![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfmpo | Structured version Visualization version GIF version |
Description: Alternate definition for the maps-to notation df-mpo 7414 (although it requires that 𝐶 be a set). (Contributed by NM, 19-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
dfmpo.1 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
dfmpo | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 {⟨⟨𝑥, 𝑦⟩, 𝐶⟩} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpompts 8051 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑤 ∈ (𝐴 × 𝐵) ↦ ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶) | |
2 | dfmpo.1 | . . . . 5 ⊢ 𝐶 ∈ V | |
3 | 2 | csbex 5312 | . . . 4 ⊢ ⦋(2nd ‘𝑤) / 𝑦⦌𝐶 ∈ V |
4 | 3 | csbex 5312 | . . 3 ⊢ ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶 ∈ V |
5 | 4 | dfmpt 7142 | . 2 ⊢ (𝑤 ∈ (𝐴 × 𝐵) ↦ ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶) = ∪ 𝑤 ∈ (𝐴 × 𝐵){⟨𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶⟩} |
6 | nfcv 2904 | . . . . 5 ⊢ Ⅎ𝑥𝑤 | |
7 | nfcsb1v 3919 | . . . . 5 ⊢ Ⅎ𝑥⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶 | |
8 | 6, 7 | nfop 4890 | . . . 4 ⊢ Ⅎ𝑥⟨𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶⟩ |
9 | 8 | nfsn 4712 | . . 3 ⊢ Ⅎ𝑥{⟨𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶⟩} |
10 | nfcv 2904 | . . . . 5 ⊢ Ⅎ𝑦𝑤 | |
11 | nfcv 2904 | . . . . . 6 ⊢ Ⅎ𝑦(1st ‘𝑤) | |
12 | nfcsb1v 3919 | . . . . . 6 ⊢ Ⅎ𝑦⦋(2nd ‘𝑤) / 𝑦⦌𝐶 | |
13 | 11, 12 | nfcsbw 3921 | . . . . 5 ⊢ Ⅎ𝑦⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶 |
14 | 10, 13 | nfop 4890 | . . . 4 ⊢ Ⅎ𝑦⟨𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶⟩ |
15 | 14 | nfsn 4712 | . . 3 ⊢ Ⅎ𝑦{⟨𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶⟩} |
16 | nfcv 2904 | . . 3 ⊢ Ⅎ𝑤{⟨⟨𝑥, 𝑦⟩, 𝐶⟩} | |
17 | id 22 | . . . . 5 ⊢ (𝑤 = ⟨𝑥, 𝑦⟩ → 𝑤 = ⟨𝑥, 𝑦⟩) | |
18 | csbopeq1a 8036 | . . . . 5 ⊢ (𝑤 = ⟨𝑥, 𝑦⟩ → ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶 = 𝐶) | |
19 | 17, 18 | opeq12d 4882 | . . . 4 ⊢ (𝑤 = ⟨𝑥, 𝑦⟩ → ⟨𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶⟩ = ⟨⟨𝑥, 𝑦⟩, 𝐶⟩) |
20 | 19 | sneqd 4641 | . . 3 ⊢ (𝑤 = ⟨𝑥, 𝑦⟩ → {⟨𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶⟩} = {⟨⟨𝑥, 𝑦⟩, 𝐶⟩}) |
21 | 9, 15, 16, 20 | iunxpf 5849 | . 2 ⊢ ∪ 𝑤 ∈ (𝐴 × 𝐵){⟨𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶⟩} = ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 {⟨⟨𝑥, 𝑦⟩, 𝐶⟩} |
22 | 1, 5, 21 | 3eqtri 2765 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 {⟨⟨𝑥, 𝑦⟩, 𝐶⟩} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2107 Vcvv 3475 ⦋csb 3894 {csn 4629 ⟨cop 4635 ∪ ciun 4998 ↦ cmpt 5232 × cxp 5675 ‘cfv 6544 ∈ cmpo 7411 1st c1st 7973 2nd c2nd 7974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 |
This theorem is referenced by: fpar 8102 |
Copyright terms: Public domain | W3C validator |