MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephsmo Structured version   Visualization version   GIF version

Theorem alephsmo 9746
Description: The aleph function is strictly monotone. (Contributed by Mario Carneiro, 15-Mar-2013.)
Assertion
Ref Expression
alephsmo Smo ℵ

Proof of Theorem alephsmo
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3940 . 2 On ⊆ On
2 ordon 7583 . 2 Ord On
3 alephord2i 9721 . . . 4 (𝑥 ∈ On → (𝑦𝑥 → (ℵ‘𝑦) ∈ (ℵ‘𝑥)))
43ralrimiv 3107 . . 3 (𝑥 ∈ On → ∀𝑦𝑥 (ℵ‘𝑦) ∈ (ℵ‘𝑥))
54rgen 3074 . 2 𝑥 ∈ On ∀𝑦𝑥 (ℵ‘𝑦) ∈ (ℵ‘𝑥)
6 alephfnon 9709 . . . 4 ℵ Fn On
7 alephsson 9744 . . . 4 ran ℵ ⊆ On
8 df-f 6405 . . . 4 (ℵ:On⟶On ↔ (ℵ Fn On ∧ ran ℵ ⊆ On))
96, 7, 8mpbir2an 711 . . 3 ℵ:On⟶On
10 issmo2 8110 . . 3 (ℵ:On⟶On → ((On ⊆ On ∧ Ord On ∧ ∀𝑥 ∈ On ∀𝑦𝑥 (ℵ‘𝑦) ∈ (ℵ‘𝑥)) → Smo ℵ))
119, 10ax-mp 5 . 2 ((On ⊆ On ∧ Ord On ∧ ∀𝑥 ∈ On ∀𝑦𝑥 (ℵ‘𝑦) ∈ (ℵ‘𝑥)) → Smo ℵ)
121, 2, 5, 11mp3an 1463 1 Smo ℵ
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1089  wcel 2112  wral 3064  wss 3883  ran crn 5570  Ord word 6233  Oncon0 6234   Fn wfn 6396  wf 6397  cfv 6401  Smo wsmo 8106  cale 9582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-rep 5196  ax-sep 5209  ax-nul 5216  ax-pow 5275  ax-pr 5339  ax-un 7545  ax-inf2 9286
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3425  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5153  df-tr 5179  df-id 5472  df-eprel 5478  df-po 5486  df-so 5487  df-fr 5527  df-se 5528  df-we 5529  df-xp 5575  df-rel 5576  df-cnv 5577  df-co 5578  df-dm 5579  df-rn 5580  df-res 5581  df-ima 5582  df-pred 6179  df-ord 6237  df-on 6238  df-lim 6239  df-suc 6240  df-iota 6359  df-fun 6403  df-fn 6404  df-f 6405  df-f1 6406  df-fo 6407  df-f1o 6408  df-fv 6409  df-isom 6410  df-riota 7192  df-om 7667  df-wrecs 8071  df-smo 8107  df-recs 8132  df-rdg 8170  df-er 8415  df-en 8651  df-dom 8652  df-sdom 8653  df-fin 8654  df-oi 9156  df-har 9203  df-card 9585  df-aleph 9586
This theorem is referenced by:  alephf1ALT  9747  alephsing  9920
  Copyright terms: Public domain W3C validator