![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alephsmo | Structured version Visualization version GIF version |
Description: The aleph function is strictly monotone. (Contributed by Mario Carneiro, 15-Mar-2013.) |
Ref | Expression |
---|---|
alephsmo | β’ Smo β΅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3996 | . 2 β’ On β On | |
2 | ordon 7757 | . 2 β’ Ord On | |
3 | alephord2i 10067 | . . . 4 β’ (π₯ β On β (π¦ β π₯ β (β΅βπ¦) β (β΅βπ₯))) | |
4 | 3 | ralrimiv 3137 | . . 3 β’ (π₯ β On β βπ¦ β π₯ (β΅βπ¦) β (β΅βπ₯)) |
5 | 4 | rgen 3055 | . 2 β’ βπ₯ β On βπ¦ β π₯ (β΅βπ¦) β (β΅βπ₯) |
6 | alephfnon 10055 | . . . 4 β’ β΅ Fn On | |
7 | alephsson 10090 | . . . 4 β’ ran β΅ β On | |
8 | df-f 6537 | . . . 4 β’ (β΅:OnβΆOn β (β΅ Fn On β§ ran β΅ β On)) | |
9 | 6, 7, 8 | mpbir2an 708 | . . 3 β’ β΅:OnβΆOn |
10 | issmo2 8344 | . . 3 β’ (β΅:OnβΆOn β ((On β On β§ Ord On β§ βπ₯ β On βπ¦ β π₯ (β΅βπ¦) β (β΅βπ₯)) β Smo β΅)) | |
11 | 9, 10 | ax-mp 5 | . 2 β’ ((On β On β§ Ord On β§ βπ₯ β On βπ¦ β π₯ (β΅βπ¦) β (β΅βπ₯)) β Smo β΅) |
12 | 1, 2, 5, 11 | mp3an 1457 | 1 β’ Smo β΅ |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1084 β wcel 2098 βwral 3053 β wss 3940 ran crn 5667 Ord word 6353 Oncon0 6354 Fn wfn 6528 βΆwf 6529 βcfv 6533 Smo wsmo 8340 β΅cale 9926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-inf2 9631 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-om 7849 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-smo 8341 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-oi 9500 df-har 9547 df-card 9929 df-aleph 9930 |
This theorem is referenced by: alephf1ALT 10093 alephsing 10266 |
Copyright terms: Public domain | W3C validator |