![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssiun2s | Structured version Visualization version GIF version |
Description: Subset relationship for an indexed union. (Contributed by NM, 26-Oct-2003.) |
Ref | Expression |
---|---|
ssiun2s.1 | ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
ssiun2s | ⊢ (𝐶 ∈ 𝐴 → 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2969 | . 2 ⊢ Ⅎ𝑥𝐶 | |
2 | nfcv 2969 | . . 3 ⊢ Ⅎ𝑥𝐷 | |
3 | nfiu1 4770 | . . 3 ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 | |
4 | 2, 3 | nfss 3820 | . 2 ⊢ Ⅎ𝑥 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 |
5 | ssiun2s.1 | . . 3 ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐷) | |
6 | 5 | sseq1d 3857 | . 2 ⊢ (𝑥 = 𝐶 → (𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵)) |
7 | ssiun2 4783 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) | |
8 | 1, 4, 6, 7 | vtoclgaf 3488 | 1 ⊢ (𝐶 ∈ 𝐴 → 𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1658 ∈ wcel 2166 ⊆ wss 3798 ∪ ciun 4740 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-v 3416 df-in 3805 df-ss 3812 df-iun 4742 |
This theorem is referenced by: onfununi 7704 oaordi 7893 omordi 7913 dffi3 8606 alephordi 9210 domtriomlem 9579 pwxpndom2 9802 wunex2 9875 imasaddvallem 16542 imasvscaval 16551 iundisj2 23715 voliunlem1 23716 volsup 23722 iundisj2fi 30103 bnj906 31546 bnj1137 31609 bnj1408 31650 cvmliftlem10 31822 cvmliftlem13 31824 sstotbnd2 34115 mapdrvallem3 37721 fvmptiunrelexplb0d 38817 fvmptiunrelexplb1d 38819 corclrcl 38840 trclrelexplem 38844 corcltrcl 38872 cotrclrcl 38875 iunincfi 40089 iundjiunlem 41467 meaiuninc3v 41492 caratheodorylem1 41534 ovnhoilem1 41609 |
Copyright terms: Public domain | W3C validator |