Contributed by AV, 29-Jan-2020.)
Hypotheses
Ref Expression
ismgmn0.b 𝐵 = (Base‘𝑀)
ismgmn0.o = (+g𝑀)
Assertion
Ref Expression
ismgmn0 (𝐴𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑀,𝑦   𝑥, ,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem ismgmn0
StepHypRef Expression
1 ismgmn0.b . . . . 5 𝐵 = (Base‘𝑀)
21eleq2i 2825 . . . 4 (𝐴𝐵𝐴 ∈ (Base‘𝑀))
32biimpi 215 . . 3 (𝐴𝐵𝐴 ∈ (Base‘𝑀))
43elfvexd 6927 . 2 (𝐴𝐵𝑀 ∈ V)
5 ismgmn0.o . . 3 = (+g𝑀)
61, 5ismgm 18558 . 2 (𝑀 ∈ V → (𝑀 ∈ Mgm ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
74, 6syl 17 1 (𝐴𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  wcel 2106  wral 3061  Vcvv 3474  cfv 6540  (class class class)co 7405  Basecbs 17140  +gcplusg 17193  Mgmcmgm 18555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-dm 5685  df-iota 6492  df-fv 6548  df-ov 7408  df-mgm 18557
This theorem is referenced by:  mgm1  18573  opifismgm  18574  issgrpn0  18609  xrsmgm  20972  mgmpropd  46531  opmpoismgm  46563  nnsgrpmgm  46572  2zrngamgm  46790  2zrngmmgm  46797
  Copyright terms: Public domain W3C validator