MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axtgeucl Structured version   Visualization version   GIF version

Theorem axtgeucl 26737
Description: Euclid's Axiom. Axiom A10 of [Schwabhauser] p. 13. This is equivalent to Euclid's parallel postulate when combined with other axioms. (Contributed by Thierry Arnoux, 16-Mar-2019.)
Hypotheses
Ref Expression
axtrkge.p 𝑃 = (Base‘𝐺)
axtrkge.d = (dist‘𝐺)
axtrkge.i 𝐼 = (Itv‘𝐺)
axtgeucl.g (𝜑𝐺 ∈ TarskiGE)
axtgeucl.1 (𝜑𝑋𝑃)
axtgeucl.2 (𝜑𝑌𝑃)
axtgeucl.3 (𝜑𝑍𝑃)
axtgeucl.4 (𝜑𝑈𝑃)
axtgeucl.5 (𝜑𝑉𝑃)
axtgeucl.6 (𝜑𝑈 ∈ (𝑋𝐼𝑉))
axtgeucl.7 (𝜑𝑈 ∈ (𝑌𝐼𝑍))
axtgeucl.8 (𝜑𝑋𝑈)
Assertion
Ref Expression
axtgeucl (𝜑 → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑉 ∈ (𝑎𝐼𝑏)))
Distinct variable groups:   𝑎,𝑏,𝐼   𝑃,𝑎,𝑏   𝑉,𝑎,𝑏   𝑈,𝑎,𝑏   𝑋,𝑎,𝑏   𝑌,𝑎,𝑏   𝑍,𝑎,𝑏   ,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐺(𝑎,𝑏)

Proof of Theorem axtgeucl
Dummy variables 𝑣 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axtgeucl.6 . 2 (𝜑𝑈 ∈ (𝑋𝐼𝑉))
2 axtgeucl.7 . 2 (𝜑𝑈 ∈ (𝑌𝐼𝑍))
3 axtgeucl.8 . 2 (𝜑𝑋𝑈)
4 axtgeucl.g . . . . . 6 (𝜑𝐺 ∈ TarskiGE)
5 axtrkge.p . . . . . . 7 𝑃 = (Base‘𝐺)
6 axtrkge.d . . . . . . 7 = (dist‘𝐺)
7 axtrkge.i . . . . . . 7 𝐼 = (Itv‘𝐺)
85, 6, 7istrkge 26722 . . . . . 6 (𝐺 ∈ TarskiGE ↔ (𝐺 ∈ V ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
94, 8sylib 217 . . . . 5 (𝜑 → (𝐺 ∈ V ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
109simprd 495 . . . 4 (𝜑 → ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))))
11 axtgeucl.1 . . . . 5 (𝜑𝑋𝑃)
12 axtgeucl.2 . . . . 5 (𝜑𝑌𝑃)
13 axtgeucl.3 . . . . 5 (𝜑𝑍𝑃)
14 oveq1 7262 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑥𝐼𝑣) = (𝑋𝐼𝑣))
1514eleq2d 2824 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑢 ∈ (𝑥𝐼𝑣) ↔ 𝑢 ∈ (𝑋𝐼𝑣)))
16 neeq1 3005 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑥𝑢𝑋𝑢))
1715, 163anbi13d 1436 . . . . . . . 8 (𝑥 = 𝑋 → ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) ↔ (𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑋𝑢)))
18 oveq1 7262 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥𝐼𝑎) = (𝑋𝐼𝑎))
1918eleq2d 2824 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑦 ∈ (𝑥𝐼𝑎) ↔ 𝑦 ∈ (𝑋𝐼𝑎)))
20 oveq1 7262 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥𝐼𝑏) = (𝑋𝐼𝑏))
2120eleq2d 2824 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑧 ∈ (𝑥𝐼𝑏) ↔ 𝑧 ∈ (𝑋𝐼𝑏)))
2219, 213anbi12d 1435 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)) ↔ (𝑦 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))))
23222rexbidv 3228 . . . . . . . 8 (𝑥 = 𝑋 → (∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)) ↔ ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))))
2417, 23imbi12d 344 . . . . . . 7 (𝑥 = 𝑋 → (((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) ↔ ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
25242ralbidv 3122 . . . . . 6 (𝑥 = 𝑋 → (∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) ↔ ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
26 oveq1 7262 . . . . . . . . . 10 (𝑦 = 𝑌 → (𝑦𝐼𝑧) = (𝑌𝐼𝑧))
2726eleq2d 2824 . . . . . . . . 9 (𝑦 = 𝑌 → (𝑢 ∈ (𝑦𝐼𝑧) ↔ 𝑢 ∈ (𝑌𝐼𝑧)))
28273anbi2d 1439 . . . . . . . 8 (𝑦 = 𝑌 → ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑋𝑢) ↔ (𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑧) ∧ 𝑋𝑢)))
29 eleq1 2826 . . . . . . . . . 10 (𝑦 = 𝑌 → (𝑦 ∈ (𝑋𝐼𝑎) ↔ 𝑌 ∈ (𝑋𝐼𝑎)))
30293anbi1d 1438 . . . . . . . . 9 (𝑦 = 𝑌 → ((𝑦 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)) ↔ (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))))
31302rexbidv 3228 . . . . . . . 8 (𝑦 = 𝑌 → (∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)) ↔ ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))))
3228, 31imbi12d 344 . . . . . . 7 (𝑦 = 𝑌 → (((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) ↔ ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑧) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
33322ralbidv 3122 . . . . . 6 (𝑦 = 𝑌 → (∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) ↔ ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑧) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
34 oveq2 7263 . . . . . . . . . 10 (𝑧 = 𝑍 → (𝑌𝐼𝑧) = (𝑌𝐼𝑍))
3534eleq2d 2824 . . . . . . . . 9 (𝑧 = 𝑍 → (𝑢 ∈ (𝑌𝐼𝑧) ↔ 𝑢 ∈ (𝑌𝐼𝑍)))
36353anbi2d 1439 . . . . . . . 8 (𝑧 = 𝑍 → ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑧) ∧ 𝑋𝑢) ↔ (𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑢)))
37 eleq1 2826 . . . . . . . . . 10 (𝑧 = 𝑍 → (𝑧 ∈ (𝑋𝐼𝑏) ↔ 𝑍 ∈ (𝑋𝐼𝑏)))
38373anbi2d 1439 . . . . . . . . 9 (𝑧 = 𝑍 → ((𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)) ↔ (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))))
39382rexbidv 3228 . . . . . . . 8 (𝑧 = 𝑍 → (∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)) ↔ ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))))
4036, 39imbi12d 344 . . . . . . 7 (𝑧 = 𝑍 → (((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑧) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) ↔ ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
41402ralbidv 3122 . . . . . 6 (𝑧 = 𝑍 → (∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑧) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) ↔ ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
4225, 33, 41rspc3v 3565 . . . . 5 ((𝑋𝑃𝑌𝑃𝑍𝑃) → (∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) → ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
4311, 12, 13, 42syl3anc 1369 . . . 4 (𝜑 → (∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) → ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
4410, 43mpd 15 . . 3 (𝜑 → ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))))
45 axtgeucl.4 . . . 4 (𝜑𝑈𝑃)
46 axtgeucl.5 . . . 4 (𝜑𝑉𝑃)
47 eleq1 2826 . . . . . . 7 (𝑢 = 𝑈 → (𝑢 ∈ (𝑋𝐼𝑣) ↔ 𝑈 ∈ (𝑋𝐼𝑣)))
48 eleq1 2826 . . . . . . 7 (𝑢 = 𝑈 → (𝑢 ∈ (𝑌𝐼𝑍) ↔ 𝑈 ∈ (𝑌𝐼𝑍)))
49 neeq2 3006 . . . . . . 7 (𝑢 = 𝑈 → (𝑋𝑢𝑋𝑈))
5047, 48, 493anbi123d 1434 . . . . . 6 (𝑢 = 𝑈 → ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑢) ↔ (𝑈 ∈ (𝑋𝐼𝑣) ∧ 𝑈 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑈)))
5150imbi1d 341 . . . . 5 (𝑢 = 𝑈 → (((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) ↔ ((𝑈 ∈ (𝑋𝐼𝑣) ∧ 𝑈 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑈) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
52 oveq2 7263 . . . . . . . 8 (𝑣 = 𝑉 → (𝑋𝐼𝑣) = (𝑋𝐼𝑉))
5352eleq2d 2824 . . . . . . 7 (𝑣 = 𝑉 → (𝑈 ∈ (𝑋𝐼𝑣) ↔ 𝑈 ∈ (𝑋𝐼𝑉)))
54533anbi1d 1438 . . . . . 6 (𝑣 = 𝑉 → ((𝑈 ∈ (𝑋𝐼𝑣) ∧ 𝑈 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑈) ↔ (𝑈 ∈ (𝑋𝐼𝑉) ∧ 𝑈 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑈)))
55 eleq1 2826 . . . . . . . 8 (𝑣 = 𝑉 → (𝑣 ∈ (𝑎𝐼𝑏) ↔ 𝑉 ∈ (𝑎𝐼𝑏)))
56553anbi3d 1440 . . . . . . 7 (𝑣 = 𝑉 → ((𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)) ↔ (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑉 ∈ (𝑎𝐼𝑏))))
57562rexbidv 3228 . . . . . 6 (𝑣 = 𝑉 → (∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)) ↔ ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑉 ∈ (𝑎𝐼𝑏))))
5854, 57imbi12d 344 . . . . 5 (𝑣 = 𝑉 → (((𝑈 ∈ (𝑋𝐼𝑣) ∧ 𝑈 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑈) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) ↔ ((𝑈 ∈ (𝑋𝐼𝑉) ∧ 𝑈 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑈) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑉 ∈ (𝑎𝐼𝑏)))))
5951, 58rspc2v 3562 . . . 4 ((𝑈𝑃𝑉𝑃) → (∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) → ((𝑈 ∈ (𝑋𝐼𝑉) ∧ 𝑈 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑈) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑉 ∈ (𝑎𝐼𝑏)))))
6045, 46, 59syl2anc 583 . . 3 (𝜑 → (∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) → ((𝑈 ∈ (𝑋𝐼𝑉) ∧ 𝑈 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑈) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑉 ∈ (𝑎𝐼𝑏)))))
6144, 60mpd 15 . 2 (𝜑 → ((𝑈 ∈ (𝑋𝐼𝑉) ∧ 𝑈 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑈) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑉 ∈ (𝑎𝐼𝑏))))
621, 2, 3, 61mp3and 1462 1 (𝜑 → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑉 ∈ (𝑎𝐼𝑏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  Vcvv 3422  cfv 6418  (class class class)co 7255  Basecbs 16840  distcds 16897  TarskiGEcstrkge 26698  Itvcitv 26699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258  df-trkge 26716
This theorem is referenced by:  f1otrge  27137
  Copyright terms: Public domain W3C validator