| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssiun2s | Structured version Visualization version GIF version | ||
| Description: Subset relationship for an indexed union. (Contributed by NM, 26-Oct-2003.) |
| Ref | Expression |
|---|---|
| ssiun2s.1 | ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| ssiun2s | ⊢ (𝐶 ∈ 𝐴 → 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2892 | . 2 ⊢ Ⅎ𝑥𝐶 | |
| 2 | nfcv 2892 | . . 3 ⊢ Ⅎ𝑥𝐷 | |
| 3 | nfiu1 4994 | . . 3 ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 | |
| 4 | 2, 3 | nfss 3942 | . 2 ⊢ Ⅎ𝑥 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 |
| 5 | ssiun2s.1 | . . 3 ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐷) | |
| 6 | 5 | sseq1d 3981 | . 2 ⊢ (𝑥 = 𝐶 → (𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵)) |
| 7 | ssiun2 5014 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) | |
| 8 | 1, 4, 6, 7 | vtoclgaf 3545 | 1 ⊢ (𝐶 ∈ 𝐴 → 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 ∪ ciun 4958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-v 3452 df-ss 3934 df-iun 4960 |
| This theorem is referenced by: fviunfun 7926 onfununi 8313 oaordi 8513 omordi 8533 dffi3 9389 alephordi 10034 domtriomlem 10402 pwxpndom2 10625 wunex2 10698 imasaddvallem 17499 imasvscaval 17508 iundisj2 25457 voliunlem1 25458 volsup 25464 iundisj2fi 32727 constr01 33739 bnj906 34927 bnj1137 34992 bnj1408 35033 cvmliftlem10 35288 cvmliftlem13 35290 sstotbnd2 37775 mapdrvallem3 41647 onsucunifi 43366 fvmptiunrelexplb0d 43680 fvmptiunrelexplb1d 43682 corclrcl 43703 trclrelexplem 43707 corcltrcl 43735 cotrclrcl 43738 iunincfi 45095 iundjiunlem 46464 meaiuninc3v 46489 caratheodorylem1 46531 ovnhoilem1 46606 |
| Copyright terms: Public domain | W3C validator |