| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssiun2s | Structured version Visualization version GIF version | ||
| Description: Subset relationship for an indexed union. (Contributed by NM, 26-Oct-2003.) |
| Ref | Expression |
|---|---|
| ssiun2s.1 | ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| ssiun2s | ⊢ (𝐶 ∈ 𝐴 → 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2891 | . 2 ⊢ Ⅎ𝑥𝐶 | |
| 2 | nfcv 2891 | . . 3 ⊢ Ⅎ𝑥𝐷 | |
| 3 | nfiu1 4977 | . . 3 ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 | |
| 4 | 2, 3 | nfss 3928 | . 2 ⊢ Ⅎ𝑥 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 |
| 5 | ssiun2s.1 | . . 3 ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐷) | |
| 6 | 5 | sseq1d 3967 | . 2 ⊢ (𝑥 = 𝐶 → (𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵)) |
| 7 | ssiun2 4996 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) | |
| 8 | 1, 4, 6, 7 | vtoclgaf 3531 | 1 ⊢ (𝐶 ∈ 𝐴 → 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3903 ∪ ciun 4941 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-v 3438 df-ss 3920 df-iun 4943 |
| This theorem is referenced by: fviunfun 7880 onfununi 8264 oaordi 8464 omordi 8484 dffi3 9321 alephordi 9968 domtriomlem 10336 pwxpndom2 10559 wunex2 10632 imasaddvallem 17433 imasvscaval 17442 iundisj2 25448 voliunlem1 25449 volsup 25455 iundisj2fi 32740 constr01 33709 bnj906 34897 bnj1137 34962 bnj1408 35003 cvmliftlem10 35271 cvmliftlem13 35273 sstotbnd2 37758 mapdrvallem3 41629 onsucunifi 43347 fvmptiunrelexplb0d 43661 fvmptiunrelexplb1d 43663 corclrcl 43684 trclrelexplem 43688 corcltrcl 43716 cotrclrcl 43719 iunincfi 45076 iundjiunlem 46444 meaiuninc3v 46469 caratheodorylem1 46511 ovnhoilem1 46586 |
| Copyright terms: Public domain | W3C validator |