| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ismgmn0 | Structured version Visualization version GIF version | ||
| Description: The predicate "is a magma" for a structure with a nonempty base set. (Contributed by AV, 29-Jan-2020.) |
| Ref | Expression |
|---|---|
| ismgmn0.b | ⊢ 𝐵 = (Base‘𝑀) |
| ismgmn0.o | ⊢ ⚬ = (+g‘𝑀) |
| Ref | Expression |
|---|---|
| ismgmn0 | ⊢ (𝐴 ∈ 𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismgmn0.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
| 2 | 1 | eleq2i 2823 | . . . 4 ⊢ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ (Base‘𝑀)) |
| 3 | 2 | biimpi 216 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (Base‘𝑀)) |
| 4 | 3 | elfvexd 6853 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝑀 ∈ V) |
| 5 | ismgmn0.o | . . 3 ⊢ ⚬ = (+g‘𝑀) | |
| 6 | 1, 5 | ismgm 18544 | . 2 ⊢ (𝑀 ∈ V → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
| 7 | 4, 6 | syl 17 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 +gcplusg 17156 Mgmcmgm 18541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-dm 5621 df-iota 6432 df-fv 6484 df-ov 7344 df-mgm 18543 |
| This theorem is referenced by: mgmpropd 18554 mgm1 18561 opifismgm 18562 issgrpn0 18625 xrsmgm 21338 opmpoismgm 48198 nnsgrpmgm 48207 2zrngamgm 48276 2zrngmmgm 48283 |
| Copyright terms: Public domain | W3C validator |