Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ismgmn0 | Structured version Visualization version GIF version |
Description: The predicate "is a magma" for a structure with a nonempty base set. (Contributed by AV, 29-Jan-2020.) |
Ref | Expression |
---|---|
ismgmn0.b | ⊢ 𝐵 = (Base‘𝑀) |
ismgmn0.o | ⊢ ⚬ = (+g‘𝑀) |
Ref | Expression |
---|---|
ismgmn0 | ⊢ (𝐴 ∈ 𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismgmn0.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
2 | 1 | eleq2i 2830 | . . . 4 ⊢ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ (Base‘𝑀)) |
3 | 2 | biimpi 215 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (Base‘𝑀)) |
4 | 3 | elfvexd 6808 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝑀 ∈ V) |
5 | ismgmn0.o | . . 3 ⊢ ⚬ = (+g‘𝑀) | |
6 | 1, 5 | ismgm 18327 | . 2 ⊢ (𝑀 ∈ V → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
7 | 4, 6 | syl 17 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 Mgmcmgm 18324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-dm 5599 df-iota 6391 df-fv 6441 df-ov 7278 df-mgm 18326 |
This theorem is referenced by: mgm1 18342 opifismgm 18343 issgrpn0 18378 xrsmgm 20633 mgmpropd 45329 opmpoismgm 45361 nnsgrpmgm 45370 2zrngamgm 45497 2zrngmmgm 45504 |
Copyright terms: Public domain | W3C validator |