![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssiun2s | Structured version Visualization version GIF version |
Description: Subset relationship for an indexed union. (Contributed by NM, 26-Oct-2003.) |
Ref | Expression |
---|---|
ssiun2s.1 | ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
ssiun2s | ⊢ (𝐶 ∈ 𝐴 → 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2908 | . 2 ⊢ Ⅎ𝑥𝐶 | |
2 | nfcv 2908 | . . 3 ⊢ Ⅎ𝑥𝐷 | |
3 | nfiu1 5050 | . . 3 ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 | |
4 | 2, 3 | nfss 4001 | . 2 ⊢ Ⅎ𝑥 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 |
5 | ssiun2s.1 | . . 3 ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐷) | |
6 | 5 | sseq1d 4040 | . 2 ⊢ (𝑥 = 𝐶 → (𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵)) |
7 | ssiun2 5070 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) | |
8 | 1, 4, 6, 7 | vtoclgaf 3588 | 1 ⊢ (𝐶 ∈ 𝐴 → 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ∪ ciun 5015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-v 3490 df-ss 3993 df-iun 5017 |
This theorem is referenced by: fviunfun 7985 onfununi 8397 oaordi 8602 omordi 8622 dffi3 9500 alephordi 10143 domtriomlem 10511 pwxpndom2 10734 wunex2 10807 imasaddvallem 17589 imasvscaval 17598 iundisj2 25603 voliunlem1 25604 volsup 25610 iundisj2fi 32802 constr01 33732 bnj906 34906 bnj1137 34971 bnj1408 35012 cvmliftlem10 35262 cvmliftlem13 35264 sstotbnd2 37734 mapdrvallem3 41603 onsucunifi 43332 fvmptiunrelexplb0d 43646 fvmptiunrelexplb1d 43648 corclrcl 43669 trclrelexplem 43673 corcltrcl 43701 cotrclrcl 43704 iunincfi 44996 iundjiunlem 46380 meaiuninc3v 46405 caratheodorylem1 46447 ovnhoilem1 46522 |
Copyright terms: Public domain | W3C validator |