| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alephsmo | Structured version Visualization version GIF version | ||
| Description: The aleph function is strictly monotone. (Contributed by Mario Carneiro, 15-Mar-2013.) |
| Ref | Expression |
|---|---|
| alephsmo | ⊢ Smo ℵ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3953 | . 2 ⊢ On ⊆ On | |
| 2 | ordon 7716 | . 2 ⊢ Ord On | |
| 3 | alephord2i 9975 | . . . 4 ⊢ (𝑥 ∈ On → (𝑦 ∈ 𝑥 → (ℵ‘𝑦) ∈ (ℵ‘𝑥))) | |
| 4 | 3 | ralrimiv 3124 | . . 3 ⊢ (𝑥 ∈ On → ∀𝑦 ∈ 𝑥 (ℵ‘𝑦) ∈ (ℵ‘𝑥)) |
| 5 | 4 | rgen 3050 | . 2 ⊢ ∀𝑥 ∈ On ∀𝑦 ∈ 𝑥 (ℵ‘𝑦) ∈ (ℵ‘𝑥) |
| 6 | alephfnon 9963 | . . . 4 ⊢ ℵ Fn On | |
| 7 | alephsson 9998 | . . . 4 ⊢ ran ℵ ⊆ On | |
| 8 | df-f 6490 | . . . 4 ⊢ (ℵ:On⟶On ↔ (ℵ Fn On ∧ ran ℵ ⊆ On)) | |
| 9 | 6, 7, 8 | mpbir2an 711 | . . 3 ⊢ ℵ:On⟶On |
| 10 | issmo2 8275 | . . 3 ⊢ (ℵ:On⟶On → ((On ⊆ On ∧ Ord On ∧ ∀𝑥 ∈ On ∀𝑦 ∈ 𝑥 (ℵ‘𝑦) ∈ (ℵ‘𝑥)) → Smo ℵ)) | |
| 11 | 9, 10 | ax-mp 5 | . 2 ⊢ ((On ⊆ On ∧ Ord On ∧ ∀𝑥 ∈ On ∀𝑦 ∈ 𝑥 (ℵ‘𝑦) ∈ (ℵ‘𝑥)) → Smo ℵ) |
| 12 | 1, 2, 5, 11 | mp3an 1463 | 1 ⊢ Smo ℵ |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2113 ∀wral 3048 ⊆ wss 3898 ran crn 5620 Ord word 6310 Oncon0 6311 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 Smo wsmo 8271 ℵcale 9836 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-smo 8272 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-oi 9403 df-har 9450 df-card 9839 df-aleph 9840 |
| This theorem is referenced by: alephf1ALT 10001 alephsing 10174 |
| Copyright terms: Public domain | W3C validator |