| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssiun2s | Structured version Visualization version GIF version | ||
| Description: Subset relationship for an indexed union. (Contributed by NM, 26-Oct-2003.) |
| Ref | Expression |
|---|---|
| ssiun2s.1 | ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| ssiun2s | ⊢ (𝐶 ∈ 𝐴 → 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2891 | . 2 ⊢ Ⅎ𝑥𝐶 | |
| 2 | nfcv 2891 | . . 3 ⊢ Ⅎ𝑥𝐷 | |
| 3 | nfiu1 4987 | . . 3 ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 | |
| 4 | 2, 3 | nfss 3936 | . 2 ⊢ Ⅎ𝑥 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 |
| 5 | ssiun2s.1 | . . 3 ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐷) | |
| 6 | 5 | sseq1d 3975 | . 2 ⊢ (𝑥 = 𝐶 → (𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵)) |
| 7 | ssiun2 5006 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) | |
| 8 | 1, 4, 6, 7 | vtoclgaf 3539 | 1 ⊢ (𝐶 ∈ 𝐴 → 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 ∪ ciun 4951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-v 3446 df-ss 3928 df-iun 4953 |
| This theorem is referenced by: fviunfun 7903 onfununi 8287 oaordi 8487 omordi 8507 dffi3 9358 alephordi 10003 domtriomlem 10371 pwxpndom2 10594 wunex2 10667 imasaddvallem 17468 imasvscaval 17477 iundisj2 25483 voliunlem1 25484 volsup 25490 iundisj2fi 32770 constr01 33725 bnj906 34913 bnj1137 34978 bnj1408 35019 cvmliftlem10 35274 cvmliftlem13 35276 sstotbnd2 37761 mapdrvallem3 41633 onsucunifi 43352 fvmptiunrelexplb0d 43666 fvmptiunrelexplb1d 43668 corclrcl 43689 trclrelexplem 43693 corcltrcl 43721 cotrclrcl 43724 iunincfi 45081 iundjiunlem 46450 meaiuninc3v 46475 caratheodorylem1 46517 ovnhoilem1 46592 |
| Copyright terms: Public domain | W3C validator |