Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexxpf | Structured version Visualization version GIF version |
Description: Version of rexxp 5751 with bound-variable hypotheses. (Contributed by NM, 19-Dec-2008.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
ralxpf.1 | ⊢ Ⅎ𝑦𝜑 |
ralxpf.2 | ⊢ Ⅎ𝑧𝜑 |
ralxpf.3 | ⊢ Ⅎ𝑥𝜓 |
ralxpf.4 | ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rexxpf | ⊢ (∃𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralxpf.1 | . . . . . 6 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | nfn 1860 | . . . . 5 ⊢ Ⅎ𝑦 ¬ 𝜑 |
3 | ralxpf.2 | . . . . . 6 ⊢ Ⅎ𝑧𝜑 | |
4 | 3 | nfn 1860 | . . . . 5 ⊢ Ⅎ𝑧 ¬ 𝜑 |
5 | ralxpf.3 | . . . . . 6 ⊢ Ⅎ𝑥𝜓 | |
6 | 5 | nfn 1860 | . . . . 5 ⊢ Ⅎ𝑥 ¬ 𝜓 |
7 | ralxpf.4 | . . . . . 6 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) | |
8 | 7 | notbid 318 | . . . . 5 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (¬ 𝜑 ↔ ¬ 𝜓)) |
9 | 2, 4, 6, 8 | ralxpf 5755 | . . . 4 ⊢ (∀𝑥 ∈ (𝐴 × 𝐵) ¬ 𝜑 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ¬ 𝜓) |
10 | ralnex 3167 | . . . . 5 ⊢ (∀𝑧 ∈ 𝐵 ¬ 𝜓 ↔ ¬ ∃𝑧 ∈ 𝐵 𝜓) | |
11 | 10 | ralbii 3092 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ¬ 𝜓 ↔ ∀𝑦 ∈ 𝐴 ¬ ∃𝑧 ∈ 𝐵 𝜓) |
12 | 9, 11 | bitri 274 | . . 3 ⊢ (∀𝑥 ∈ (𝐴 × 𝐵) ¬ 𝜑 ↔ ∀𝑦 ∈ 𝐴 ¬ ∃𝑧 ∈ 𝐵 𝜓) |
13 | 12 | notbii 320 | . 2 ⊢ (¬ ∀𝑥 ∈ (𝐴 × 𝐵) ¬ 𝜑 ↔ ¬ ∀𝑦 ∈ 𝐴 ¬ ∃𝑧 ∈ 𝐵 𝜓) |
14 | dfrex2 3170 | . 2 ⊢ (∃𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ¬ ∀𝑥 ∈ (𝐴 × 𝐵) ¬ 𝜑) | |
15 | dfrex2 3170 | . 2 ⊢ (∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝜓 ↔ ¬ ∀𝑦 ∈ 𝐴 ¬ ∃𝑧 ∈ 𝐵 𝜓) | |
16 | 13, 14, 15 | 3bitr4i 303 | 1 ⊢ (∃𝑥 ∈ (𝐴 × 𝐵)𝜑 ↔ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1539 Ⅎwnf 1786 ∀wral 3064 ∃wrex 3065 〈cop 4567 × cxp 5587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-iun 4926 df-opab 5137 df-xp 5595 df-rel 5596 |
This theorem is referenced by: iunxpf 5757 wdom2d2 40857 |
Copyright terms: Public domain | W3C validator |