MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssiun2s Structured version   Visualization version   GIF version

Theorem ssiun2s 5007
Description: Subset relationship for an indexed union. (Contributed by NM, 26-Oct-2003.)
Hypothesis
Ref Expression
ssiun2s.1 (𝑥 = 𝐶𝐵 = 𝐷)
Assertion
Ref Expression
ssiun2s (𝐶𝐴𝐷 𝑥𝐴 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem ssiun2s
StepHypRef Expression
1 nfcv 2891 . 2 𝑥𝐶
2 nfcv 2891 . . 3 𝑥𝐷
3 nfiu1 4987 . . 3 𝑥 𝑥𝐴 𝐵
42, 3nfss 3936 . 2 𝑥 𝐷 𝑥𝐴 𝐵
5 ssiun2s.1 . . 3 (𝑥 = 𝐶𝐵 = 𝐷)
65sseq1d 3975 . 2 (𝑥 = 𝐶 → (𝐵 𝑥𝐴 𝐵𝐷 𝑥𝐴 𝐵))
7 ssiun2 5006 . 2 (𝑥𝐴𝐵 𝑥𝐴 𝐵)
81, 4, 6, 7vtoclgaf 3539 1 (𝐶𝐴𝐷 𝑥𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3911   ciun 4951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-v 3446  df-ss 3928  df-iun 4953
This theorem is referenced by:  fviunfun  7903  onfununi  8287  oaordi  8487  omordi  8507  dffi3  9358  alephordi  10003  domtriomlem  10371  pwxpndom2  10594  wunex2  10667  imasaddvallem  17468  imasvscaval  17477  iundisj2  25426  voliunlem1  25427  volsup  25433  iundisj2fi  32693  constr01  33705  bnj906  34893  bnj1137  34958  bnj1408  34999  cvmliftlem10  35254  cvmliftlem13  35256  sstotbnd2  37741  mapdrvallem3  41613  onsucunifi  43332  fvmptiunrelexplb0d  43646  fvmptiunrelexplb1d  43648  corclrcl  43669  trclrelexplem  43673  corcltrcl  43701  cotrclrcl  43704  iunincfi  45061  iundjiunlem  46430  meaiuninc3v  46455  caratheodorylem1  46497  ovnhoilem1  46572
  Copyright terms: Public domain W3C validator