Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ismgmn0 | Structured version Visualization version GIF version |
Description: The predicate "is a magma" for a structure with a nonempty base set. (Contributed by AV, 29-Jan-2020.) |
Ref | Expression |
---|---|
ismgmn0.b | ⊢ 𝐵 = (Base‘𝑀) |
ismgmn0.o | ⊢ ⚬ = (+g‘𝑀) |
Ref | Expression |
---|---|
ismgmn0 | ⊢ (𝐴 ∈ 𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismgmn0.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
2 | 1 | eleq2i 2829 | . . . 4 ⊢ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ (Base‘𝑀)) |
3 | 2 | biimpi 215 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (Base‘𝑀)) |
4 | 3 | elfvexd 6869 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝑀 ∈ V) |
5 | ismgmn0.o | . . 3 ⊢ ⚬ = (+g‘𝑀) | |
6 | 1, 5 | ismgm 18425 | . 2 ⊢ (𝑀 ∈ V → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
7 | 4, 6 | syl 17 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝑀 ∈ Mgm ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ⚬ 𝑦) ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 ∀wral 3062 Vcvv 3442 ‘cfv 6484 (class class class)co 7342 Basecbs 17010 +gcplusg 17060 Mgmcmgm 18422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-nul 5255 ax-pr 5377 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-sbc 3732 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-br 5098 df-dm 5635 df-iota 6436 df-fv 6492 df-ov 7345 df-mgm 18424 |
This theorem is referenced by: mgm1 18440 opifismgm 18441 issgrpn0 18476 xrsmgm 20739 mgmpropd 45745 opmpoismgm 45777 nnsgrpmgm 45786 2zrngamgm 45913 2zrngmmgm 45920 |
Copyright terms: Public domain | W3C validator |