| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ismgmn0 | Structured version Visualization version GIF version | ||
| Description: The predicate "is a magma" for a structure with a nonempty base set. (Contributed by AV, 29-Jan-2020.) |
| Ref | Expression |
|---|---|
| ismgmn0.b | ⊢ 𝐵 = (Base‘𝑀) |
| ismgmn0.o | ⊢ ⚬ = (+g‘𝑀) |
| Ref | Expression |
|---|---|
| ismgmn0 | ⊢ (𝐴 ∈ 𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismgmn0.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
| 2 | 1 | eleq2i 2821 | . . . 4 ⊢ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ (Base‘𝑀)) |
| 3 | 2 | biimpi 216 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (Base‘𝑀)) |
| 4 | 3 | elfvexd 6900 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝑀 ∈ V) |
| 5 | ismgmn0.o | . . 3 ⊢ ⚬ = (+g‘𝑀) | |
| 6 | 1, 5 | ismgm 18575 | . 2 ⊢ (𝑀 ∈ V → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
| 7 | 4, 6 | syl 17 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 Mgmcmgm 18572 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-dm 5651 df-iota 6467 df-fv 6522 df-ov 7393 df-mgm 18574 |
| This theorem is referenced by: mgmpropd 18585 mgm1 18592 opifismgm 18593 issgrpn0 18656 xrsmgm 21325 opmpoismgm 48159 nnsgrpmgm 48168 2zrngamgm 48237 2zrngmmgm 48244 |
| Copyright terms: Public domain | W3C validator |