MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexxpf Structured version   Visualization version   GIF version

Theorem rexxpf 5473
Description: Version of rexxp 5468 with bound-variable hypotheses. (Contributed by NM, 19-Dec-2008.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
ralxpf.1 𝑦𝜑
ralxpf.2 𝑧𝜑
ralxpf.3 𝑥𝜓
ralxpf.4 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
Assertion
Ref Expression
rexxpf (∃𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∃𝑦𝐴𝑧𝐵 𝜓)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑧,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝜓(𝑥,𝑦,𝑧)   𝐴(𝑧)

Proof of Theorem rexxpf
StepHypRef Expression
1 ralxpf.1 . . . . . 6 𝑦𝜑
21nfn 1954 . . . . 5 𝑦 ¬ 𝜑
3 ralxpf.2 . . . . . 6 𝑧𝜑
43nfn 1954 . . . . 5 𝑧 ¬ 𝜑
5 ralxpf.3 . . . . . 6 𝑥𝜓
65nfn 1954 . . . . 5 𝑥 ¬ 𝜓
7 ralxpf.4 . . . . . 6 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
87notbid 310 . . . . 5 (𝑥 = ⟨𝑦, 𝑧⟩ → (¬ 𝜑 ↔ ¬ 𝜓))
92, 4, 6, 8ralxpf 5472 . . . 4 (∀𝑥 ∈ (𝐴 × 𝐵) ¬ 𝜑 ↔ ∀𝑦𝐴𝑧𝐵 ¬ 𝜓)
10 ralnex 3173 . . . . 5 (∀𝑧𝐵 ¬ 𝜓 ↔ ¬ ∃𝑧𝐵 𝜓)
1110ralbii 3161 . . . 4 (∀𝑦𝐴𝑧𝐵 ¬ 𝜓 ↔ ∀𝑦𝐴 ¬ ∃𝑧𝐵 𝜓)
129, 11bitri 267 . . 3 (∀𝑥 ∈ (𝐴 × 𝐵) ¬ 𝜑 ↔ ∀𝑦𝐴 ¬ ∃𝑧𝐵 𝜓)
1312notbii 312 . 2 (¬ ∀𝑥 ∈ (𝐴 × 𝐵) ¬ 𝜑 ↔ ¬ ∀𝑦𝐴 ¬ ∃𝑧𝐵 𝜓)
14 dfrex2 3176 . 2 (∃𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ¬ ∀𝑥 ∈ (𝐴 × 𝐵) ¬ 𝜑)
15 dfrex2 3176 . 2 (∃𝑦𝐴𝑧𝐵 𝜓 ↔ ¬ ∀𝑦𝐴 ¬ ∃𝑧𝐵 𝜓)
1613, 14, 153bitr4i 295 1 (∃𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∃𝑦𝐴𝑧𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198   = wceq 1653  wnf 1879  wral 3089  wrex 3090  cop 4374   × cxp 5310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pr 5097
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-sn 4369  df-pr 4371  df-op 4375  df-iun 4712  df-opab 4906  df-xp 5318  df-rel 5319
This theorem is referenced by:  iunxpf  5474  wdom2d2  38387
  Copyright terms: Public domain W3C validator