MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephsmo Structured version   Visualization version   GIF version

Theorem alephsmo 10135
Description: The aleph function is strictly monotone. (Contributed by Mario Carneiro, 15-Mar-2013.)
Assertion
Ref Expression
alephsmo Smo ℵ

Proof of Theorem alephsmo
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 4001 . 2 On ⊆ On
2 ordon 7774 . 2 Ord On
3 alephord2i 10110 . . . 4 (𝑥 ∈ On → (𝑦𝑥 → (ℵ‘𝑦) ∈ (ℵ‘𝑥)))
43ralrimiv 3135 . . 3 (𝑥 ∈ On → ∀𝑦𝑥 (ℵ‘𝑦) ∈ (ℵ‘𝑥))
54rgen 3053 . 2 𝑥 ∈ On ∀𝑦𝑥 (ℵ‘𝑦) ∈ (ℵ‘𝑥)
6 alephfnon 10098 . . . 4 ℵ Fn On
7 alephsson 10133 . . . 4 ran ℵ ⊆ On
8 df-f 6547 . . . 4 (ℵ:On⟶On ↔ (ℵ Fn On ∧ ran ℵ ⊆ On))
96, 7, 8mpbir2an 709 . . 3 ℵ:On⟶On
10 issmo2 8368 . . 3 (ℵ:On⟶On → ((On ⊆ On ∧ Ord On ∧ ∀𝑥 ∈ On ∀𝑦𝑥 (ℵ‘𝑦) ∈ (ℵ‘𝑥)) → Smo ℵ))
119, 10ax-mp 5 . 2 ((On ⊆ On ∧ Ord On ∧ ∀𝑥 ∈ On ∀𝑦𝑥 (ℵ‘𝑦) ∈ (ℵ‘𝑥)) → Smo ℵ)
121, 2, 5, 11mp3an 1458 1 Smo ℵ
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084  wcel 2099  wral 3051  wss 3946  ran crn 5673  Ord word 6364  Oncon0 6365   Fn wfn 6538  wf 6539  cfv 6543  Smo wsmo 8364  cale 9969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7735  ax-inf2 9674
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6302  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7369  df-ov 7416  df-om 7866  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-smo 8365  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8723  df-en 8964  df-dom 8965  df-sdom 8966  df-fin 8967  df-oi 9543  df-har 9590  df-card 9972  df-aleph 9973
This theorem is referenced by:  alephf1ALT  10136  alephsing  10307
  Copyright terms: Public domain W3C validator