| Step | Hyp | Ref
| Expression |
| 1 | | ovnsubaddlem1.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ Fin) |
| 2 | | ovnsubaddlem1.a |
. . . . . . . . 9
⊢ (𝜑 → 𝐴:ℕ⟶𝒫 (ℝ
↑m 𝑋)) |
| 3 | 2 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴:ℕ⟶𝒫 (ℝ
↑m 𝑋)) |
| 4 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ) |
| 5 | 3, 4 | ffvelcdmd 7105 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴‘𝑛) ∈ 𝒫 (ℝ
↑m 𝑋)) |
| 6 | | elpwi 4607 |
. . . . . . 7
⊢ ((𝐴‘𝑛) ∈ 𝒫 (ℝ
↑m 𝑋)
→ (𝐴‘𝑛) ⊆ (ℝ
↑m 𝑋)) |
| 7 | 5, 6 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴‘𝑛) ⊆ (ℝ ↑m 𝑋)) |
| 8 | 7 | ralrimiva 3146 |
. . . . 5
⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝐴‘𝑛) ⊆ (ℝ ↑m 𝑋)) |
| 9 | | iunss 5045 |
. . . . 5
⊢ (∪ 𝑛 ∈ ℕ (𝐴‘𝑛) ⊆ (ℝ ↑m 𝑋) ↔ ∀𝑛 ∈ ℕ (𝐴‘𝑛) ⊆ (ℝ ↑m 𝑋)) |
| 10 | 8, 9 | sylibr 234 |
. . . 4
⊢ (𝜑 → ∪ 𝑛 ∈ ℕ (𝐴‘𝑛) ⊆ (ℝ ↑m 𝑋)) |
| 11 | 1, 10 | ovnxrcl 46584 |
. . 3
⊢ (𝜑 → ((voln*‘𝑋)‘∪ 𝑛 ∈ ℕ (𝐴‘𝑛)) ∈
ℝ*) |
| 12 | | nfv 1914 |
. . . 4
⊢
Ⅎ𝑚𝜑 |
| 13 | | nnex 12272 |
. . . . 5
⊢ ℕ
∈ V |
| 14 | 13 | a1i 11 |
. . . 4
⊢ (𝜑 → ℕ ∈
V) |
| 15 | | icossicc 13476 |
. . . . 5
⊢
(0[,)+∞) ⊆ (0[,]+∞) |
| 16 | | nfv 1914 |
. . . . . 6
⊢
Ⅎ𝑘(𝜑 ∧ 𝑚 ∈ ℕ) |
| 17 | | simpl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝜑) |
| 18 | 17, 1 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑋 ∈ Fin) |
| 19 | | ovnsubaddlem1.l |
. . . . . 6
⊢ 𝐿 = (𝑖 ∈ ((ℝ × ℝ)
↑m 𝑋)
↦ ∏𝑘 ∈
𝑋 (vol‘(([,) ∘
𝑖)‘𝑘))) |
| 20 | | ovnsubaddlem1.f |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹:ℕ–1-1-onto→(ℕ × ℕ)) |
| 21 | | f1of 6848 |
. . . . . . . . . . . 12
⊢ (𝐹:ℕ–1-1-onto→(ℕ × ℕ) → 𝐹:ℕ⟶(ℕ ×
ℕ)) |
| 22 | 20, 21 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:ℕ⟶(ℕ ×
ℕ)) |
| 23 | 22 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝐹:ℕ⟶(ℕ ×
ℕ)) |
| 24 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝑚 ∈ ℕ) |
| 25 | 23, 24 | ffvelcdmd 7105 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐹‘𝑚) ∈ (ℕ ×
ℕ)) |
| 26 | | xp1st 8046 |
. . . . . . . . 9
⊢ ((𝐹‘𝑚) ∈ (ℕ × ℕ) →
(1st ‘(𝐹‘𝑚)) ∈ ℕ) |
| 27 | 25, 26 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (1st
‘(𝐹‘𝑚)) ∈
ℕ) |
| 28 | | xp2nd 8047 |
. . . . . . . . 9
⊢ ((𝐹‘𝑚) ∈ (ℕ × ℕ) →
(2nd ‘(𝐹‘𝑚)) ∈ ℕ) |
| 29 | 25, 28 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (2nd
‘(𝐹‘𝑚)) ∈
ℕ) |
| 30 | | fvex 6919 |
. . . . . . . . 9
⊢
(2nd ‘(𝐹‘𝑚)) ∈ V |
| 31 | | eleq1 2829 |
. . . . . . . . . . 11
⊢ (𝑗 = (2nd ‘(𝐹‘𝑚)) → (𝑗 ∈ ℕ ↔ (2nd
‘(𝐹‘𝑚)) ∈
ℕ)) |
| 32 | 31 | 3anbi3d 1444 |
. . . . . . . . . 10
⊢ (𝑗 = (2nd ‘(𝐹‘𝑚)) → ((𝜑 ∧ (1st ‘(𝐹‘𝑚)) ∈ ℕ ∧ 𝑗 ∈ ℕ) ↔ (𝜑 ∧ (1st ‘(𝐹‘𝑚)) ∈ ℕ ∧ (2nd
‘(𝐹‘𝑚)) ∈
ℕ))) |
| 33 | | fveq2 6906 |
. . . . . . . . . . 11
⊢ (𝑗 = (2nd ‘(𝐹‘𝑚)) → ((𝐼‘(1st ‘(𝐹‘𝑚)))‘𝑗) = ((𝐼‘(1st ‘(𝐹‘𝑚)))‘(2nd ‘(𝐹‘𝑚)))) |
| 34 | 33 | feq1d 6720 |
. . . . . . . . . 10
⊢ (𝑗 = (2nd ‘(𝐹‘𝑚)) → (((𝐼‘(1st ‘(𝐹‘𝑚)))‘𝑗):𝑋⟶(ℝ × ℝ) ↔
((𝐼‘(1st
‘(𝐹‘𝑚)))‘(2nd
‘(𝐹‘𝑚))):𝑋⟶(ℝ ×
ℝ))) |
| 35 | 32, 34 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑗 = (2nd ‘(𝐹‘𝑚)) → (((𝜑 ∧ (1st ‘(𝐹‘𝑚)) ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((𝐼‘(1st ‘(𝐹‘𝑚)))‘𝑗):𝑋⟶(ℝ × ℝ)) ↔
((𝜑 ∧ (1st
‘(𝐹‘𝑚)) ∈ ℕ ∧
(2nd ‘(𝐹‘𝑚)) ∈ ℕ) → ((𝐼‘(1st ‘(𝐹‘𝑚)))‘(2nd ‘(𝐹‘𝑚))):𝑋⟶(ℝ ×
ℝ)))) |
| 36 | | fvex 6919 |
. . . . . . . . . 10
⊢
(1st ‘(𝐹‘𝑚)) ∈ V |
| 37 | | eleq1 2829 |
. . . . . . . . . . . 12
⊢ (𝑛 = (1st ‘(𝐹‘𝑚)) → (𝑛 ∈ ℕ ↔ (1st
‘(𝐹‘𝑚)) ∈
ℕ)) |
| 38 | 37 | 3anbi2d 1443 |
. . . . . . . . . . 11
⊢ (𝑛 = (1st ‘(𝐹‘𝑚)) → ((𝜑 ∧ 𝑛 ∈ ℕ ∧ 𝑗 ∈ ℕ) ↔ (𝜑 ∧ (1st ‘(𝐹‘𝑚)) ∈ ℕ ∧ 𝑗 ∈ ℕ))) |
| 39 | | fveq2 6906 |
. . . . . . . . . . . . 13
⊢ (𝑛 = (1st ‘(𝐹‘𝑚)) → (𝐼‘𝑛) = (𝐼‘(1st ‘(𝐹‘𝑚)))) |
| 40 | 39 | fveq1d 6908 |
. . . . . . . . . . . 12
⊢ (𝑛 = (1st ‘(𝐹‘𝑚)) → ((𝐼‘𝑛)‘𝑗) = ((𝐼‘(1st ‘(𝐹‘𝑚)))‘𝑗)) |
| 41 | 40 | feq1d 6720 |
. . . . . . . . . . 11
⊢ (𝑛 = (1st ‘(𝐹‘𝑚)) → (((𝐼‘𝑛)‘𝑗):𝑋⟶(ℝ × ℝ) ↔
((𝐼‘(1st
‘(𝐹‘𝑚)))‘𝑗):𝑋⟶(ℝ ×
ℝ))) |
| 42 | 38, 41 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑛 = (1st ‘(𝐹‘𝑚)) → (((𝜑 ∧ 𝑛 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((𝐼‘𝑛)‘𝑗):𝑋⟶(ℝ × ℝ)) ↔
((𝜑 ∧ (1st
‘(𝐹‘𝑚)) ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((𝐼‘(1st
‘(𝐹‘𝑚)))‘𝑗):𝑋⟶(ℝ ×
ℝ)))) |
| 43 | | ovnsubaddlem1.c |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐶 = (𝑎 ∈ 𝒫 (ℝ ↑m
𝑋) ↦ {ℎ ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (ℎ‘𝑗))‘𝑘)}) |
| 44 | | sseq1 4009 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 = (𝐴‘𝑛) → (𝑎 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (ℎ‘𝑗))‘𝑘) ↔ (𝐴‘𝑛) ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (ℎ‘𝑗))‘𝑘))) |
| 45 | 44 | rabbidv 3444 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = (𝐴‘𝑛) → {ℎ ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ) ∣ 𝑎 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (ℎ‘𝑗))‘𝑘)} = {ℎ ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ) ∣ (𝐴‘𝑛) ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (ℎ‘𝑗))‘𝑘)}) |
| 46 | | ovex 7464 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((ℝ × ℝ) ↑m 𝑋) ↑m ℕ) ∈
V |
| 47 | 46 | rabex 5339 |
. . . . . . . . . . . . . . . . . . . 20
⊢ {ℎ ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ∣ (𝐴‘𝑛) ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (ℎ‘𝑗))‘𝑘)} ∈ V |
| 48 | 47 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → {ℎ ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ) ∣ (𝐴‘𝑛) ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (ℎ‘𝑗))‘𝑘)} ∈ V) |
| 49 | 43, 45, 5, 48 | fvmptd3 7039 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐶‘(𝐴‘𝑛)) = {ℎ ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ) ∣ (𝐴‘𝑛) ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (ℎ‘𝑗))‘𝑘)}) |
| 50 | | ssrab2 4080 |
. . . . . . . . . . . . . . . . . . 19
⊢ {ℎ ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ∣ (𝐴‘𝑛) ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (ℎ‘𝑗))‘𝑘)} ⊆ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ) |
| 51 | 50 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → {ℎ ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ) ∣ (𝐴‘𝑛) ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (ℎ‘𝑗))‘𝑘)} ⊆ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ)) |
| 52 | 49, 51 | eqsstrd 4018 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐶‘(𝐴‘𝑛)) ⊆ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ)) |
| 53 | | ovnsubaddlem1.d |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝐷 = (𝑎 ∈ 𝒫 (ℝ ↑m
𝑋) ↦ (𝑒 ∈ ℝ+
↦ {𝑖 ∈ (𝐶‘𝑎) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)})) |
| 54 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑎 = (𝐴‘𝑛) → (𝐶‘𝑎) = (𝐶‘(𝐴‘𝑛))) |
| 55 | 54 | eleq2d 2827 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑎 = (𝐴‘𝑛) → (𝑖 ∈ (𝐶‘𝑎) ↔ 𝑖 ∈ (𝐶‘(𝐴‘𝑛)))) |
| 56 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑎 = (𝐴‘𝑛) → ((voln*‘𝑋)‘𝑎) = ((voln*‘𝑋)‘(𝐴‘𝑛))) |
| 57 | 56 | oveq1d 7446 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑎 = (𝐴‘𝑛) → (((voln*‘𝑋)‘𝑎) +𝑒 𝑒) = (((voln*‘𝑋)‘(𝐴‘𝑛)) +𝑒 𝑒)) |
| 58 | 57 | breq2d 5155 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑎 = (𝐴‘𝑛) →
((Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒) ↔
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘(𝐴‘𝑛)) +𝑒 𝑒))) |
| 59 | 55, 58 | anbi12d 632 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑎 = (𝐴‘𝑛) → ((𝑖 ∈ (𝐶‘𝑎) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)) ↔ (𝑖 ∈ (𝐶‘(𝐴‘𝑛)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘(𝐴‘𝑛)) +𝑒 𝑒)))) |
| 60 | 59 | rabbidva2 3438 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 = (𝐴‘𝑛) → {𝑖 ∈ (𝐶‘𝑎) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)} = {𝑖 ∈ (𝐶‘(𝐴‘𝑛)) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘(𝐴‘𝑛)) +𝑒 𝑒)}) |
| 61 | 60 | mpteq2dv 5244 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 = (𝐴‘𝑛) → (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶‘𝑎) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)}) = (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶‘(𝐴‘𝑛)) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘(𝐴‘𝑛)) +𝑒 𝑒)})) |
| 62 | | rpex 45357 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
ℝ+ ∈ V |
| 63 | 62 | mptex 7243 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑒 ∈ ℝ+
↦ {𝑖 ∈ (𝐶‘(𝐴‘𝑛)) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘(𝐴‘𝑛)) +𝑒 𝑒)}) ∈ V |
| 64 | 63 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶‘(𝐴‘𝑛)) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘(𝐴‘𝑛)) +𝑒 𝑒)}) ∈ V) |
| 65 | 53, 61, 5, 64 | fvmptd3 7039 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐷‘(𝐴‘𝑛)) = (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶‘(𝐴‘𝑛)) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘(𝐴‘𝑛)) +𝑒 𝑒)})) |
| 66 | | oveq2 7439 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑒 = (𝐸 / (2↑𝑛)) → (((voln*‘𝑋)‘(𝐴‘𝑛)) +𝑒 𝑒) = (((voln*‘𝑋)‘(𝐴‘𝑛)) +𝑒 (𝐸 / (2↑𝑛)))) |
| 67 | 66 | breq2d 5155 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑒 = (𝐸 / (2↑𝑛)) →
((Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘(𝐴‘𝑛)) +𝑒 𝑒) ↔
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘(𝐴‘𝑛)) +𝑒 (𝐸 / (2↑𝑛))))) |
| 68 | 67 | rabbidv 3444 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑒 = (𝐸 / (2↑𝑛)) → {𝑖 ∈ (𝐶‘(𝐴‘𝑛)) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘(𝐴‘𝑛)) +𝑒 𝑒)} = {𝑖 ∈ (𝐶‘(𝐴‘𝑛)) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘(𝐴‘𝑛)) +𝑒 (𝐸 / (2↑𝑛)))}) |
| 69 | 68 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑒 = (𝐸 / (2↑𝑛))) → {𝑖 ∈ (𝐶‘(𝐴‘𝑛)) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘(𝐴‘𝑛)) +𝑒 𝑒)} = {𝑖 ∈ (𝐶‘(𝐴‘𝑛)) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘(𝐴‘𝑛)) +𝑒 (𝐸 / (2↑𝑛)))}) |
| 70 | | ovnsubaddlem1.e |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝐸 ∈
ℝ+) |
| 71 | 70 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐸 ∈
ℝ+) |
| 72 | | 2nn 12339 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 2 ∈
ℕ |
| 73 | 72 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 ∈ ℕ → 2 ∈
ℕ) |
| 74 | | nnnn0 12533 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℕ0) |
| 75 | 73, 74 | nnexpcld 14284 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈ ℕ →
(2↑𝑛) ∈
ℕ) |
| 76 | 75 | nnrpd 13075 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 ∈ ℕ →
(2↑𝑛) ∈
ℝ+) |
| 77 | 76 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2↑𝑛) ∈
ℝ+) |
| 78 | 71, 77 | rpdivcld 13094 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐸 / (2↑𝑛)) ∈
ℝ+) |
| 79 | | fvex 6919 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐶‘(𝐴‘𝑛)) ∈ V |
| 80 | 79 | rabex 5339 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ {𝑖 ∈ (𝐶‘(𝐴‘𝑛)) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘(𝐴‘𝑛)) +𝑒 (𝐸 / (2↑𝑛)))} ∈ V |
| 81 | 80 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → {𝑖 ∈ (𝐶‘(𝐴‘𝑛)) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘(𝐴‘𝑛)) +𝑒 (𝐸 / (2↑𝑛)))} ∈ V) |
| 82 | 65, 69, 78, 81 | fvmptd 7023 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) = {𝑖 ∈ (𝐶‘(𝐴‘𝑛)) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘(𝐴‘𝑛)) +𝑒 (𝐸 / (2↑𝑛)))}) |
| 83 | | ssrab2 4080 |
. . . . . . . . . . . . . . . . . . . 20
⊢ {𝑖 ∈ (𝐶‘(𝐴‘𝑛)) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘(𝐴‘𝑛)) +𝑒 (𝐸 / (2↑𝑛)))} ⊆ (𝐶‘(𝐴‘𝑛)) |
| 84 | 83 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → {𝑖 ∈ (𝐶‘(𝐴‘𝑛)) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘(𝐴‘𝑛)) +𝑒 (𝐸 / (2↑𝑛)))} ⊆ (𝐶‘(𝐴‘𝑛))) |
| 85 | 82, 84 | eqsstrd 4018 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ⊆ (𝐶‘(𝐴‘𝑛))) |
| 86 | | ovnsubaddlem1.i |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐼‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) |
| 87 | 85, 86 | sseldd 3984 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐼‘𝑛) ∈ (𝐶‘(𝐴‘𝑛))) |
| 88 | 52, 87 | sseldd 3984 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐼‘𝑛) ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ)) |
| 89 | | elmapfn 8905 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐼‘𝑛) ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ) → (𝐼‘𝑛) Fn ℕ) |
| 90 | 88, 89 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐼‘𝑛) Fn ℕ) |
| 91 | | elmapi 8889 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐼‘𝑛) ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ) → (𝐼‘𝑛):ℕ⟶((ℝ × ℝ)
↑m 𝑋)) |
| 92 | 88, 91 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐼‘𝑛):ℕ⟶((ℝ × ℝ)
↑m 𝑋)) |
| 93 | 92 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → ((𝐼‘𝑛)‘𝑗) ∈ ((ℝ × ℝ)
↑m 𝑋)) |
| 94 | 93 | ralrimiva 3146 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∀𝑗 ∈ ℕ ((𝐼‘𝑛)‘𝑗) ∈ ((ℝ × ℝ)
↑m 𝑋)) |
| 95 | 90, 94 | jca 511 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐼‘𝑛) Fn ℕ ∧ ∀𝑗 ∈ ℕ ((𝐼‘𝑛)‘𝑗) ∈ ((ℝ × ℝ)
↑m 𝑋))) |
| 96 | 95 | 3adant3 1133 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((𝐼‘𝑛) Fn ℕ ∧ ∀𝑗 ∈ ℕ ((𝐼‘𝑛)‘𝑗) ∈ ((ℝ × ℝ)
↑m 𝑋))) |
| 97 | | ffnfv 7139 |
. . . . . . . . . . . . 13
⊢ ((𝐼‘𝑛):ℕ⟶((ℝ × ℝ)
↑m 𝑋)
↔ ((𝐼‘𝑛) Fn ℕ ∧ ∀𝑗 ∈ ℕ ((𝐼‘𝑛)‘𝑗) ∈ ((ℝ × ℝ)
↑m 𝑋))) |
| 98 | 96, 97 | sylibr 234 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝐼‘𝑛):ℕ⟶((ℝ × ℝ)
↑m 𝑋)) |
| 99 | | simp3 1139 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ) |
| 100 | 98, 99 | ffvelcdmd 7105 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((𝐼‘𝑛)‘𝑗) ∈ ((ℝ × ℝ)
↑m 𝑋)) |
| 101 | | elmapi 8889 |
. . . . . . . . . . 11
⊢ (((𝐼‘𝑛)‘𝑗) ∈ ((ℝ × ℝ)
↑m 𝑋)
→ ((𝐼‘𝑛)‘𝑗):𝑋⟶(ℝ ×
ℝ)) |
| 102 | 100, 101 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((𝐼‘𝑛)‘𝑗):𝑋⟶(ℝ ×
ℝ)) |
| 103 | 36, 42, 102 | vtocl 3558 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (1st
‘(𝐹‘𝑚)) ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((𝐼‘(1st
‘(𝐹‘𝑚)))‘𝑗):𝑋⟶(ℝ ×
ℝ)) |
| 104 | 30, 35, 103 | vtocl 3558 |
. . . . . . . 8
⊢ ((𝜑 ∧ (1st
‘(𝐹‘𝑚)) ∈ ℕ ∧
(2nd ‘(𝐹‘𝑚)) ∈ ℕ) → ((𝐼‘(1st ‘(𝐹‘𝑚)))‘(2nd ‘(𝐹‘𝑚))):𝑋⟶(ℝ ×
ℝ)) |
| 105 | 17, 27, 29, 104 | syl3anc 1373 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝐼‘(1st ‘(𝐹‘𝑚)))‘(2nd ‘(𝐹‘𝑚))):𝑋⟶(ℝ ×
ℝ)) |
| 106 | | id 22 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ → 𝑚 ∈
ℕ) |
| 107 | | fvex 6919 |
. . . . . . . . . . 11
⊢ ((𝐼‘(1st
‘(𝐹‘𝑚)))‘(2nd
‘(𝐹‘𝑚))) ∈ V |
| 108 | 107 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ℕ → ((𝐼‘(1st
‘(𝐹‘𝑚)))‘(2nd
‘(𝐹‘𝑚))) ∈ V) |
| 109 | | ovnsubaddlem1.g |
. . . . . . . . . . 11
⊢ 𝐺 = (𝑚 ∈ ℕ ↦ ((𝐼‘(1st ‘(𝐹‘𝑚)))‘(2nd ‘(𝐹‘𝑚)))) |
| 110 | 109 | fvmpt2 7027 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ ℕ ∧ ((𝐼‘(1st
‘(𝐹‘𝑚)))‘(2nd
‘(𝐹‘𝑚))) ∈ V) → (𝐺‘𝑚) = ((𝐼‘(1st ‘(𝐹‘𝑚)))‘(2nd ‘(𝐹‘𝑚)))) |
| 111 | 106, 108,
110 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝑚 ∈ ℕ → (𝐺‘𝑚) = ((𝐼‘(1st ‘(𝐹‘𝑚)))‘(2nd ‘(𝐹‘𝑚)))) |
| 112 | 111 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐺‘𝑚) = ((𝐼‘(1st ‘(𝐹‘𝑚)))‘(2nd ‘(𝐹‘𝑚)))) |
| 113 | 112 | feq1d 6720 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝐺‘𝑚):𝑋⟶(ℝ × ℝ) ↔
((𝐼‘(1st
‘(𝐹‘𝑚)))‘(2nd
‘(𝐹‘𝑚))):𝑋⟶(ℝ ×
ℝ))) |
| 114 | 105, 113 | mpbird 257 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐺‘𝑚):𝑋⟶(ℝ ×
ℝ)) |
| 115 | 16, 18, 19, 114 | hoiprodcl2 46570 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐿‘(𝐺‘𝑚)) ∈ (0[,)+∞)) |
| 116 | 15, 115 | sselid 3981 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐿‘(𝐺‘𝑚)) ∈ (0[,]+∞)) |
| 117 | 12, 14, 116 | sge0xrclmpt 46443 |
. . 3
⊢ (𝜑 →
(Σ^‘(𝑚 ∈ ℕ ↦ (𝐿‘(𝐺‘𝑚)))) ∈
ℝ*) |
| 118 | | nfv 1914 |
. . . 4
⊢
Ⅎ𝑛𝜑 |
| 119 | | 0xr 11308 |
. . . . . 6
⊢ 0 ∈
ℝ* |
| 120 | 119 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 0 ∈
ℝ*) |
| 121 | | pnfxr 11315 |
. . . . . 6
⊢ +∞
∈ ℝ* |
| 122 | 121 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → +∞ ∈
ℝ*) |
| 123 | 1 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑋 ∈ Fin) |
| 124 | | ovnsubaddlem1.z |
. . . . . . . . 9
⊢ 𝑍 = (𝑎 ∈ 𝒫 (ℝ ↑m
𝑋) ↦ {𝑧 ∈ ℝ*
∣ ∃𝑖 ∈
(((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)(𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}) |
| 125 | 123, 7, 124 | ovnval2b 46567 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((voln*‘𝑋)‘(𝐴‘𝑛)) = if(𝑋 = ∅, 0, inf((𝑍‘(𝐴‘𝑛)), ℝ*, <
))) |
| 126 | | ovnsubaddlem1.n0 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ≠ ∅) |
| 127 | 126 | neneqd 2945 |
. . . . . . . . . 10
⊢ (𝜑 → ¬ 𝑋 = ∅) |
| 128 | 127 | iffalsed 4536 |
. . . . . . . . 9
⊢ (𝜑 → if(𝑋 = ∅, 0, inf((𝑍‘(𝐴‘𝑛)), ℝ*, < )) = inf((𝑍‘(𝐴‘𝑛)), ℝ*, <
)) |
| 129 | 128 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → if(𝑋 = ∅, 0, inf((𝑍‘(𝐴‘𝑛)), ℝ*, < )) = inf((𝑍‘(𝐴‘𝑛)), ℝ*, <
)) |
| 130 | 125, 129 | eqtrd 2777 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((voln*‘𝑋)‘(𝐴‘𝑛)) = inf((𝑍‘(𝐴‘𝑛)), ℝ*, <
)) |
| 131 | | sseq1 4009 |
. . . . . . . . . . . . 13
⊢ (𝑎 = (𝐴‘𝑛) → (𝑎 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ↔ (𝐴‘𝑛) ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘))) |
| 132 | 131 | anbi1d 631 |
. . . . . . . . . . . 12
⊢ (𝑎 = (𝐴‘𝑛) → ((𝑎 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) ↔ ((𝐴‘𝑛) ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))))) |
| 133 | 132 | rexbidv 3179 |
. . . . . . . . . . 11
⊢ (𝑎 = (𝐴‘𝑛) → (∃𝑖 ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ)(𝑎 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) ↔ ∃𝑖 ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ)((𝐴‘𝑛) ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))))) |
| 134 | 133 | rabbidv 3444 |
. . . . . . . . . 10
⊢ (𝑎 = (𝐴‘𝑛) → {𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑m 𝑋) ↑m ℕ)(𝑎 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} = {𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑m 𝑋) ↑m ℕ)((𝐴‘𝑛) ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}) |
| 135 | | xrex 13029 |
. . . . . . . . . . . 12
⊢
ℝ* ∈ V |
| 136 | 135 | rabex 5339 |
. . . . . . . . . . 11
⊢ {𝑧 ∈ ℝ*
∣ ∃𝑖 ∈
(((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)((𝐴‘𝑛) ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} ∈ V |
| 137 | 136 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → {𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑m 𝑋) ↑m ℕ)((𝐴‘𝑛) ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} ∈ V) |
| 138 | 124, 134,
5, 137 | fvmptd3 7039 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑍‘(𝐴‘𝑛)) = {𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑m 𝑋) ↑m ℕ)((𝐴‘𝑛) ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}) |
| 139 | | ssrab2 4080 |
. . . . . . . . . 10
⊢ {𝑧 ∈ ℝ*
∣ ∃𝑖 ∈
(((ℝ × ℝ) ↑m 𝑋) ↑m ℕ)((𝐴‘𝑛) ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} ⊆
ℝ* |
| 140 | 139 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → {𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑m 𝑋) ↑m ℕ)((𝐴‘𝑛) ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} ⊆
ℝ*) |
| 141 | 138, 140 | eqsstrd 4018 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑍‘(𝐴‘𝑛)) ⊆
ℝ*) |
| 142 | | infxrcl 13375 |
. . . . . . . 8
⊢ ((𝑍‘(𝐴‘𝑛)) ⊆ ℝ* →
inf((𝑍‘(𝐴‘𝑛)), ℝ*, < ) ∈
ℝ*) |
| 143 | 141, 142 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → inf((𝑍‘(𝐴‘𝑛)), ℝ*, < ) ∈
ℝ*) |
| 144 | 130, 143 | eqeltrd 2841 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((voln*‘𝑋)‘(𝐴‘𝑛)) ∈
ℝ*) |
| 145 | 70 | rpred 13077 |
. . . . . . . . 9
⊢ (𝜑 → 𝐸 ∈ ℝ) |
| 146 | 145 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐸 ∈ ℝ) |
| 147 | | 2re 12340 |
. . . . . . . . . . 11
⊢ 2 ∈
ℝ |
| 148 | 147 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → 2 ∈
ℝ) |
| 149 | 148, 74 | reexpcld 14203 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ →
(2↑𝑛) ∈
ℝ) |
| 150 | 149 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2↑𝑛) ∈
ℝ) |
| 151 | 148 | recnd 11289 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → 2 ∈
ℂ) |
| 152 | | 2ne0 12370 |
. . . . . . . . . . 11
⊢ 2 ≠
0 |
| 153 | 152 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → 2 ≠
0) |
| 154 | | nnz 12634 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℤ) |
| 155 | 151, 153,
154 | expne0d 14192 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ →
(2↑𝑛) ≠
0) |
| 156 | 155 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2↑𝑛) ≠ 0) |
| 157 | 146, 150,
156 | redivcld 12095 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐸 / (2↑𝑛)) ∈ ℝ) |
| 158 | 157 | rexrd 11311 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐸 / (2↑𝑛)) ∈
ℝ*) |
| 159 | 144, 158 | xaddcld 13343 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((voln*‘𝑋)‘(𝐴‘𝑛)) +𝑒 (𝐸 / (2↑𝑛))) ∈
ℝ*) |
| 160 | 123, 7 | ovncl 46582 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((voln*‘𝑋)‘(𝐴‘𝑛)) ∈ (0[,]+∞)) |
| 161 | | xrge0ge0 45358 |
. . . . . . 7
⊢
(((voln*‘𝑋)‘(𝐴‘𝑛)) ∈ (0[,]+∞) → 0 ≤
((voln*‘𝑋)‘(𝐴‘𝑛))) |
| 162 | 160, 161 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 0 ≤
((voln*‘𝑋)‘(𝐴‘𝑛))) |
| 163 | | 0red 11264 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 0 ∈
ℝ) |
| 164 | 78 | rpgt0d 13080 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 0 < (𝐸 / (2↑𝑛))) |
| 165 | 163, 157,
164 | ltled 11409 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 0 ≤ (𝐸 / (2↑𝑛))) |
| 166 | 157 | ltpnfd 13163 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐸 / (2↑𝑛)) < +∞) |
| 167 | 158, 122,
166 | xrltled 13192 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐸 / (2↑𝑛)) ≤ +∞) |
| 168 | 120, 122,
158, 165, 167 | eliccxrd 45540 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐸 / (2↑𝑛)) ∈ (0[,]+∞)) |
| 169 | 144, 168 | xadd0ge 45332 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((voln*‘𝑋)‘(𝐴‘𝑛)) ≤ (((voln*‘𝑋)‘(𝐴‘𝑛)) +𝑒 (𝐸 / (2↑𝑛)))) |
| 170 | 120, 144,
159, 162, 169 | xrletrd 13204 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 0 ≤
(((voln*‘𝑋)‘(𝐴‘𝑛)) +𝑒 (𝐸 / (2↑𝑛)))) |
| 171 | | pnfge 13172 |
. . . . . 6
⊢
((((voln*‘𝑋)‘(𝐴‘𝑛)) +𝑒 (𝐸 / (2↑𝑛))) ∈ ℝ* →
(((voln*‘𝑋)‘(𝐴‘𝑛)) +𝑒 (𝐸 / (2↑𝑛))) ≤ +∞) |
| 172 | 159, 171 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((voln*‘𝑋)‘(𝐴‘𝑛)) +𝑒 (𝐸 / (2↑𝑛))) ≤ +∞) |
| 173 | 120, 122,
159, 170, 172 | eliccxrd 45540 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (((voln*‘𝑋)‘(𝐴‘𝑛)) +𝑒 (𝐸 / (2↑𝑛))) ∈ (0[,]+∞)) |
| 174 | 118, 14, 173 | sge0xrclmpt 46443 |
. . 3
⊢ (𝜑 →
(Σ^‘(𝑛 ∈ ℕ ↦ (((voln*‘𝑋)‘(𝐴‘𝑛)) +𝑒 (𝐸 / (2↑𝑛))))) ∈
ℝ*) |
| 175 | | sseq1 4009 |
. . . . . . . . . . . . 13
⊢ (𝑎 = (𝐴‘(1st ‘(𝐹‘𝑚))) → (𝑎 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (ℎ‘𝑗))‘𝑘) ↔ (𝐴‘(1st ‘(𝐹‘𝑚))) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (ℎ‘𝑗))‘𝑘))) |
| 176 | 175 | rabbidv 3444 |
. . . . . . . . . . . 12
⊢ (𝑎 = (𝐴‘(1st ‘(𝐹‘𝑚))) → {ℎ ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ) ∣ 𝑎 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (ℎ‘𝑗))‘𝑘)} = {ℎ ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ) ∣ (𝐴‘(1st ‘(𝐹‘𝑚))) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (ℎ‘𝑗))‘𝑘)}) |
| 177 | 2 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝐴:ℕ⟶𝒫 (ℝ
↑m 𝑋)) |
| 178 | 177, 27 | ffvelcdmd 7105 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐴‘(1st ‘(𝐹‘𝑚))) ∈ 𝒫 (ℝ
↑m 𝑋)) |
| 179 | 46 | rabex 5339 |
. . . . . . . . . . . . 13
⊢ {ℎ ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ∣ (𝐴‘(1st
‘(𝐹‘𝑚))) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (ℎ‘𝑗))‘𝑘)} ∈ V |
| 180 | 179 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → {ℎ ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ) ∣ (𝐴‘(1st ‘(𝐹‘𝑚))) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (ℎ‘𝑗))‘𝑘)} ∈ V) |
| 181 | 43, 176, 178, 180 | fvmptd3 7039 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐶‘(𝐴‘(1st ‘(𝐹‘𝑚)))) = {ℎ ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ) ∣ (𝐴‘(1st ‘(𝐹‘𝑚))) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (ℎ‘𝑗))‘𝑘)}) |
| 182 | | ssrab2 4080 |
. . . . . . . . . . . 12
⊢ {ℎ ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) ∣ (𝐴‘(1st
‘(𝐹‘𝑚))) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (ℎ‘𝑗))‘𝑘)} ⊆ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ) |
| 183 | 182 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → {ℎ ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ) ∣ (𝐴‘(1st ‘(𝐹‘𝑚))) ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (ℎ‘𝑗))‘𝑘)} ⊆ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ)) |
| 184 | 181, 183 | eqsstrd 4018 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐶‘(𝐴‘(1st ‘(𝐹‘𝑚)))) ⊆ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ)) |
| 185 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = (𝐴‘(1st ‘(𝐹‘𝑚))) → (𝐶‘𝑎) = (𝐶‘(𝐴‘(1st ‘(𝐹‘𝑚))))) |
| 186 | 185 | eleq2d 2827 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = (𝐴‘(1st ‘(𝐹‘𝑚))) → (𝑖 ∈ (𝐶‘𝑎) ↔ 𝑖 ∈ (𝐶‘(𝐴‘(1st ‘(𝐹‘𝑚)))))) |
| 187 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑎 = (𝐴‘(1st ‘(𝐹‘𝑚))) → ((voln*‘𝑋)‘𝑎) = ((voln*‘𝑋)‘(𝐴‘(1st ‘(𝐹‘𝑚))))) |
| 188 | 187 | oveq1d 7446 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = (𝐴‘(1st ‘(𝐹‘𝑚))) → (((voln*‘𝑋)‘𝑎) +𝑒 𝑒) = (((voln*‘𝑋)‘(𝐴‘(1st ‘(𝐹‘𝑚)))) +𝑒 𝑒)) |
| 189 | 188 | breq2d 5155 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = (𝐴‘(1st ‘(𝐹‘𝑚))) →
((Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒) ↔
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘(𝐴‘(1st ‘(𝐹‘𝑚)))) +𝑒 𝑒))) |
| 190 | 186, 189 | anbi12d 632 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = (𝐴‘(1st ‘(𝐹‘𝑚))) → ((𝑖 ∈ (𝐶‘𝑎) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)) ↔ (𝑖 ∈ (𝐶‘(𝐴‘(1st ‘(𝐹‘𝑚)))) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘(𝐴‘(1st ‘(𝐹‘𝑚)))) +𝑒 𝑒)))) |
| 191 | 190 | rabbidva2 3438 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = (𝐴‘(1st ‘(𝐹‘𝑚))) → {𝑖 ∈ (𝐶‘𝑎) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)} = {𝑖 ∈ (𝐶‘(𝐴‘(1st ‘(𝐹‘𝑚)))) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘(𝐴‘(1st ‘(𝐹‘𝑚)))) +𝑒 𝑒)}) |
| 192 | 191 | mpteq2dv 5244 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = (𝐴‘(1st ‘(𝐹‘𝑚))) → (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶‘𝑎) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘𝑎) +𝑒 𝑒)}) = (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶‘(𝐴‘(1st ‘(𝐹‘𝑚)))) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘(𝐴‘(1st ‘(𝐹‘𝑚)))) +𝑒 𝑒)})) |
| 193 | 62 | mptex 7243 |
. . . . . . . . . . . . . . 15
⊢ (𝑒 ∈ ℝ+
↦ {𝑖 ∈ (𝐶‘(𝐴‘(1st ‘(𝐹‘𝑚)))) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘(𝐴‘(1st ‘(𝐹‘𝑚)))) +𝑒 𝑒)}) ∈ V |
| 194 | 193 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶‘(𝐴‘(1st ‘(𝐹‘𝑚)))) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘(𝐴‘(1st ‘(𝐹‘𝑚)))) +𝑒 𝑒)}) ∈ V) |
| 195 | 53, 192, 178, 194 | fvmptd3 7039 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐷‘(𝐴‘(1st ‘(𝐹‘𝑚)))) = (𝑒 ∈ ℝ+ ↦ {𝑖 ∈ (𝐶‘(𝐴‘(1st ‘(𝐹‘𝑚)))) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘(𝐴‘(1st ‘(𝐹‘𝑚)))) +𝑒 𝑒)})) |
| 196 | | oveq2 7439 |
. . . . . . . . . . . . . . . 16
⊢ (𝑒 = (𝐸 / (2↑(1st ‘(𝐹‘𝑚)))) → (((voln*‘𝑋)‘(𝐴‘(1st ‘(𝐹‘𝑚)))) +𝑒 𝑒) = (((voln*‘𝑋)‘(𝐴‘(1st ‘(𝐹‘𝑚)))) +𝑒 (𝐸 / (2↑(1st ‘(𝐹‘𝑚)))))) |
| 197 | 196 | breq2d 5155 |
. . . . . . . . . . . . . . 15
⊢ (𝑒 = (𝐸 / (2↑(1st ‘(𝐹‘𝑚)))) →
((Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘(𝐴‘(1st ‘(𝐹‘𝑚)))) +𝑒 𝑒) ↔
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘(𝐴‘(1st ‘(𝐹‘𝑚)))) +𝑒 (𝐸 / (2↑(1st ‘(𝐹‘𝑚))))))) |
| 198 | 197 | rabbidv 3444 |
. . . . . . . . . . . . . 14
⊢ (𝑒 = (𝐸 / (2↑(1st ‘(𝐹‘𝑚)))) → {𝑖 ∈ (𝐶‘(𝐴‘(1st ‘(𝐹‘𝑚)))) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘(𝐴‘(1st ‘(𝐹‘𝑚)))) +𝑒 𝑒)} = {𝑖 ∈ (𝐶‘(𝐴‘(1st ‘(𝐹‘𝑚)))) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘(𝐴‘(1st ‘(𝐹‘𝑚)))) +𝑒 (𝐸 / (2↑(1st ‘(𝐹‘𝑚)))))}) |
| 199 | 198 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑒 = (𝐸 / (2↑(1st ‘(𝐹‘𝑚))))) → {𝑖 ∈ (𝐶‘(𝐴‘(1st ‘(𝐹‘𝑚)))) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘(𝐴‘(1st ‘(𝐹‘𝑚)))) +𝑒 𝑒)} = {𝑖 ∈ (𝐶‘(𝐴‘(1st ‘(𝐹‘𝑚)))) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘(𝐴‘(1st ‘(𝐹‘𝑚)))) +𝑒 (𝐸 / (2↑(1st ‘(𝐹‘𝑚)))))}) |
| 200 | 17, 70 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝐸 ∈
ℝ+) |
| 201 | | 2rp 13039 |
. . . . . . . . . . . . . . . 16
⊢ 2 ∈
ℝ+ |
| 202 | 201 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 2 ∈
ℝ+) |
| 203 | 27 | nnzd 12640 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (1st
‘(𝐹‘𝑚)) ∈
ℤ) |
| 204 | 202, 203 | rpexpcld 14286 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) →
(2↑(1st ‘(𝐹‘𝑚))) ∈
ℝ+) |
| 205 | 200, 204 | rpdivcld 13094 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐸 / (2↑(1st ‘(𝐹‘𝑚)))) ∈
ℝ+) |
| 206 | | fvex 6919 |
. . . . . . . . . . . . . . 15
⊢ (𝐶‘(𝐴‘(1st ‘(𝐹‘𝑚)))) ∈ V |
| 207 | 206 | rabex 5339 |
. . . . . . . . . . . . . 14
⊢ {𝑖 ∈ (𝐶‘(𝐴‘(1st ‘(𝐹‘𝑚)))) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘(𝐴‘(1st ‘(𝐹‘𝑚)))) +𝑒 (𝐸 / (2↑(1st ‘(𝐹‘𝑚)))))} ∈ V |
| 208 | 207 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → {𝑖 ∈ (𝐶‘(𝐴‘(1st ‘(𝐹‘𝑚)))) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘(𝐴‘(1st ‘(𝐹‘𝑚)))) +𝑒 (𝐸 / (2↑(1st ‘(𝐹‘𝑚)))))} ∈ V) |
| 209 | 195, 199,
205, 208 | fvmptd 7023 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝐷‘(𝐴‘(1st ‘(𝐹‘𝑚))))‘(𝐸 / (2↑(1st ‘(𝐹‘𝑚))))) = {𝑖 ∈ (𝐶‘(𝐴‘(1st ‘(𝐹‘𝑚)))) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘(𝐴‘(1st ‘(𝐹‘𝑚)))) +𝑒 (𝐸 / (2↑(1st ‘(𝐹‘𝑚)))))}) |
| 210 | | ssrab2 4080 |
. . . . . . . . . . . . 13
⊢ {𝑖 ∈ (𝐶‘(𝐴‘(1st ‘(𝐹‘𝑚)))) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘(𝐴‘(1st ‘(𝐹‘𝑚)))) +𝑒 (𝐸 / (2↑(1st ‘(𝐹‘𝑚)))))} ⊆ (𝐶‘(𝐴‘(1st ‘(𝐹‘𝑚)))) |
| 211 | 210 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → {𝑖 ∈ (𝐶‘(𝐴‘(1st ‘(𝐹‘𝑚)))) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘(𝐴‘(1st ‘(𝐹‘𝑚)))) +𝑒 (𝐸 / (2↑(1st ‘(𝐹‘𝑚)))))} ⊆ (𝐶‘(𝐴‘(1st ‘(𝐹‘𝑚))))) |
| 212 | 209, 211 | eqsstrd 4018 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝐷‘(𝐴‘(1st ‘(𝐹‘𝑚))))‘(𝐸 / (2↑(1st ‘(𝐹‘𝑚))))) ⊆ (𝐶‘(𝐴‘(1st ‘(𝐹‘𝑚))))) |
| 213 | 37 | anbi2d 630 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = (1st ‘(𝐹‘𝑚)) → ((𝜑 ∧ 𝑛 ∈ ℕ) ↔ (𝜑 ∧ (1st ‘(𝐹‘𝑚)) ∈ ℕ))) |
| 214 | | 2fveq3 6911 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = (1st ‘(𝐹‘𝑚)) → (𝐷‘(𝐴‘𝑛)) = (𝐷‘(𝐴‘(1st ‘(𝐹‘𝑚))))) |
| 215 | | oveq2 7439 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = (1st ‘(𝐹‘𝑚)) → (2↑𝑛) = (2↑(1st ‘(𝐹‘𝑚)))) |
| 216 | 215 | oveq2d 7447 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = (1st ‘(𝐹‘𝑚)) → (𝐸 / (2↑𝑛)) = (𝐸 / (2↑(1st ‘(𝐹‘𝑚))))) |
| 217 | 214, 216 | fveq12d 6913 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = (1st ‘(𝐹‘𝑚)) → ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) = ((𝐷‘(𝐴‘(1st ‘(𝐹‘𝑚))))‘(𝐸 / (2↑(1st ‘(𝐹‘𝑚)))))) |
| 218 | 39, 217 | eleq12d 2835 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = (1st ‘(𝐹‘𝑚)) → ((𝐼‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛))) ↔ (𝐼‘(1st ‘(𝐹‘𝑚))) ∈ ((𝐷‘(𝐴‘(1st ‘(𝐹‘𝑚))))‘(𝐸 / (2↑(1st ‘(𝐹‘𝑚))))))) |
| 219 | 213, 218 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ (𝑛 = (1st ‘(𝐹‘𝑚)) → (((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐼‘𝑛) ∈ ((𝐷‘(𝐴‘𝑛))‘(𝐸 / (2↑𝑛)))) ↔ ((𝜑 ∧ (1st ‘(𝐹‘𝑚)) ∈ ℕ) → (𝐼‘(1st ‘(𝐹‘𝑚))) ∈ ((𝐷‘(𝐴‘(1st ‘(𝐹‘𝑚))))‘(𝐸 / (2↑(1st ‘(𝐹‘𝑚)))))))) |
| 220 | 36, 219, 86 | vtocl 3558 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (1st
‘(𝐹‘𝑚)) ∈ ℕ) → (𝐼‘(1st
‘(𝐹‘𝑚))) ∈ ((𝐷‘(𝐴‘(1st ‘(𝐹‘𝑚))))‘(𝐸 / (2↑(1st ‘(𝐹‘𝑚)))))) |
| 221 | 17, 27, 220 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐼‘(1st ‘(𝐹‘𝑚))) ∈ ((𝐷‘(𝐴‘(1st ‘(𝐹‘𝑚))))‘(𝐸 / (2↑(1st ‘(𝐹‘𝑚)))))) |
| 222 | 212, 221 | sseldd 3984 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐼‘(1st ‘(𝐹‘𝑚))) ∈ (𝐶‘(𝐴‘(1st ‘(𝐹‘𝑚))))) |
| 223 | 184, 222 | sseldd 3984 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐼‘(1st ‘(𝐹‘𝑚))) ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ)) |
| 224 | | elmapfn 8905 |
. . . . . . . . 9
⊢ ((𝐼‘(1st
‘(𝐹‘𝑚))) ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) → (𝐼‘(1st
‘(𝐹‘𝑚))) Fn ℕ) |
| 225 | 223, 224 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐼‘(1st ‘(𝐹‘𝑚))) Fn ℕ) |
| 226 | | elmapi 8889 |
. . . . . . . . . . 11
⊢ ((𝐼‘(1st
‘(𝐹‘𝑚))) ∈ (((ℝ ×
ℝ) ↑m 𝑋) ↑m ℕ) → (𝐼‘(1st
‘(𝐹‘𝑚))):ℕ⟶((ℝ
× ℝ) ↑m 𝑋)) |
| 227 | 223, 226 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐼‘(1st ‘(𝐹‘𝑚))):ℕ⟶((ℝ × ℝ)
↑m 𝑋)) |
| 228 | 227 | ffvelcdmda 7104 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → ((𝐼‘(1st ‘(𝐹‘𝑚)))‘𝑗) ∈ ((ℝ × ℝ)
↑m 𝑋)) |
| 229 | 228 | ralrimiva 3146 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ∀𝑗 ∈ ℕ ((𝐼‘(1st
‘(𝐹‘𝑚)))‘𝑗) ∈ ((ℝ × ℝ)
↑m 𝑋)) |
| 230 | 225, 229 | jca 511 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝐼‘(1st ‘(𝐹‘𝑚))) Fn ℕ ∧ ∀𝑗 ∈ ℕ ((𝐼‘(1st
‘(𝐹‘𝑚)))‘𝑗) ∈ ((ℝ × ℝ)
↑m 𝑋))) |
| 231 | | ffnfv 7139 |
. . . . . . 7
⊢ ((𝐼‘(1st
‘(𝐹‘𝑚))):ℕ⟶((ℝ
× ℝ) ↑m 𝑋) ↔ ((𝐼‘(1st ‘(𝐹‘𝑚))) Fn ℕ ∧ ∀𝑗 ∈ ℕ ((𝐼‘(1st
‘(𝐹‘𝑚)))‘𝑗) ∈ ((ℝ × ℝ)
↑m 𝑋))) |
| 232 | 230, 231 | sylibr 234 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐼‘(1st ‘(𝐹‘𝑚))):ℕ⟶((ℝ × ℝ)
↑m 𝑋)) |
| 233 | 232, 29 | ffvelcdmd 7105 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝐼‘(1st ‘(𝐹‘𝑚)))‘(2nd ‘(𝐹‘𝑚))) ∈ ((ℝ × ℝ)
↑m 𝑋)) |
| 234 | 233, 109 | fmptd 7134 |
. . . 4
⊢ (𝜑 → 𝐺:ℕ⟶((ℝ × ℝ)
↑m 𝑋)) |
| 235 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝜑) |
| 236 | 86, 82 | eleqtrd 2843 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐼‘𝑛) ∈ {𝑖 ∈ (𝐶‘(𝐴‘𝑛)) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘(𝐴‘𝑛)) +𝑒 (𝐸 / (2↑𝑛)))}) |
| 237 | 83, 236 | sselid 3981 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐼‘𝑛) ∈ (𝐶‘(𝐴‘𝑛))) |
| 238 | | simp3 1139 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ ∧ (𝐼‘𝑛) ∈ (𝐶‘(𝐴‘𝑛))) → (𝐼‘𝑛) ∈ (𝐶‘(𝐴‘𝑛))) |
| 239 | 49 | 3adant3 1133 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ ∧ (𝐼‘𝑛) ∈ (𝐶‘(𝐴‘𝑛))) → (𝐶‘(𝐴‘𝑛)) = {ℎ ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ) ∣ (𝐴‘𝑛) ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (ℎ‘𝑗))‘𝑘)}) |
| 240 | 238, 239 | eleqtrd 2843 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ ∧ (𝐼‘𝑛) ∈ (𝐶‘(𝐴‘𝑛))) → (𝐼‘𝑛) ∈ {ℎ ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ) ∣ (𝐴‘𝑛) ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (ℎ‘𝑗))‘𝑘)}) |
| 241 | | fveq1 6905 |
. . . . . . . . . . . . . . . . 17
⊢ (ℎ = (𝐼‘𝑛) → (ℎ‘𝑗) = ((𝐼‘𝑛)‘𝑗)) |
| 242 | 241 | coeq2d 5873 |
. . . . . . . . . . . . . . . 16
⊢ (ℎ = (𝐼‘𝑛) → ([,) ∘ (ℎ‘𝑗)) = ([,) ∘ ((𝐼‘𝑛)‘𝑗))) |
| 243 | 242 | fveq1d 6908 |
. . . . . . . . . . . . . . 15
⊢ (ℎ = (𝐼‘𝑛) → (([,) ∘ (ℎ‘𝑗))‘𝑘) = (([,) ∘ ((𝐼‘𝑛)‘𝑗))‘𝑘)) |
| 244 | 243 | ixpeq2dv 8953 |
. . . . . . . . . . . . . 14
⊢ (ℎ = (𝐼‘𝑛) → X𝑘 ∈ 𝑋 (([,) ∘ (ℎ‘𝑗))‘𝑘) = X𝑘 ∈ 𝑋 (([,) ∘ ((𝐼‘𝑛)‘𝑗))‘𝑘)) |
| 245 | 244 | iuneq2d 5022 |
. . . . . . . . . . . . 13
⊢ (ℎ = (𝐼‘𝑛) → ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (ℎ‘𝑗))‘𝑘) = ∪ 𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ ((𝐼‘𝑛)‘𝑗))‘𝑘)) |
| 246 | 245 | sseq2d 4016 |
. . . . . . . . . . . 12
⊢ (ℎ = (𝐼‘𝑛) → ((𝐴‘𝑛) ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (ℎ‘𝑗))‘𝑘) ↔ (𝐴‘𝑛) ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ ((𝐼‘𝑛)‘𝑗))‘𝑘))) |
| 247 | 246 | elrab 3692 |
. . . . . . . . . . 11
⊢ ((𝐼‘𝑛) ∈ {ℎ ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ) ∣ (𝐴‘𝑛) ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (ℎ‘𝑗))‘𝑘)} ↔ ((𝐼‘𝑛) ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ) ∧ (𝐴‘𝑛) ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ ((𝐼‘𝑛)‘𝑗))‘𝑘))) |
| 248 | 240, 247 | sylib 218 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ ∧ (𝐼‘𝑛) ∈ (𝐶‘(𝐴‘𝑛))) → ((𝐼‘𝑛) ∈ (((ℝ × ℝ)
↑m 𝑋)
↑m ℕ) ∧ (𝐴‘𝑛) ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ ((𝐼‘𝑛)‘𝑗))‘𝑘))) |
| 249 | 248 | simprd 495 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ ∧ (𝐼‘𝑛) ∈ (𝐶‘(𝐴‘𝑛))) → (𝐴‘𝑛) ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ ((𝐼‘𝑛)‘𝑗))‘𝑘)) |
| 250 | 235, 4, 237, 249 | syl3anc 1373 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴‘𝑛) ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ ((𝐼‘𝑛)‘𝑗))‘𝑘)) |
| 251 | | f1ofo 6855 |
. . . . . . . . . . . . . 14
⊢ (𝐹:ℕ–1-1-onto→(ℕ × ℕ) → 𝐹:ℕ–onto→(ℕ × ℕ)) |
| 252 | 20, 251 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹:ℕ–onto→(ℕ × ℕ)) |
| 253 | 252 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → 𝐹:ℕ–onto→(ℕ × ℕ)) |
| 254 | | opelxpi 5722 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℕ ∧ 𝑗 ∈ ℕ) →
〈𝑛, 𝑗〉 ∈ (ℕ ×
ℕ)) |
| 255 | 4, 254 | sylan 580 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → 〈𝑛, 𝑗〉 ∈ (ℕ ×
ℕ)) |
| 256 | | foelcdmi 6970 |
. . . . . . . . . . . 12
⊢ ((𝐹:ℕ–onto→(ℕ × ℕ) ∧ 〈𝑛, 𝑗〉 ∈ (ℕ × ℕ))
→ ∃𝑚 ∈
ℕ (𝐹‘𝑚) = 〈𝑛, 𝑗〉) |
| 257 | 253, 255,
256 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → ∃𝑚 ∈ ℕ (𝐹‘𝑚) = 〈𝑛, 𝑗〉) |
| 258 | | nfv 1914 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑚((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑗 ∈ ℕ) |
| 259 | | nfre1 3285 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑚∃𝑚 ∈ {𝑖 ∈ ℕ ∣ (1st
‘(𝐹‘𝑖)) = 𝑛}X𝑘 ∈ 𝑋 (([,) ∘ ((𝐼‘𝑛)‘𝑗))‘𝑘) ⊆ X𝑘 ∈ 𝑋 (([,) ∘ (𝐺‘𝑚))‘𝑘) |
| 260 | | simpl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑚 ∈ ℕ ∧ (𝐹‘𝑚) = 〈𝑛, 𝑗〉) → 𝑚 ∈ ℕ) |
| 261 | | fveq2 6906 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹‘𝑚) = 〈𝑛, 𝑗〉 → (1st ‘(𝐹‘𝑚)) = (1st ‘〈𝑛, 𝑗〉)) |
| 262 | | op1stg 8026 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑛 ∈ V ∧ 𝑗 ∈ V) →
(1st ‘〈𝑛, 𝑗〉) = 𝑛) |
| 263 | 262 | el2v 3487 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(1st ‘〈𝑛, 𝑗〉) = 𝑛 |
| 264 | 263 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹‘𝑚) = 〈𝑛, 𝑗〉 → (1st
‘〈𝑛, 𝑗〉) = 𝑛) |
| 265 | 261, 264 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹‘𝑚) = 〈𝑛, 𝑗〉 → (1st ‘(𝐹‘𝑚)) = 𝑛) |
| 266 | 265 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑚 ∈ ℕ ∧ (𝐹‘𝑚) = 〈𝑛, 𝑗〉) → (1st ‘(𝐹‘𝑚)) = 𝑛) |
| 267 | 260, 266 | jca 511 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑚 ∈ ℕ ∧ (𝐹‘𝑚) = 〈𝑛, 𝑗〉) → (𝑚 ∈ ℕ ∧ (1st
‘(𝐹‘𝑚)) = 𝑛)) |
| 268 | | 2fveq3 6911 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = 𝑚 → (1st ‘(𝐹‘𝑖)) = (1st ‘(𝐹‘𝑚))) |
| 269 | 268 | eqeq1d 2739 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 𝑚 → ((1st ‘(𝐹‘𝑖)) = 𝑛 ↔ (1st ‘(𝐹‘𝑚)) = 𝑛)) |
| 270 | 269 | elrab 3692 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 ∈ {𝑖 ∈ ℕ ∣ (1st
‘(𝐹‘𝑖)) = 𝑛} ↔ (𝑚 ∈ ℕ ∧ (1st
‘(𝐹‘𝑚)) = 𝑛)) |
| 271 | 267, 270 | sylibr 234 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚 ∈ ℕ ∧ (𝐹‘𝑚) = 〈𝑛, 𝑗〉) → 𝑚 ∈ {𝑖 ∈ ℕ ∣ (1st
‘(𝐹‘𝑖)) = 𝑛}) |
| 272 | 271 | 3adant1 1131 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑗 ∈ ℕ) ∧ 𝑚 ∈ ℕ ∧ (𝐹‘𝑚) = 〈𝑛, 𝑗〉) → 𝑚 ∈ {𝑖 ∈ ℕ ∣ (1st
‘(𝐹‘𝑖)) = 𝑛}) |
| 273 | 260, 111 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑚 ∈ ℕ ∧ (𝐹‘𝑚) = 〈𝑛, 𝑗〉) → (𝐺‘𝑚) = ((𝐼‘(1st ‘(𝐹‘𝑚)))‘(2nd ‘(𝐹‘𝑚)))) |
| 274 | 265 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹‘𝑚) = 〈𝑛, 𝑗〉 → (𝐼‘(1st ‘(𝐹‘𝑚))) = (𝐼‘𝑛)) |
| 275 | | vex 3484 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝑛 ∈ V |
| 276 | | vex 3484 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 𝑗 ∈ V |
| 277 | 275, 276 | op2ndd 8025 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹‘𝑚) = 〈𝑛, 𝑗〉 → (2nd ‘(𝐹‘𝑚)) = 𝑗) |
| 278 | 274, 277 | fveq12d 6913 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹‘𝑚) = 〈𝑛, 𝑗〉 → ((𝐼‘(1st ‘(𝐹‘𝑚)))‘(2nd ‘(𝐹‘𝑚))) = ((𝐼‘𝑛)‘𝑗)) |
| 279 | 278 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑚 ∈ ℕ ∧ (𝐹‘𝑚) = 〈𝑛, 𝑗〉) → ((𝐼‘(1st ‘(𝐹‘𝑚)))‘(2nd ‘(𝐹‘𝑚))) = ((𝐼‘𝑛)‘𝑗)) |
| 280 | 273, 279 | eqtr2d 2778 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑚 ∈ ℕ ∧ (𝐹‘𝑚) = 〈𝑛, 𝑗〉) → ((𝐼‘𝑛)‘𝑗) = (𝐺‘𝑚)) |
| 281 | 280 | coeq2d 5873 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑚 ∈ ℕ ∧ (𝐹‘𝑚) = 〈𝑛, 𝑗〉) → ([,) ∘ ((𝐼‘𝑛)‘𝑗)) = ([,) ∘ (𝐺‘𝑚))) |
| 282 | 281 | fveq1d 6908 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑚 ∈ ℕ ∧ (𝐹‘𝑚) = 〈𝑛, 𝑗〉) → (([,) ∘ ((𝐼‘𝑛)‘𝑗))‘𝑘) = (([,) ∘ (𝐺‘𝑚))‘𝑘)) |
| 283 | 282 | ixpeq2dv 8953 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑚 ∈ ℕ ∧ (𝐹‘𝑚) = 〈𝑛, 𝑗〉) → X𝑘 ∈ 𝑋 (([,) ∘ ((𝐼‘𝑛)‘𝑗))‘𝑘) = X𝑘 ∈ 𝑋 (([,) ∘ (𝐺‘𝑚))‘𝑘)) |
| 284 | | eqimss 4042 |
. . . . . . . . . . . . . . . 16
⊢ (X𝑘 ∈
𝑋 (([,) ∘ ((𝐼‘𝑛)‘𝑗))‘𝑘) = X𝑘 ∈ 𝑋 (([,) ∘ (𝐺‘𝑚))‘𝑘) → X𝑘 ∈ 𝑋 (([,) ∘ ((𝐼‘𝑛)‘𝑗))‘𝑘) ⊆ X𝑘 ∈ 𝑋 (([,) ∘ (𝐺‘𝑚))‘𝑘)) |
| 285 | 283, 284 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚 ∈ ℕ ∧ (𝐹‘𝑚) = 〈𝑛, 𝑗〉) → X𝑘 ∈ 𝑋 (([,) ∘ ((𝐼‘𝑛)‘𝑗))‘𝑘) ⊆ X𝑘 ∈ 𝑋 (([,) ∘ (𝐺‘𝑚))‘𝑘)) |
| 286 | 285 | 3adant1 1131 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑗 ∈ ℕ) ∧ 𝑚 ∈ ℕ ∧ (𝐹‘𝑚) = 〈𝑛, 𝑗〉) → X𝑘 ∈ 𝑋 (([,) ∘ ((𝐼‘𝑛)‘𝑗))‘𝑘) ⊆ X𝑘 ∈ 𝑋 (([,) ∘ (𝐺‘𝑚))‘𝑘)) |
| 287 | | rspe 3249 |
. . . . . . . . . . . . . 14
⊢ ((𝑚 ∈ {𝑖 ∈ ℕ ∣ (1st
‘(𝐹‘𝑖)) = 𝑛} ∧ X𝑘 ∈ 𝑋 (([,) ∘ ((𝐼‘𝑛)‘𝑗))‘𝑘) ⊆ X𝑘 ∈ 𝑋 (([,) ∘ (𝐺‘𝑚))‘𝑘)) → ∃𝑚 ∈ {𝑖 ∈ ℕ ∣ (1st
‘(𝐹‘𝑖)) = 𝑛}X𝑘 ∈ 𝑋 (([,) ∘ ((𝐼‘𝑛)‘𝑗))‘𝑘) ⊆ X𝑘 ∈ 𝑋 (([,) ∘ (𝐺‘𝑚))‘𝑘)) |
| 288 | 272, 286,
287 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑗 ∈ ℕ) ∧ 𝑚 ∈ ℕ ∧ (𝐹‘𝑚) = 〈𝑛, 𝑗〉) → ∃𝑚 ∈ {𝑖 ∈ ℕ ∣ (1st
‘(𝐹‘𝑖)) = 𝑛}X𝑘 ∈ 𝑋 (([,) ∘ ((𝐼‘𝑛)‘𝑗))‘𝑘) ⊆ X𝑘 ∈ 𝑋 (([,) ∘ (𝐺‘𝑚))‘𝑘)) |
| 289 | 288 | 3exp 1120 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (𝑚 ∈ ℕ → ((𝐹‘𝑚) = 〈𝑛, 𝑗〉 → ∃𝑚 ∈ {𝑖 ∈ ℕ ∣ (1st
‘(𝐹‘𝑖)) = 𝑛}X𝑘 ∈ 𝑋 (([,) ∘ ((𝐼‘𝑛)‘𝑗))‘𝑘) ⊆ X𝑘 ∈ 𝑋 (([,) ∘ (𝐺‘𝑚))‘𝑘)))) |
| 290 | 258, 259,
289 | rexlimd 3266 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (∃𝑚 ∈ ℕ (𝐹‘𝑚) = 〈𝑛, 𝑗〉 → ∃𝑚 ∈ {𝑖 ∈ ℕ ∣ (1st
‘(𝐹‘𝑖)) = 𝑛}X𝑘 ∈ 𝑋 (([,) ∘ ((𝐼‘𝑛)‘𝑗))‘𝑘) ⊆ X𝑘 ∈ 𝑋 (([,) ∘ (𝐺‘𝑚))‘𝑘))) |
| 291 | 257, 290 | mpd 15 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → ∃𝑚 ∈ {𝑖 ∈ ℕ ∣ (1st
‘(𝐹‘𝑖)) = 𝑛}X𝑘 ∈ 𝑋 (([,) ∘ ((𝐼‘𝑛)‘𝑗))‘𝑘) ⊆ X𝑘 ∈ 𝑋 (([,) ∘ (𝐺‘𝑚))‘𝑘)) |
| 292 | 291 | ralrimiva 3146 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∀𝑗 ∈ ℕ ∃𝑚 ∈ {𝑖 ∈ ℕ ∣ (1st
‘(𝐹‘𝑖)) = 𝑛}X𝑘 ∈ 𝑋 (([,) ∘ ((𝐼‘𝑛)‘𝑗))‘𝑘) ⊆ X𝑘 ∈ 𝑋 (([,) ∘ (𝐺‘𝑚))‘𝑘)) |
| 293 | | iunss2 5049 |
. . . . . . . . 9
⊢
(∀𝑗 ∈
ℕ ∃𝑚 ∈
{𝑖 ∈ ℕ ∣
(1st ‘(𝐹‘𝑖)) = 𝑛}X𝑘 ∈ 𝑋 (([,) ∘ ((𝐼‘𝑛)‘𝑗))‘𝑘) ⊆ X𝑘 ∈ 𝑋 (([,) ∘ (𝐺‘𝑚))‘𝑘) → ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ ((𝐼‘𝑛)‘𝑗))‘𝑘) ⊆ ∪
𝑚 ∈ {𝑖 ∈ ℕ ∣
(1st ‘(𝐹‘𝑖)) = 𝑛}X𝑘 ∈ 𝑋 (([,) ∘ (𝐺‘𝑚))‘𝑘)) |
| 294 | 292, 293 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ ((𝐼‘𝑛)‘𝑗))‘𝑘) ⊆ ∪
𝑚 ∈ {𝑖 ∈ ℕ ∣
(1st ‘(𝐹‘𝑖)) = 𝑛}X𝑘 ∈ 𝑋 (([,) ∘ (𝐺‘𝑚))‘𝑘)) |
| 295 | 250, 294 | sstrd 3994 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴‘𝑛) ⊆ ∪
𝑚 ∈ {𝑖 ∈ ℕ ∣
(1st ‘(𝐹‘𝑖)) = 𝑛}X𝑘 ∈ 𝑋 (([,) ∘ (𝐺‘𝑚))‘𝑘)) |
| 296 | | ssrab2 4080 |
. . . . . . . . 9
⊢ {𝑖 ∈ ℕ ∣
(1st ‘(𝐹‘𝑖)) = 𝑛} ⊆ ℕ |
| 297 | | iunss1 5006 |
. . . . . . . . 9
⊢ ({𝑖 ∈ ℕ ∣
(1st ‘(𝐹‘𝑖)) = 𝑛} ⊆ ℕ → ∪ 𝑚 ∈ {𝑖 ∈ ℕ ∣ (1st
‘(𝐹‘𝑖)) = 𝑛}X𝑘 ∈ 𝑋 (([,) ∘ (𝐺‘𝑚))‘𝑘) ⊆ ∪
𝑚 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝐺‘𝑚))‘𝑘)) |
| 298 | 296, 297 | ax-mp 5 |
. . . . . . . 8
⊢ ∪ 𝑚 ∈ {𝑖 ∈ ℕ ∣ (1st
‘(𝐹‘𝑖)) = 𝑛}X𝑘 ∈ 𝑋 (([,) ∘ (𝐺‘𝑚))‘𝑘) ⊆ ∪
𝑚 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝐺‘𝑚))‘𝑘) |
| 299 | 298 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ∪ 𝑚 ∈ {𝑖 ∈ ℕ ∣ (1st
‘(𝐹‘𝑖)) = 𝑛}X𝑘 ∈ 𝑋 (([,) ∘ (𝐺‘𝑚))‘𝑘) ⊆ ∪
𝑚 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝐺‘𝑚))‘𝑘)) |
| 300 | 295, 299 | sstrd 3994 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴‘𝑛) ⊆ ∪
𝑚 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝐺‘𝑚))‘𝑘)) |
| 301 | 300 | ralrimiva 3146 |
. . . . 5
⊢ (𝜑 → ∀𝑛 ∈ ℕ (𝐴‘𝑛) ⊆ ∪
𝑚 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝐺‘𝑚))‘𝑘)) |
| 302 | | iunss 5045 |
. . . . 5
⊢ (∪ 𝑛 ∈ ℕ (𝐴‘𝑛) ⊆ ∪
𝑚 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝐺‘𝑚))‘𝑘) ↔ ∀𝑛 ∈ ℕ (𝐴‘𝑛) ⊆ ∪
𝑚 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝐺‘𝑚))‘𝑘)) |
| 303 | 301, 302 | sylibr 234 |
. . . 4
⊢ (𝜑 → ∪ 𝑛 ∈ ℕ (𝐴‘𝑛) ⊆ ∪
𝑚 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝐺‘𝑚))‘𝑘)) |
| 304 | 1, 126, 19, 234, 303 | ovnlecvr 46573 |
. . 3
⊢ (𝜑 → ((voln*‘𝑋)‘∪ 𝑛 ∈ ℕ (𝐴‘𝑛)) ≤
(Σ^‘(𝑚 ∈ ℕ ↦ (𝐿‘(𝐺‘𝑚))))) |
| 305 | 112 | fveq2d 6910 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐿‘(𝐺‘𝑚)) = (𝐿‘((𝐼‘(1st ‘(𝐹‘𝑚)))‘(2nd ‘(𝐹‘𝑚))))) |
| 306 | 305 | mpteq2dva 5242 |
. . . . . 6
⊢ (𝜑 → (𝑚 ∈ ℕ ↦ (𝐿‘(𝐺‘𝑚))) = (𝑚 ∈ ℕ ↦ (𝐿‘((𝐼‘(1st ‘(𝐹‘𝑚)))‘(2nd ‘(𝐹‘𝑚)))))) |
| 307 | 306 | fveq2d 6910 |
. . . . 5
⊢ (𝜑 →
(Σ^‘(𝑚 ∈ ℕ ↦ (𝐿‘(𝐺‘𝑚)))) =
(Σ^‘(𝑚 ∈ ℕ ↦ (𝐿‘((𝐼‘(1st ‘(𝐹‘𝑚)))‘(2nd ‘(𝐹‘𝑚))))))) |
| 308 | | nfv 1914 |
. . . . . 6
⊢
Ⅎ𝑝𝜑 |
| 309 | | 2fveq3 6911 |
. . . . . . . 8
⊢ (𝑝 = (𝐹‘𝑚) → (𝐼‘(1st ‘𝑝)) = (𝐼‘(1st ‘(𝐹‘𝑚)))) |
| 310 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑝 = (𝐹‘𝑚) → (2nd ‘𝑝) = (2nd
‘(𝐹‘𝑚))) |
| 311 | 309, 310 | fveq12d 6913 |
. . . . . . 7
⊢ (𝑝 = (𝐹‘𝑚) → ((𝐼‘(1st ‘𝑝))‘(2nd
‘𝑝)) = ((𝐼‘(1st
‘(𝐹‘𝑚)))‘(2nd
‘(𝐹‘𝑚)))) |
| 312 | 311 | fveq2d 6910 |
. . . . . 6
⊢ (𝑝 = (𝐹‘𝑚) → (𝐿‘((𝐼‘(1st ‘𝑝))‘(2nd
‘𝑝))) = (𝐿‘((𝐼‘(1st ‘(𝐹‘𝑚)))‘(2nd ‘(𝐹‘𝑚))))) |
| 313 | | eqidd 2738 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝐹‘𝑚) = (𝐹‘𝑚)) |
| 314 | | nfv 1914 |
. . . . . . . 8
⊢
Ⅎ𝑘(𝜑 ∧ 𝑝 ∈ (ℕ ×
ℕ)) |
| 315 | 1 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ (ℕ × ℕ)) →
𝑋 ∈
Fin) |
| 316 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ (ℕ × ℕ)) →
𝜑) |
| 317 | | xp1st 8046 |
. . . . . . . . . 10
⊢ (𝑝 ∈ (ℕ ×
ℕ) → (1st ‘𝑝) ∈ ℕ) |
| 318 | 317 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ (ℕ × ℕ)) →
(1st ‘𝑝)
∈ ℕ) |
| 319 | | xp2nd 8047 |
. . . . . . . . . 10
⊢ (𝑝 ∈ (ℕ ×
ℕ) → (2nd ‘𝑝) ∈ ℕ) |
| 320 | 319 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ (ℕ × ℕ)) →
(2nd ‘𝑝)
∈ ℕ) |
| 321 | | fvex 6919 |
. . . . . . . . . 10
⊢
(2nd ‘𝑝) ∈ V |
| 322 | | eleq1 2829 |
. . . . . . . . . . . 12
⊢ (𝑗 = (2nd ‘𝑝) → (𝑗 ∈ ℕ ↔ (2nd
‘𝑝) ∈
ℕ)) |
| 323 | 322 | 3anbi3d 1444 |
. . . . . . . . . . 11
⊢ (𝑗 = (2nd ‘𝑝) → ((𝜑 ∧ (1st ‘𝑝) ∈ ℕ ∧ 𝑗 ∈ ℕ) ↔ (𝜑 ∧ (1st
‘𝑝) ∈ ℕ
∧ (2nd ‘𝑝) ∈ ℕ))) |
| 324 | | fveq2 6906 |
. . . . . . . . . . . 12
⊢ (𝑗 = (2nd ‘𝑝) → ((𝐼‘(1st ‘𝑝))‘𝑗) = ((𝐼‘(1st ‘𝑝))‘(2nd
‘𝑝))) |
| 325 | 324 | feq1d 6720 |
. . . . . . . . . . 11
⊢ (𝑗 = (2nd ‘𝑝) → (((𝐼‘(1st ‘𝑝))‘𝑗):𝑋⟶(ℝ × ℝ) ↔
((𝐼‘(1st
‘𝑝))‘(2nd ‘𝑝)):𝑋⟶(ℝ ×
ℝ))) |
| 326 | 323, 325 | imbi12d 344 |
. . . . . . . . . 10
⊢ (𝑗 = (2nd ‘𝑝) → (((𝜑 ∧ (1st ‘𝑝) ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((𝐼‘(1st
‘𝑝))‘𝑗):𝑋⟶(ℝ × ℝ)) ↔
((𝜑 ∧ (1st
‘𝑝) ∈ ℕ
∧ (2nd ‘𝑝) ∈ ℕ) → ((𝐼‘(1st ‘𝑝))‘(2nd
‘𝑝)):𝑋⟶(ℝ ×
ℝ)))) |
| 327 | | fvex 6919 |
. . . . . . . . . . 11
⊢
(1st ‘𝑝) ∈ V |
| 328 | | eleq1 2829 |
. . . . . . . . . . . . 13
⊢ (𝑛 = (1st ‘𝑝) → (𝑛 ∈ ℕ ↔ (1st
‘𝑝) ∈
ℕ)) |
| 329 | 328 | 3anbi2d 1443 |
. . . . . . . . . . . 12
⊢ (𝑛 = (1st ‘𝑝) → ((𝜑 ∧ 𝑛 ∈ ℕ ∧ 𝑗 ∈ ℕ) ↔ (𝜑 ∧ (1st ‘𝑝) ∈ ℕ ∧ 𝑗 ∈
ℕ))) |
| 330 | | fveq2 6906 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = (1st ‘𝑝) → (𝐼‘𝑛) = (𝐼‘(1st ‘𝑝))) |
| 331 | 330 | fveq1d 6908 |
. . . . . . . . . . . . 13
⊢ (𝑛 = (1st ‘𝑝) → ((𝐼‘𝑛)‘𝑗) = ((𝐼‘(1st ‘𝑝))‘𝑗)) |
| 332 | 331 | feq1d 6720 |
. . . . . . . . . . . 12
⊢ (𝑛 = (1st ‘𝑝) → (((𝐼‘𝑛)‘𝑗):𝑋⟶(ℝ × ℝ) ↔
((𝐼‘(1st
‘𝑝))‘𝑗):𝑋⟶(ℝ ×
ℝ))) |
| 333 | 329, 332 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑛 = (1st ‘𝑝) → (((𝜑 ∧ 𝑛 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((𝐼‘𝑛)‘𝑗):𝑋⟶(ℝ × ℝ)) ↔
((𝜑 ∧ (1st
‘𝑝) ∈ ℕ
∧ 𝑗 ∈ ℕ)
→ ((𝐼‘(1st ‘𝑝))‘𝑗):𝑋⟶(ℝ ×
ℝ)))) |
| 334 | 327, 333,
102 | vtocl 3558 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (1st
‘𝑝) ∈ ℕ
∧ 𝑗 ∈ ℕ)
→ ((𝐼‘(1st ‘𝑝))‘𝑗):𝑋⟶(ℝ ×
ℝ)) |
| 335 | 321, 326,
334 | vtocl 3558 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (1st
‘𝑝) ∈ ℕ
∧ (2nd ‘𝑝) ∈ ℕ) → ((𝐼‘(1st ‘𝑝))‘(2nd
‘𝑝)):𝑋⟶(ℝ ×
ℝ)) |
| 336 | 316, 318,
320, 335 | syl3anc 1373 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ (ℕ × ℕ)) →
((𝐼‘(1st
‘𝑝))‘(2nd ‘𝑝)):𝑋⟶(ℝ ×
ℝ)) |
| 337 | 314, 315,
19, 336 | hoiprodcl2 46570 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑝 ∈ (ℕ × ℕ)) →
(𝐿‘((𝐼‘(1st
‘𝑝))‘(2nd ‘𝑝))) ∈
(0[,)+∞)) |
| 338 | 15, 337 | sselid 3981 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ (ℕ × ℕ)) →
(𝐿‘((𝐼‘(1st
‘𝑝))‘(2nd ‘𝑝))) ∈
(0[,]+∞)) |
| 339 | 308, 12, 312, 14, 20, 313, 338 | sge0f1o 46397 |
. . . . 5
⊢ (𝜑 →
(Σ^‘(𝑝 ∈ (ℕ × ℕ) ↦
(𝐿‘((𝐼‘(1st
‘𝑝))‘(2nd ‘𝑝))))) =
(Σ^‘(𝑚 ∈ ℕ ↦ (𝐿‘((𝐼‘(1st ‘(𝐹‘𝑚)))‘(2nd ‘(𝐹‘𝑚))))))) |
| 340 | 307, 339 | eqtr4d 2780 |
. . . 4
⊢ (𝜑 →
(Σ^‘(𝑚 ∈ ℕ ↦ (𝐿‘(𝐺‘𝑚)))) =
(Σ^‘(𝑝 ∈ (ℕ × ℕ) ↦
(𝐿‘((𝐼‘(1st
‘𝑝))‘(2nd ‘𝑝)))))) |
| 341 | | nfv 1914 |
. . . . . . 7
⊢
Ⅎ𝑗𝜑 |
| 342 | 275, 276 | op1std 8024 |
. . . . . . . . . 10
⊢ (𝑝 = 〈𝑛, 𝑗〉 → (1st ‘𝑝) = 𝑛) |
| 343 | 342 | fveq2d 6910 |
. . . . . . . . 9
⊢ (𝑝 = 〈𝑛, 𝑗〉 → (𝐼‘(1st ‘𝑝)) = (𝐼‘𝑛)) |
| 344 | 275, 276 | op2ndd 8025 |
. . . . . . . . 9
⊢ (𝑝 = 〈𝑛, 𝑗〉 → (2nd ‘𝑝) = 𝑗) |
| 345 | 343, 344 | fveq12d 6913 |
. . . . . . . 8
⊢ (𝑝 = 〈𝑛, 𝑗〉 → ((𝐼‘(1st ‘𝑝))‘(2nd
‘𝑝)) = ((𝐼‘𝑛)‘𝑗)) |
| 346 | 345 | fveq2d 6910 |
. . . . . . 7
⊢ (𝑝 = 〈𝑛, 𝑗〉 → (𝐿‘((𝐼‘(1st ‘𝑝))‘(2nd
‘𝑝))) = (𝐿‘((𝐼‘𝑛)‘𝑗))) |
| 347 | | nfv 1914 |
. . . . . . . . . 10
⊢
Ⅎ𝑘((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑗 ∈ ℕ) |
| 348 | 123 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → 𝑋 ∈ Fin) |
| 349 | 93, 101 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → ((𝐼‘𝑛)‘𝑗):𝑋⟶(ℝ ×
ℝ)) |
| 350 | 347, 348,
19, 349 | hoiprodcl2 46570 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (𝐿‘((𝐼‘𝑛)‘𝑗)) ∈ (0[,)+∞)) |
| 351 | 15, 350 | sselid 3981 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ) ∧ 𝑗 ∈ ℕ) → (𝐿‘((𝐼‘𝑛)‘𝑗)) ∈ (0[,]+∞)) |
| 352 | 351 | 3impa 1110 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝐿‘((𝐼‘𝑛)‘𝑗)) ∈ (0[,]+∞)) |
| 353 | 341, 346,
14, 14, 352 | sge0xp 46444 |
. . . . . 6
⊢ (𝜑 →
(Σ^‘(𝑛 ∈ ℕ ↦
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘((𝐼‘𝑛)‘𝑗)))))) =
(Σ^‘(𝑝 ∈ (ℕ × ℕ) ↦
(𝐿‘((𝐼‘(1st
‘𝑝))‘(2nd ‘𝑝)))))) |
| 354 | 353 | eqcomd 2743 |
. . . . 5
⊢ (𝜑 →
(Σ^‘(𝑝 ∈ (ℕ × ℕ) ↦
(𝐿‘((𝐼‘(1st
‘𝑝))‘(2nd ‘𝑝))))) =
(Σ^‘(𝑛 ∈ ℕ ↦
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘((𝐼‘𝑛)‘𝑗))))))) |
| 355 | 13 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ℕ ∈
V) |
| 356 | | eqid 2737 |
. . . . . . . 8
⊢ (𝑗 ∈ ℕ ↦ (𝐿‘((𝐼‘𝑛)‘𝑗))) = (𝑗 ∈ ℕ ↦ (𝐿‘((𝐼‘𝑛)‘𝑗))) |
| 357 | 351, 356 | fmptd 7134 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝑗 ∈ ℕ ↦ (𝐿‘((𝐼‘𝑛)‘𝑗))):ℕ⟶(0[,]+∞)) |
| 358 | 355, 357 | sge0cl 46396 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘((𝐼‘𝑛)‘𝑗)))) ∈ (0[,]+∞)) |
| 359 | | fveq1 6905 |
. . . . . . . . . . . . 13
⊢ (𝑖 = (𝐼‘𝑛) → (𝑖‘𝑗) = ((𝐼‘𝑛)‘𝑗)) |
| 360 | 359 | fveq2d 6910 |
. . . . . . . . . . . 12
⊢ (𝑖 = (𝐼‘𝑛) → (𝐿‘(𝑖‘𝑗)) = (𝐿‘((𝐼‘𝑛)‘𝑗))) |
| 361 | 360 | mpteq2dv 5244 |
. . . . . . . . . . 11
⊢ (𝑖 = (𝐼‘𝑛) → (𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗))) = (𝑗 ∈ ℕ ↦ (𝐿‘((𝐼‘𝑛)‘𝑗)))) |
| 362 | 361 | fveq2d 6910 |
. . . . . . . . . 10
⊢ (𝑖 = (𝐼‘𝑛) →
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘((𝐼‘𝑛)‘𝑗))))) |
| 363 | 362 | breq1d 5153 |
. . . . . . . . 9
⊢ (𝑖 = (𝐼‘𝑛) →
((Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘(𝐴‘𝑛)) +𝑒 (𝐸 / (2↑𝑛))) ↔
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘((𝐼‘𝑛)‘𝑗)))) ≤ (((voln*‘𝑋)‘(𝐴‘𝑛)) +𝑒 (𝐸 / (2↑𝑛))))) |
| 364 | 363 | elrab 3692 |
. . . . . . . 8
⊢ ((𝐼‘𝑛) ∈ {𝑖 ∈ (𝐶‘(𝐴‘𝑛)) ∣
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘(𝑖‘𝑗)))) ≤ (((voln*‘𝑋)‘(𝐴‘𝑛)) +𝑒 (𝐸 / (2↑𝑛)))} ↔ ((𝐼‘𝑛) ∈ (𝐶‘(𝐴‘𝑛)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘((𝐼‘𝑛)‘𝑗)))) ≤ (((voln*‘𝑋)‘(𝐴‘𝑛)) +𝑒 (𝐸 / (2↑𝑛))))) |
| 365 | 236, 364 | sylib 218 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((𝐼‘𝑛) ∈ (𝐶‘(𝐴‘𝑛)) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘((𝐼‘𝑛)‘𝑗)))) ≤ (((voln*‘𝑋)‘(𝐴‘𝑛)) +𝑒 (𝐸 / (2↑𝑛))))) |
| 366 | 365 | simprd 495 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) →
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘((𝐼‘𝑛)‘𝑗)))) ≤ (((voln*‘𝑋)‘(𝐴‘𝑛)) +𝑒 (𝐸 / (2↑𝑛)))) |
| 367 | 118, 14, 358, 173, 366 | sge0lempt 46425 |
. . . . 5
⊢ (𝜑 →
(Σ^‘(𝑛 ∈ ℕ ↦
(Σ^‘(𝑗 ∈ ℕ ↦ (𝐿‘((𝐼‘𝑛)‘𝑗)))))) ≤
(Σ^‘(𝑛 ∈ ℕ ↦ (((voln*‘𝑋)‘(𝐴‘𝑛)) +𝑒 (𝐸 / (2↑𝑛)))))) |
| 368 | 354, 367 | eqbrtrd 5165 |
. . . 4
⊢ (𝜑 →
(Σ^‘(𝑝 ∈ (ℕ × ℕ) ↦
(𝐿‘((𝐼‘(1st
‘𝑝))‘(2nd ‘𝑝))))) ≤
(Σ^‘(𝑛 ∈ ℕ ↦ (((voln*‘𝑋)‘(𝐴‘𝑛)) +𝑒 (𝐸 / (2↑𝑛)))))) |
| 369 | 340, 368 | eqbrtrd 5165 |
. . 3
⊢ (𝜑 →
(Σ^‘(𝑚 ∈ ℕ ↦ (𝐿‘(𝐺‘𝑚)))) ≤
(Σ^‘(𝑛 ∈ ℕ ↦ (((voln*‘𝑋)‘(𝐴‘𝑛)) +𝑒 (𝐸 / (2↑𝑛)))))) |
| 370 | 11, 117, 174, 304, 369 | xrletrd 13204 |
. 2
⊢ (𝜑 → ((voln*‘𝑋)‘∪ 𝑛 ∈ ℕ (𝐴‘𝑛)) ≤
(Σ^‘(𝑛 ∈ ℕ ↦ (((voln*‘𝑋)‘(𝐴‘𝑛)) +𝑒 (𝐸 / (2↑𝑛)))))) |
| 371 | 118, 14, 160, 168 | sge0xadd 46450 |
. . 3
⊢ (𝜑 →
(Σ^‘(𝑛 ∈ ℕ ↦ (((voln*‘𝑋)‘(𝐴‘𝑛)) +𝑒 (𝐸 / (2↑𝑛))))) =
((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴‘𝑛)))) +𝑒
(Σ^‘(𝑛 ∈ ℕ ↦ (𝐸 / (2↑𝑛)))))) |
| 372 | 119 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 0 ∈
ℝ*) |
| 373 | 121 | a1i 11 |
. . . . . 6
⊢ (𝜑 → +∞ ∈
ℝ*) |
| 374 | 145 | rexrd 11311 |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈
ℝ*) |
| 375 | 70 | rpge0d 13081 |
. . . . . 6
⊢ (𝜑 → 0 ≤ 𝐸) |
| 376 | 145 | ltpnfd 13163 |
. . . . . 6
⊢ (𝜑 → 𝐸 < +∞) |
| 377 | 372, 373,
374, 375, 376 | elicod 13437 |
. . . . 5
⊢ (𝜑 → 𝐸 ∈ (0[,)+∞)) |
| 378 | 377 | sge0ad2en 46446 |
. . . 4
⊢ (𝜑 →
(Σ^‘(𝑛 ∈ ℕ ↦ (𝐸 / (2↑𝑛)))) = 𝐸) |
| 379 | 378 | oveq2d 7447 |
. . 3
⊢ (𝜑 →
((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴‘𝑛)))) +𝑒
(Σ^‘(𝑛 ∈ ℕ ↦ (𝐸 / (2↑𝑛))))) =
((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴‘𝑛)))) +𝑒 𝐸)) |
| 380 | 371, 379 | eqtrd 2777 |
. 2
⊢ (𝜑 →
(Σ^‘(𝑛 ∈ ℕ ↦ (((voln*‘𝑋)‘(𝐴‘𝑛)) +𝑒 (𝐸 / (2↑𝑛))))) =
((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴‘𝑛)))) +𝑒 𝐸)) |
| 381 | 370, 380 | breqtrd 5169 |
1
⊢ (𝜑 → ((voln*‘𝑋)‘∪ 𝑛 ∈ ℕ (𝐴‘𝑛)) ≤
((Σ^‘(𝑛 ∈ ℕ ↦ ((voln*‘𝑋)‘(𝐴‘𝑛)))) +𝑒 𝐸)) |