| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssiun2s | Structured version Visualization version GIF version | ||
| Description: Subset relationship for an indexed union. (Contributed by NM, 26-Oct-2003.) |
| Ref | Expression |
|---|---|
| ssiun2s.1 | ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| ssiun2s | ⊢ (𝐶 ∈ 𝐴 → 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2898 | . 2 ⊢ Ⅎ𝑥𝐶 | |
| 2 | nfcv 2898 | . . 3 ⊢ Ⅎ𝑥𝐷 | |
| 3 | nfiu1 5003 | . . 3 ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 | |
| 4 | 2, 3 | nfss 3951 | . 2 ⊢ Ⅎ𝑥 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 |
| 5 | ssiun2s.1 | . . 3 ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐷) | |
| 6 | 5 | sseq1d 3990 | . 2 ⊢ (𝑥 = 𝐶 → (𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵)) |
| 7 | ssiun2 5023 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) | |
| 8 | 1, 4, 6, 7 | vtoclgaf 3555 | 1 ⊢ (𝐶 ∈ 𝐴 → 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 ∪ ciun 4967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-v 3461 df-ss 3943 df-iun 4969 |
| This theorem is referenced by: fviunfun 7943 onfununi 8355 oaordi 8558 omordi 8578 dffi3 9443 alephordi 10088 domtriomlem 10456 pwxpndom2 10679 wunex2 10752 imasaddvallem 17543 imasvscaval 17552 iundisj2 25502 voliunlem1 25503 volsup 25509 iundisj2fi 32774 constr01 33776 bnj906 34961 bnj1137 35026 bnj1408 35067 cvmliftlem10 35316 cvmliftlem13 35318 sstotbnd2 37798 mapdrvallem3 41665 onsucunifi 43394 fvmptiunrelexplb0d 43708 fvmptiunrelexplb1d 43710 corclrcl 43731 trclrelexplem 43735 corcltrcl 43763 cotrclrcl 43766 iunincfi 45118 iundjiunlem 46488 meaiuninc3v 46513 caratheodorylem1 46555 ovnhoilem1 46630 |
| Copyright terms: Public domain | W3C validator |