![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexxpf | Structured version Visualization version GIF version |
Description: Version of rexxp 5843 with bound-variable hypotheses. (Contributed by NM, 19-Dec-2008.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
ralxpf.1 | ⊢ Ⅎ𝑦𝜑 |
ralxpf.2 | ⊢ Ⅎ𝑧𝜑 |
ralxpf.3 | ⊢ Ⅎ𝑥𝜓 |
ralxpf.4 | ⊢ (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rexxpf | ⊢ (∃𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralxpf.1 | . . . . . 6 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | nfn 1861 | . . . . 5 ⊢ Ⅎ𝑦 ¬ 𝜑 |
3 | ralxpf.2 | . . . . . 6 ⊢ Ⅎ𝑧𝜑 | |
4 | 3 | nfn 1861 | . . . . 5 ⊢ Ⅎ𝑧 ¬ 𝜑 |
5 | ralxpf.3 | . . . . . 6 ⊢ Ⅎ𝑥𝜓 | |
6 | 5 | nfn 1861 | . . . . 5 ⊢ Ⅎ𝑥 ¬ 𝜓 |
7 | ralxpf.4 | . . . . . 6 ⊢ (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑 ↔ 𝜓)) | |
8 | 7 | notbid 318 | . . . . 5 ⊢ (𝑥 = ⟨𝑦, 𝑧⟩ → (¬ 𝜑 ↔ ¬ 𝜓)) |
9 | 2, 4, 6, 8 | ralxpf 5847 | . . . 4 ⊢ (∀𝑥 ∈ (𝐴 × 𝐵) ¬ 𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ¬ 𝜓) |
10 | ralnex 3073 | . . . . 5 ⊢ (∀𝑧 ∈ 𝐵 ¬ 𝜓 ↔ ¬ ∃𝑧 ∈ 𝐵 𝜓) | |
11 | 10 | ralbii 3094 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ¬ 𝜓 ↔ ∀𝑦 ∈ 𝐴 ¬ ∃𝑧 ∈ 𝐵 𝜓) |
12 | 9, 11 | bitri 275 | . . 3 ⊢ (∀𝑥 ∈ (𝐴 × 𝐵) ¬ 𝜑 ↔ ∀𝑦 ∈ 𝐴 ¬ ∃𝑧 ∈ 𝐵 𝜓) |
13 | 12 | notbii 320 | . 2 ⊢ (¬ ∀𝑥 ∈ (𝐴 × 𝐵) ¬ 𝜑 ↔ ¬ ∀𝑦 ∈ 𝐴 ¬ ∃𝑧 ∈ 𝐵 𝜓) |
14 | dfrex2 3074 | . 2 ⊢ (∃𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ¬ ∀𝑥 ∈ (𝐴 × 𝐵) ¬ 𝜑) | |
15 | dfrex2 3074 | . 2 ⊢ (∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝜓 ↔ ¬ ∀𝑦 ∈ 𝐴 ¬ ∃𝑧 ∈ 𝐵 𝜓) | |
16 | 13, 14, 15 | 3bitr4i 303 | 1 ⊢ (∃𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1542 Ⅎwnf 1786 ∀wral 3062 ∃wrex 3071 ⟨cop 4635 × cxp 5675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-iun 5000 df-opab 5212 df-xp 5683 df-rel 5684 |
This theorem is referenced by: iunxpf 5849 wdom2d2 41774 |
Copyright terms: Public domain | W3C validator |