MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssiun2s Structured version   Visualization version   GIF version

Theorem ssiun2s 5048
Description: Subset relationship for an indexed union. (Contributed by NM, 26-Oct-2003.)
Hypothesis
Ref Expression
ssiun2s.1 (𝑥 = 𝐶𝐵 = 𝐷)
Assertion
Ref Expression
ssiun2s (𝐶𝐴𝐷 𝑥𝐴 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem ssiun2s
StepHypRef Expression
1 nfcv 2905 . 2 𝑥𝐶
2 nfcv 2905 . . 3 𝑥𝐷
3 nfiu1 5027 . . 3 𝑥 𝑥𝐴 𝐵
42, 3nfss 3976 . 2 𝑥 𝐷 𝑥𝐴 𝐵
5 ssiun2s.1 . . 3 (𝑥 = 𝐶𝐵 = 𝐷)
65sseq1d 4015 . 2 (𝑥 = 𝐶 → (𝐵 𝑥𝐴 𝐵𝐷 𝑥𝐴 𝐵))
7 ssiun2 5047 . 2 (𝑥𝐴𝐵 𝑥𝐴 𝐵)
81, 4, 6, 7vtoclgaf 3576 1 (𝐶𝐴𝐷 𝑥𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wss 3951   ciun 4991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-v 3482  df-ss 3968  df-iun 4993
This theorem is referenced by:  fviunfun  7969  onfununi  8381  oaordi  8584  omordi  8604  dffi3  9471  alephordi  10114  domtriomlem  10482  pwxpndom2  10705  wunex2  10778  imasaddvallem  17574  imasvscaval  17583  iundisj2  25584  voliunlem1  25585  volsup  25591  iundisj2fi  32799  constr01  33783  bnj906  34944  bnj1137  35009  bnj1408  35050  cvmliftlem10  35299  cvmliftlem13  35301  sstotbnd2  37781  mapdrvallem3  41648  onsucunifi  43383  fvmptiunrelexplb0d  43697  fvmptiunrelexplb1d  43699  corclrcl  43720  trclrelexplem  43724  corcltrcl  43752  cotrclrcl  43755  iunincfi  45099  iundjiunlem  46474  meaiuninc3v  46499  caratheodorylem1  46541  ovnhoilem1  46616
  Copyright terms: Public domain W3C validator