MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axtgeucl Structured version   Visualization version   GIF version

Theorem axtgeucl 28498
Description: Euclid's Axiom. Axiom A10 of [Schwabhauser] p. 13. This is equivalent to Euclid's parallel postulate when combined with other axioms. (Contributed by Thierry Arnoux, 16-Mar-2019.)
Hypotheses
Ref Expression
axtrkge.p 𝑃 = (Base‘𝐺)
axtrkge.d = (dist‘𝐺)
axtrkge.i 𝐼 = (Itv‘𝐺)
axtgeucl.g (𝜑𝐺 ∈ TarskiGE)
axtgeucl.1 (𝜑𝑋𝑃)
axtgeucl.2 (𝜑𝑌𝑃)
axtgeucl.3 (𝜑𝑍𝑃)
axtgeucl.4 (𝜑𝑈𝑃)
axtgeucl.5 (𝜑𝑉𝑃)
axtgeucl.6 (𝜑𝑈 ∈ (𝑋𝐼𝑉))
axtgeucl.7 (𝜑𝑈 ∈ (𝑌𝐼𝑍))
axtgeucl.8 (𝜑𝑋𝑈)
Assertion
Ref Expression
axtgeucl (𝜑 → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑉 ∈ (𝑎𝐼𝑏)))
Distinct variable groups:   𝑎,𝑏,𝐼   𝑃,𝑎,𝑏   𝑉,𝑎,𝑏   𝑈,𝑎,𝑏   𝑋,𝑎,𝑏   𝑌,𝑎,𝑏   𝑍,𝑎,𝑏   ,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐺(𝑎,𝑏)

Proof of Theorem axtgeucl
Dummy variables 𝑣 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axtgeucl.6 . 2 (𝜑𝑈 ∈ (𝑋𝐼𝑉))
2 axtgeucl.7 . 2 (𝜑𝑈 ∈ (𝑌𝐼𝑍))
3 axtgeucl.8 . 2 (𝜑𝑋𝑈)
4 axtgeucl.g . . . . . 6 (𝜑𝐺 ∈ TarskiGE)
5 axtrkge.p . . . . . . 7 𝑃 = (Base‘𝐺)
6 axtrkge.d . . . . . . 7 = (dist‘𝐺)
7 axtrkge.i . . . . . . 7 𝐼 = (Itv‘𝐺)
85, 6, 7istrkge 28483 . . . . . 6 (𝐺 ∈ TarskiGE ↔ (𝐺 ∈ V ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
94, 8sylib 218 . . . . 5 (𝜑 → (𝐺 ∈ V ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
109simprd 495 . . . 4 (𝜑 → ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))))
11 axtgeucl.1 . . . . 5 (𝜑𝑋𝑃)
12 axtgeucl.2 . . . . 5 (𝜑𝑌𝑃)
13 axtgeucl.3 . . . . 5 (𝜑𝑍𝑃)
14 oveq1 7455 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑥𝐼𝑣) = (𝑋𝐼𝑣))
1514eleq2d 2830 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑢 ∈ (𝑥𝐼𝑣) ↔ 𝑢 ∈ (𝑋𝐼𝑣)))
16 neeq1 3009 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑥𝑢𝑋𝑢))
1715, 163anbi13d 1438 . . . . . . . 8 (𝑥 = 𝑋 → ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) ↔ (𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑋𝑢)))
18 oveq1 7455 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥𝐼𝑎) = (𝑋𝐼𝑎))
1918eleq2d 2830 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑦 ∈ (𝑥𝐼𝑎) ↔ 𝑦 ∈ (𝑋𝐼𝑎)))
20 oveq1 7455 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥𝐼𝑏) = (𝑋𝐼𝑏))
2120eleq2d 2830 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑧 ∈ (𝑥𝐼𝑏) ↔ 𝑧 ∈ (𝑋𝐼𝑏)))
2219, 213anbi12d 1437 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)) ↔ (𝑦 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))))
23222rexbidv 3228 . . . . . . . 8 (𝑥 = 𝑋 → (∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)) ↔ ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))))
2417, 23imbi12d 344 . . . . . . 7 (𝑥 = 𝑋 → (((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) ↔ ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
25242ralbidv 3227 . . . . . 6 (𝑥 = 𝑋 → (∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) ↔ ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
26 oveq1 7455 . . . . . . . . . 10 (𝑦 = 𝑌 → (𝑦𝐼𝑧) = (𝑌𝐼𝑧))
2726eleq2d 2830 . . . . . . . . 9 (𝑦 = 𝑌 → (𝑢 ∈ (𝑦𝐼𝑧) ↔ 𝑢 ∈ (𝑌𝐼𝑧)))
28273anbi2d 1441 . . . . . . . 8 (𝑦 = 𝑌 → ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑋𝑢) ↔ (𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑧) ∧ 𝑋𝑢)))
29 eleq1 2832 . . . . . . . . . 10 (𝑦 = 𝑌 → (𝑦 ∈ (𝑋𝐼𝑎) ↔ 𝑌 ∈ (𝑋𝐼𝑎)))
30293anbi1d 1440 . . . . . . . . 9 (𝑦 = 𝑌 → ((𝑦 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)) ↔ (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))))
31302rexbidv 3228 . . . . . . . 8 (𝑦 = 𝑌 → (∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)) ↔ ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))))
3228, 31imbi12d 344 . . . . . . 7 (𝑦 = 𝑌 → (((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) ↔ ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑧) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
33322ralbidv 3227 . . . . . 6 (𝑦 = 𝑌 → (∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) ↔ ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑧) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
34 oveq2 7456 . . . . . . . . . 10 (𝑧 = 𝑍 → (𝑌𝐼𝑧) = (𝑌𝐼𝑍))
3534eleq2d 2830 . . . . . . . . 9 (𝑧 = 𝑍 → (𝑢 ∈ (𝑌𝐼𝑧) ↔ 𝑢 ∈ (𝑌𝐼𝑍)))
36353anbi2d 1441 . . . . . . . 8 (𝑧 = 𝑍 → ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑧) ∧ 𝑋𝑢) ↔ (𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑢)))
37 eleq1 2832 . . . . . . . . . 10 (𝑧 = 𝑍 → (𝑧 ∈ (𝑋𝐼𝑏) ↔ 𝑍 ∈ (𝑋𝐼𝑏)))
38373anbi2d 1441 . . . . . . . . 9 (𝑧 = 𝑍 → ((𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)) ↔ (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))))
39382rexbidv 3228 . . . . . . . 8 (𝑧 = 𝑍 → (∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)) ↔ ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))))
4036, 39imbi12d 344 . . . . . . 7 (𝑧 = 𝑍 → (((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑧) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) ↔ ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
41402ralbidv 3227 . . . . . 6 (𝑧 = 𝑍 → (∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑧) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) ↔ ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
4225, 33, 41rspc3v 3651 . . . . 5 ((𝑋𝑃𝑌𝑃𝑍𝑃) → (∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) → ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
4311, 12, 13, 42syl3anc 1371 . . . 4 (𝜑 → (∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) → ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
4410, 43mpd 15 . . 3 (𝜑 → ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))))
45 axtgeucl.4 . . . 4 (𝜑𝑈𝑃)
46 axtgeucl.5 . . . 4 (𝜑𝑉𝑃)
47 eleq1 2832 . . . . . . 7 (𝑢 = 𝑈 → (𝑢 ∈ (𝑋𝐼𝑣) ↔ 𝑈 ∈ (𝑋𝐼𝑣)))
48 eleq1 2832 . . . . . . 7 (𝑢 = 𝑈 → (𝑢 ∈ (𝑌𝐼𝑍) ↔ 𝑈 ∈ (𝑌𝐼𝑍)))
49 neeq2 3010 . . . . . . 7 (𝑢 = 𝑈 → (𝑋𝑢𝑋𝑈))
5047, 48, 493anbi123d 1436 . . . . . 6 (𝑢 = 𝑈 → ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑢) ↔ (𝑈 ∈ (𝑋𝐼𝑣) ∧ 𝑈 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑈)))
5150imbi1d 341 . . . . 5 (𝑢 = 𝑈 → (((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) ↔ ((𝑈 ∈ (𝑋𝐼𝑣) ∧ 𝑈 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑈) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
52 oveq2 7456 . . . . . . . 8 (𝑣 = 𝑉 → (𝑋𝐼𝑣) = (𝑋𝐼𝑉))
5352eleq2d 2830 . . . . . . 7 (𝑣 = 𝑉 → (𝑈 ∈ (𝑋𝐼𝑣) ↔ 𝑈 ∈ (𝑋𝐼𝑉)))
54533anbi1d 1440 . . . . . 6 (𝑣 = 𝑉 → ((𝑈 ∈ (𝑋𝐼𝑣) ∧ 𝑈 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑈) ↔ (𝑈 ∈ (𝑋𝐼𝑉) ∧ 𝑈 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑈)))
55 eleq1 2832 . . . . . . . 8 (𝑣 = 𝑉 → (𝑣 ∈ (𝑎𝐼𝑏) ↔ 𝑉 ∈ (𝑎𝐼𝑏)))
56553anbi3d 1442 . . . . . . 7 (𝑣 = 𝑉 → ((𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)) ↔ (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑉 ∈ (𝑎𝐼𝑏))))
57562rexbidv 3228 . . . . . 6 (𝑣 = 𝑉 → (∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)) ↔ ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑉 ∈ (𝑎𝐼𝑏))))
5854, 57imbi12d 344 . . . . 5 (𝑣 = 𝑉 → (((𝑈 ∈ (𝑋𝐼𝑣) ∧ 𝑈 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑈) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) ↔ ((𝑈 ∈ (𝑋𝐼𝑉) ∧ 𝑈 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑈) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑉 ∈ (𝑎𝐼𝑏)))))
5951, 58rspc2v 3646 . . . 4 ((𝑈𝑃𝑉𝑃) → (∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) → ((𝑈 ∈ (𝑋𝐼𝑉) ∧ 𝑈 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑈) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑉 ∈ (𝑎𝐼𝑏)))))
6045, 46, 59syl2anc 583 . . 3 (𝜑 → (∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) → ((𝑈 ∈ (𝑋𝐼𝑉) ∧ 𝑈 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑈) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑉 ∈ (𝑎𝐼𝑏)))))
6144, 60mpd 15 . 2 (𝜑 → ((𝑈 ∈ (𝑋𝐼𝑉) ∧ 𝑈 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑈) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑉 ∈ (𝑎𝐼𝑏))))
621, 2, 3, 61mp3and 1464 1 (𝜑 → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑉 ∈ (𝑎𝐼𝑏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  Vcvv 3488  cfv 6573  (class class class)co 7448  Basecbs 17258  distcds 17320  TarskiGEcstrkge 28458  Itvcitv 28459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451  df-trkge 28477
This theorem is referenced by:  f1otrge  28898
  Copyright terms: Public domain W3C validator