MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axtgeucl Structured version   Visualization version   GIF version

Theorem axtgeucl 26517
Description: Euclid's Axiom. Axiom A10 of [Schwabhauser] p. 13. This is equivalent to Euclid's parallel postulate when combined with other axioms. (Contributed by Thierry Arnoux, 16-Mar-2019.)
Hypotheses
Ref Expression
axtrkge.p 𝑃 = (Base‘𝐺)
axtrkge.d = (dist‘𝐺)
axtrkge.i 𝐼 = (Itv‘𝐺)
axtgeucl.g (𝜑𝐺 ∈ TarskiGE)
axtgeucl.1 (𝜑𝑋𝑃)
axtgeucl.2 (𝜑𝑌𝑃)
axtgeucl.3 (𝜑𝑍𝑃)
axtgeucl.4 (𝜑𝑈𝑃)
axtgeucl.5 (𝜑𝑉𝑃)
axtgeucl.6 (𝜑𝑈 ∈ (𝑋𝐼𝑉))
axtgeucl.7 (𝜑𝑈 ∈ (𝑌𝐼𝑍))
axtgeucl.8 (𝜑𝑋𝑈)
Assertion
Ref Expression
axtgeucl (𝜑 → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑉 ∈ (𝑎𝐼𝑏)))
Distinct variable groups:   𝑎,𝑏,𝐼   𝑃,𝑎,𝑏   𝑉,𝑎,𝑏   𝑈,𝑎,𝑏   𝑋,𝑎,𝑏   𝑌,𝑎,𝑏   𝑍,𝑎,𝑏   ,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐺(𝑎,𝑏)

Proof of Theorem axtgeucl
Dummy variables 𝑣 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axtgeucl.6 . 2 (𝜑𝑈 ∈ (𝑋𝐼𝑉))
2 axtgeucl.7 . 2 (𝜑𝑈 ∈ (𝑌𝐼𝑍))
3 axtgeucl.8 . 2 (𝜑𝑋𝑈)
4 axtgeucl.g . . . . . 6 (𝜑𝐺 ∈ TarskiGE)
5 axtrkge.p . . . . . . 7 𝑃 = (Base‘𝐺)
6 axtrkge.d . . . . . . 7 = (dist‘𝐺)
7 axtrkge.i . . . . . . 7 𝐼 = (Itv‘𝐺)
85, 6, 7istrkge 26502 . . . . . 6 (𝐺 ∈ TarskiGE ↔ (𝐺 ∈ V ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
94, 8sylib 221 . . . . 5 (𝜑 → (𝐺 ∈ V ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
109simprd 499 . . . 4 (𝜑 → ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))))
11 axtgeucl.1 . . . . 5 (𝜑𝑋𝑃)
12 axtgeucl.2 . . . . 5 (𝜑𝑌𝑃)
13 axtgeucl.3 . . . . 5 (𝜑𝑍𝑃)
14 oveq1 7198 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑥𝐼𝑣) = (𝑋𝐼𝑣))
1514eleq2d 2816 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑢 ∈ (𝑥𝐼𝑣) ↔ 𝑢 ∈ (𝑋𝐼𝑣)))
16 neeq1 2994 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑥𝑢𝑋𝑢))
1715, 163anbi13d 1440 . . . . . . . 8 (𝑥 = 𝑋 → ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) ↔ (𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑋𝑢)))
18 oveq1 7198 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥𝐼𝑎) = (𝑋𝐼𝑎))
1918eleq2d 2816 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑦 ∈ (𝑥𝐼𝑎) ↔ 𝑦 ∈ (𝑋𝐼𝑎)))
20 oveq1 7198 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥𝐼𝑏) = (𝑋𝐼𝑏))
2120eleq2d 2816 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑧 ∈ (𝑥𝐼𝑏) ↔ 𝑧 ∈ (𝑋𝐼𝑏)))
2219, 213anbi12d 1439 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)) ↔ (𝑦 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))))
23222rexbidv 3209 . . . . . . . 8 (𝑥 = 𝑋 → (∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)) ↔ ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))))
2417, 23imbi12d 348 . . . . . . 7 (𝑥 = 𝑋 → (((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) ↔ ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
25242ralbidv 3110 . . . . . 6 (𝑥 = 𝑋 → (∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) ↔ ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
26 oveq1 7198 . . . . . . . . . 10 (𝑦 = 𝑌 → (𝑦𝐼𝑧) = (𝑌𝐼𝑧))
2726eleq2d 2816 . . . . . . . . 9 (𝑦 = 𝑌 → (𝑢 ∈ (𝑦𝐼𝑧) ↔ 𝑢 ∈ (𝑌𝐼𝑧)))
28273anbi2d 1443 . . . . . . . 8 (𝑦 = 𝑌 → ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑋𝑢) ↔ (𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑧) ∧ 𝑋𝑢)))
29 eleq1 2818 . . . . . . . . . 10 (𝑦 = 𝑌 → (𝑦 ∈ (𝑋𝐼𝑎) ↔ 𝑌 ∈ (𝑋𝐼𝑎)))
30293anbi1d 1442 . . . . . . . . 9 (𝑦 = 𝑌 → ((𝑦 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)) ↔ (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))))
31302rexbidv 3209 . . . . . . . 8 (𝑦 = 𝑌 → (∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)) ↔ ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))))
3228, 31imbi12d 348 . . . . . . 7 (𝑦 = 𝑌 → (((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) ↔ ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑧) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
33322ralbidv 3110 . . . . . 6 (𝑦 = 𝑌 → (∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) ↔ ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑧) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
34 oveq2 7199 . . . . . . . . . 10 (𝑧 = 𝑍 → (𝑌𝐼𝑧) = (𝑌𝐼𝑍))
3534eleq2d 2816 . . . . . . . . 9 (𝑧 = 𝑍 → (𝑢 ∈ (𝑌𝐼𝑧) ↔ 𝑢 ∈ (𝑌𝐼𝑍)))
36353anbi2d 1443 . . . . . . . 8 (𝑧 = 𝑍 → ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑧) ∧ 𝑋𝑢) ↔ (𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑢)))
37 eleq1 2818 . . . . . . . . . 10 (𝑧 = 𝑍 → (𝑧 ∈ (𝑋𝐼𝑏) ↔ 𝑍 ∈ (𝑋𝐼𝑏)))
38373anbi2d 1443 . . . . . . . . 9 (𝑧 = 𝑍 → ((𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)) ↔ (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))))
39382rexbidv 3209 . . . . . . . 8 (𝑧 = 𝑍 → (∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)) ↔ ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))))
4036, 39imbi12d 348 . . . . . . 7 (𝑧 = 𝑍 → (((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑧) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) ↔ ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
41402ralbidv 3110 . . . . . 6 (𝑧 = 𝑍 → (∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑧) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) ↔ ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
4225, 33, 41rspc3v 3540 . . . . 5 ((𝑋𝑃𝑌𝑃𝑍𝑃) → (∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) → ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
4311, 12, 13, 42syl3anc 1373 . . . 4 (𝜑 → (∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) → ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
4410, 43mpd 15 . . 3 (𝜑 → ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))))
45 axtgeucl.4 . . . 4 (𝜑𝑈𝑃)
46 axtgeucl.5 . . . 4 (𝜑𝑉𝑃)
47 eleq1 2818 . . . . . . 7 (𝑢 = 𝑈 → (𝑢 ∈ (𝑋𝐼𝑣) ↔ 𝑈 ∈ (𝑋𝐼𝑣)))
48 eleq1 2818 . . . . . . 7 (𝑢 = 𝑈 → (𝑢 ∈ (𝑌𝐼𝑍) ↔ 𝑈 ∈ (𝑌𝐼𝑍)))
49 neeq2 2995 . . . . . . 7 (𝑢 = 𝑈 → (𝑋𝑢𝑋𝑈))
5047, 48, 493anbi123d 1438 . . . . . 6 (𝑢 = 𝑈 → ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑢) ↔ (𝑈 ∈ (𝑋𝐼𝑣) ∧ 𝑈 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑈)))
5150imbi1d 345 . . . . 5 (𝑢 = 𝑈 → (((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) ↔ ((𝑈 ∈ (𝑋𝐼𝑣) ∧ 𝑈 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑈) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
52 oveq2 7199 . . . . . . . 8 (𝑣 = 𝑉 → (𝑋𝐼𝑣) = (𝑋𝐼𝑉))
5352eleq2d 2816 . . . . . . 7 (𝑣 = 𝑉 → (𝑈 ∈ (𝑋𝐼𝑣) ↔ 𝑈 ∈ (𝑋𝐼𝑉)))
54533anbi1d 1442 . . . . . 6 (𝑣 = 𝑉 → ((𝑈 ∈ (𝑋𝐼𝑣) ∧ 𝑈 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑈) ↔ (𝑈 ∈ (𝑋𝐼𝑉) ∧ 𝑈 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑈)))
55 eleq1 2818 . . . . . . . 8 (𝑣 = 𝑉 → (𝑣 ∈ (𝑎𝐼𝑏) ↔ 𝑉 ∈ (𝑎𝐼𝑏)))
56553anbi3d 1444 . . . . . . 7 (𝑣 = 𝑉 → ((𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)) ↔ (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑉 ∈ (𝑎𝐼𝑏))))
57562rexbidv 3209 . . . . . 6 (𝑣 = 𝑉 → (∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)) ↔ ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑉 ∈ (𝑎𝐼𝑏))))
5854, 57imbi12d 348 . . . . 5 (𝑣 = 𝑉 → (((𝑈 ∈ (𝑋𝐼𝑣) ∧ 𝑈 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑈) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) ↔ ((𝑈 ∈ (𝑋𝐼𝑉) ∧ 𝑈 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑈) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑉 ∈ (𝑎𝐼𝑏)))))
5951, 58rspc2v 3537 . . . 4 ((𝑈𝑃𝑉𝑃) → (∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) → ((𝑈 ∈ (𝑋𝐼𝑉) ∧ 𝑈 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑈) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑉 ∈ (𝑎𝐼𝑏)))))
6045, 46, 59syl2anc 587 . . 3 (𝜑 → (∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) → ((𝑈 ∈ (𝑋𝐼𝑉) ∧ 𝑈 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑈) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑉 ∈ (𝑎𝐼𝑏)))))
6144, 60mpd 15 . 2 (𝜑 → ((𝑈 ∈ (𝑋𝐼𝑉) ∧ 𝑈 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑈) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑉 ∈ (𝑎𝐼𝑏))))
621, 2, 3, 61mp3and 1466 1 (𝜑 → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑉 ∈ (𝑎𝐼𝑏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2112  wne 2932  wral 3051  wrex 3052  Vcvv 3398  cfv 6358  (class class class)co 7191  Basecbs 16666  distcds 16758  TarskiGEcstrkge 26480  Itvcitv 26481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-nul 5184
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-ne 2933  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-iota 6316  df-fv 6366  df-ov 7194  df-trkge 26496
This theorem is referenced by:  f1otrge  26917
  Copyright terms: Public domain W3C validator