MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axtgeucl Structured version   Visualization version   GIF version

Theorem axtgeucl 26833
Description: Euclid's Axiom. Axiom A10 of [Schwabhauser] p. 13. This is equivalent to Euclid's parallel postulate when combined with other axioms. (Contributed by Thierry Arnoux, 16-Mar-2019.)
Hypotheses
Ref Expression
axtrkge.p 𝑃 = (Base‘𝐺)
axtrkge.d = (dist‘𝐺)
axtrkge.i 𝐼 = (Itv‘𝐺)
axtgeucl.g (𝜑𝐺 ∈ TarskiGE)
axtgeucl.1 (𝜑𝑋𝑃)
axtgeucl.2 (𝜑𝑌𝑃)
axtgeucl.3 (𝜑𝑍𝑃)
axtgeucl.4 (𝜑𝑈𝑃)
axtgeucl.5 (𝜑𝑉𝑃)
axtgeucl.6 (𝜑𝑈 ∈ (𝑋𝐼𝑉))
axtgeucl.7 (𝜑𝑈 ∈ (𝑌𝐼𝑍))
axtgeucl.8 (𝜑𝑋𝑈)
Assertion
Ref Expression
axtgeucl (𝜑 → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑉 ∈ (𝑎𝐼𝑏)))
Distinct variable groups:   𝑎,𝑏,𝐼   𝑃,𝑎,𝑏   𝑉,𝑎,𝑏   𝑈,𝑎,𝑏   𝑋,𝑎,𝑏   𝑌,𝑎,𝑏   𝑍,𝑎,𝑏   ,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐺(𝑎,𝑏)

Proof of Theorem axtgeucl
Dummy variables 𝑣 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axtgeucl.6 . 2 (𝜑𝑈 ∈ (𝑋𝐼𝑉))
2 axtgeucl.7 . 2 (𝜑𝑈 ∈ (𝑌𝐼𝑍))
3 axtgeucl.8 . 2 (𝜑𝑋𝑈)
4 axtgeucl.g . . . . . 6 (𝜑𝐺 ∈ TarskiGE)
5 axtrkge.p . . . . . . 7 𝑃 = (Base‘𝐺)
6 axtrkge.d . . . . . . 7 = (dist‘𝐺)
7 axtrkge.i . . . . . . 7 𝐼 = (Itv‘𝐺)
85, 6, 7istrkge 26818 . . . . . 6 (𝐺 ∈ TarskiGE ↔ (𝐺 ∈ V ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
94, 8sylib 217 . . . . 5 (𝜑 → (𝐺 ∈ V ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
109simprd 496 . . . 4 (𝜑 → ∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))))
11 axtgeucl.1 . . . . 5 (𝜑𝑋𝑃)
12 axtgeucl.2 . . . . 5 (𝜑𝑌𝑃)
13 axtgeucl.3 . . . . 5 (𝜑𝑍𝑃)
14 oveq1 7282 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑥𝐼𝑣) = (𝑋𝐼𝑣))
1514eleq2d 2824 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑢 ∈ (𝑥𝐼𝑣) ↔ 𝑢 ∈ (𝑋𝐼𝑣)))
16 neeq1 3006 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑥𝑢𝑋𝑢))
1715, 163anbi13d 1437 . . . . . . . 8 (𝑥 = 𝑋 → ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) ↔ (𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑋𝑢)))
18 oveq1 7282 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥𝐼𝑎) = (𝑋𝐼𝑎))
1918eleq2d 2824 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑦 ∈ (𝑥𝐼𝑎) ↔ 𝑦 ∈ (𝑋𝐼𝑎)))
20 oveq1 7282 . . . . . . . . . . 11 (𝑥 = 𝑋 → (𝑥𝐼𝑏) = (𝑋𝐼𝑏))
2120eleq2d 2824 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝑧 ∈ (𝑥𝐼𝑏) ↔ 𝑧 ∈ (𝑋𝐼𝑏)))
2219, 213anbi12d 1436 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)) ↔ (𝑦 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))))
23222rexbidv 3229 . . . . . . . 8 (𝑥 = 𝑋 → (∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)) ↔ ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))))
2417, 23imbi12d 345 . . . . . . 7 (𝑥 = 𝑋 → (((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) ↔ ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
25242ralbidv 3129 . . . . . 6 (𝑥 = 𝑋 → (∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) ↔ ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
26 oveq1 7282 . . . . . . . . . 10 (𝑦 = 𝑌 → (𝑦𝐼𝑧) = (𝑌𝐼𝑧))
2726eleq2d 2824 . . . . . . . . 9 (𝑦 = 𝑌 → (𝑢 ∈ (𝑦𝐼𝑧) ↔ 𝑢 ∈ (𝑌𝐼𝑧)))
28273anbi2d 1440 . . . . . . . 8 (𝑦 = 𝑌 → ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑋𝑢) ↔ (𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑧) ∧ 𝑋𝑢)))
29 eleq1 2826 . . . . . . . . . 10 (𝑦 = 𝑌 → (𝑦 ∈ (𝑋𝐼𝑎) ↔ 𝑌 ∈ (𝑋𝐼𝑎)))
30293anbi1d 1439 . . . . . . . . 9 (𝑦 = 𝑌 → ((𝑦 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)) ↔ (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))))
31302rexbidv 3229 . . . . . . . 8 (𝑦 = 𝑌 → (∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)) ↔ ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))))
3228, 31imbi12d 345 . . . . . . 7 (𝑦 = 𝑌 → (((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) ↔ ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑧) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
33322ralbidv 3129 . . . . . 6 (𝑦 = 𝑌 → (∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) ↔ ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑧) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
34 oveq2 7283 . . . . . . . . . 10 (𝑧 = 𝑍 → (𝑌𝐼𝑧) = (𝑌𝐼𝑍))
3534eleq2d 2824 . . . . . . . . 9 (𝑧 = 𝑍 → (𝑢 ∈ (𝑌𝐼𝑧) ↔ 𝑢 ∈ (𝑌𝐼𝑍)))
36353anbi2d 1440 . . . . . . . 8 (𝑧 = 𝑍 → ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑧) ∧ 𝑋𝑢) ↔ (𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑢)))
37 eleq1 2826 . . . . . . . . . 10 (𝑧 = 𝑍 → (𝑧 ∈ (𝑋𝐼𝑏) ↔ 𝑍 ∈ (𝑋𝐼𝑏)))
38373anbi2d 1440 . . . . . . . . 9 (𝑧 = 𝑍 → ((𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)) ↔ (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))))
39382rexbidv 3229 . . . . . . . 8 (𝑧 = 𝑍 → (∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)) ↔ ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))))
4036, 39imbi12d 345 . . . . . . 7 (𝑧 = 𝑍 → (((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑧) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) ↔ ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
41402ralbidv 3129 . . . . . 6 (𝑧 = 𝑍 → (∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑧) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑧 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) ↔ ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
4225, 33, 41rspc3v 3573 . . . . 5 ((𝑋𝑃𝑌𝑃𝑍𝑃) → (∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) → ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
4311, 12, 13, 42syl3anc 1370 . . . 4 (𝜑 → (∀𝑥𝑃𝑦𝑃𝑧𝑃𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑥𝐼𝑣) ∧ 𝑢 ∈ (𝑦𝐼𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑦 ∈ (𝑥𝐼𝑎) ∧ 𝑧 ∈ (𝑥𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) → ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
4410, 43mpd 15 . . 3 (𝜑 → ∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))))
45 axtgeucl.4 . . . 4 (𝜑𝑈𝑃)
46 axtgeucl.5 . . . 4 (𝜑𝑉𝑃)
47 eleq1 2826 . . . . . . 7 (𝑢 = 𝑈 → (𝑢 ∈ (𝑋𝐼𝑣) ↔ 𝑈 ∈ (𝑋𝐼𝑣)))
48 eleq1 2826 . . . . . . 7 (𝑢 = 𝑈 → (𝑢 ∈ (𝑌𝐼𝑍) ↔ 𝑈 ∈ (𝑌𝐼𝑍)))
49 neeq2 3007 . . . . . . 7 (𝑢 = 𝑈 → (𝑋𝑢𝑋𝑈))
5047, 48, 493anbi123d 1435 . . . . . 6 (𝑢 = 𝑈 → ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑢) ↔ (𝑈 ∈ (𝑋𝐼𝑣) ∧ 𝑈 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑈)))
5150imbi1d 342 . . . . 5 (𝑢 = 𝑈 → (((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) ↔ ((𝑈 ∈ (𝑋𝐼𝑣) ∧ 𝑈 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑈) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)))))
52 oveq2 7283 . . . . . . . 8 (𝑣 = 𝑉 → (𝑋𝐼𝑣) = (𝑋𝐼𝑉))
5352eleq2d 2824 . . . . . . 7 (𝑣 = 𝑉 → (𝑈 ∈ (𝑋𝐼𝑣) ↔ 𝑈 ∈ (𝑋𝐼𝑉)))
54533anbi1d 1439 . . . . . 6 (𝑣 = 𝑉 → ((𝑈 ∈ (𝑋𝐼𝑣) ∧ 𝑈 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑈) ↔ (𝑈 ∈ (𝑋𝐼𝑉) ∧ 𝑈 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑈)))
55 eleq1 2826 . . . . . . . 8 (𝑣 = 𝑉 → (𝑣 ∈ (𝑎𝐼𝑏) ↔ 𝑉 ∈ (𝑎𝐼𝑏)))
56553anbi3d 1441 . . . . . . 7 (𝑣 = 𝑉 → ((𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)) ↔ (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑉 ∈ (𝑎𝐼𝑏))))
57562rexbidv 3229 . . . . . 6 (𝑣 = 𝑉 → (∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏)) ↔ ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑉 ∈ (𝑎𝐼𝑏))))
5854, 57imbi12d 345 . . . . 5 (𝑣 = 𝑉 → (((𝑈 ∈ (𝑋𝐼𝑣) ∧ 𝑈 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑈) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) ↔ ((𝑈 ∈ (𝑋𝐼𝑉) ∧ 𝑈 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑈) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑉 ∈ (𝑎𝐼𝑏)))))
5951, 58rspc2v 3570 . . . 4 ((𝑈𝑃𝑉𝑃) → (∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) → ((𝑈 ∈ (𝑋𝐼𝑉) ∧ 𝑈 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑈) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑉 ∈ (𝑎𝐼𝑏)))))
6045, 46, 59syl2anc 584 . . 3 (𝜑 → (∀𝑢𝑃𝑣𝑃 ((𝑢 ∈ (𝑋𝐼𝑣) ∧ 𝑢 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑢) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑣 ∈ (𝑎𝐼𝑏))) → ((𝑈 ∈ (𝑋𝐼𝑉) ∧ 𝑈 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑈) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑉 ∈ (𝑎𝐼𝑏)))))
6144, 60mpd 15 . 2 (𝜑 → ((𝑈 ∈ (𝑋𝐼𝑉) ∧ 𝑈 ∈ (𝑌𝐼𝑍) ∧ 𝑋𝑈) → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑉 ∈ (𝑎𝐼𝑏))))
621, 2, 3, 61mp3and 1463 1 (𝜑 → ∃𝑎𝑃𝑏𝑃 (𝑌 ∈ (𝑋𝐼𝑎) ∧ 𝑍 ∈ (𝑋𝐼𝑏) ∧ 𝑉 ∈ (𝑎𝐼𝑏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  Vcvv 3432  cfv 6433  (class class class)co 7275  Basecbs 16912  distcds 16971  TarskiGEcstrkge 26793  Itvcitv 26794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278  df-trkge 26812
This theorem is referenced by:  f1otrge  27233
  Copyright terms: Public domain W3C validator