Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alephsmo | Structured version Visualization version GIF version |
Description: The aleph function is strictly monotone. (Contributed by Mario Carneiro, 15-Mar-2013.) |
Ref | Expression |
---|---|
alephsmo | ⊢ Smo ℵ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3940 | . 2 ⊢ On ⊆ On | |
2 | ordon 7583 | . 2 ⊢ Ord On | |
3 | alephord2i 9721 | . . . 4 ⊢ (𝑥 ∈ On → (𝑦 ∈ 𝑥 → (ℵ‘𝑦) ∈ (ℵ‘𝑥))) | |
4 | 3 | ralrimiv 3107 | . . 3 ⊢ (𝑥 ∈ On → ∀𝑦 ∈ 𝑥 (ℵ‘𝑦) ∈ (ℵ‘𝑥)) |
5 | 4 | rgen 3074 | . 2 ⊢ ∀𝑥 ∈ On ∀𝑦 ∈ 𝑥 (ℵ‘𝑦) ∈ (ℵ‘𝑥) |
6 | alephfnon 9709 | . . . 4 ⊢ ℵ Fn On | |
7 | alephsson 9744 | . . . 4 ⊢ ran ℵ ⊆ On | |
8 | df-f 6405 | . . . 4 ⊢ (ℵ:On⟶On ↔ (ℵ Fn On ∧ ran ℵ ⊆ On)) | |
9 | 6, 7, 8 | mpbir2an 711 | . . 3 ⊢ ℵ:On⟶On |
10 | issmo2 8110 | . . 3 ⊢ (ℵ:On⟶On → ((On ⊆ On ∧ Ord On ∧ ∀𝑥 ∈ On ∀𝑦 ∈ 𝑥 (ℵ‘𝑦) ∈ (ℵ‘𝑥)) → Smo ℵ)) | |
11 | 9, 10 | ax-mp 5 | . 2 ⊢ ((On ⊆ On ∧ Ord On ∧ ∀𝑥 ∈ On ∀𝑦 ∈ 𝑥 (ℵ‘𝑦) ∈ (ℵ‘𝑥)) → Smo ℵ) |
12 | 1, 2, 5, 11 | mp3an 1463 | 1 ⊢ Smo ℵ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1089 ∈ wcel 2112 ∀wral 3064 ⊆ wss 3883 ran crn 5570 Ord word 6233 Oncon0 6234 Fn wfn 6396 ⟶wf 6397 ‘cfv 6401 Smo wsmo 8106 ℵcale 9582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5196 ax-sep 5209 ax-nul 5216 ax-pow 5275 ax-pr 5339 ax-un 7545 ax-inf2 9286 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5179 df-id 5472 df-eprel 5478 df-po 5486 df-so 5487 df-fr 5527 df-se 5528 df-we 5529 df-xp 5575 df-rel 5576 df-cnv 5577 df-co 5578 df-dm 5579 df-rn 5580 df-res 5581 df-ima 5582 df-pred 6179 df-ord 6237 df-on 6238 df-lim 6239 df-suc 6240 df-iota 6359 df-fun 6403 df-fn 6404 df-f 6405 df-f1 6406 df-fo 6407 df-f1o 6408 df-fv 6409 df-isom 6410 df-riota 7192 df-om 7667 df-wrecs 8071 df-smo 8107 df-recs 8132 df-rdg 8170 df-er 8415 df-en 8651 df-dom 8652 df-sdom 8653 df-fin 8654 df-oi 9156 df-har 9203 df-card 9585 df-aleph 9586 |
This theorem is referenced by: alephf1ALT 9747 alephsing 9920 |
Copyright terms: Public domain | W3C validator |