![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfmpo | Structured version Visualization version GIF version |
Description: Alternate definition for the maps-to notation df-mpo 7424 (although it requires that 𝐶 be a set). (Contributed by NM, 19-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
dfmpo.1 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
dfmpo | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 {〈〈𝑥, 𝑦〉, 𝐶〉} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpompts 8070 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑤 ∈ (𝐴 × 𝐵) ↦ ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶) | |
2 | dfmpo.1 | . . . . 5 ⊢ 𝐶 ∈ V | |
3 | 2 | csbex 5312 | . . . 4 ⊢ ⦋(2nd ‘𝑤) / 𝑦⦌𝐶 ∈ V |
4 | 3 | csbex 5312 | . . 3 ⊢ ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶 ∈ V |
5 | 4 | dfmpt 7153 | . 2 ⊢ (𝑤 ∈ (𝐴 × 𝐵) ↦ ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶) = ∪ 𝑤 ∈ (𝐴 × 𝐵){〈𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶〉} |
6 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑥𝑤 | |
7 | nfcsb1v 3914 | . . . . 5 ⊢ Ⅎ𝑥⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶 | |
8 | 6, 7 | nfop 4891 | . . . 4 ⊢ Ⅎ𝑥〈𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶〉 |
9 | 8 | nfsn 4713 | . . 3 ⊢ Ⅎ𝑥{〈𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶〉} |
10 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑦𝑤 | |
11 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑦(1st ‘𝑤) | |
12 | nfcsb1v 3914 | . . . . . 6 ⊢ Ⅎ𝑦⦋(2nd ‘𝑤) / 𝑦⦌𝐶 | |
13 | 11, 12 | nfcsbw 3916 | . . . . 5 ⊢ Ⅎ𝑦⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶 |
14 | 10, 13 | nfop 4891 | . . . 4 ⊢ Ⅎ𝑦〈𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶〉 |
15 | 14 | nfsn 4713 | . . 3 ⊢ Ⅎ𝑦{〈𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶〉} |
16 | nfcv 2891 | . . 3 ⊢ Ⅎ𝑤{〈〈𝑥, 𝑦〉, 𝐶〉} | |
17 | id 22 | . . . . 5 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → 𝑤 = 〈𝑥, 𝑦〉) | |
18 | csbopeq1a 8055 | . . . . 5 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶 = 𝐶) | |
19 | 17, 18 | opeq12d 4883 | . . . 4 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → 〈𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶〉 = 〈〈𝑥, 𝑦〉, 𝐶〉) |
20 | 19 | sneqd 4642 | . . 3 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → {〈𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶〉} = {〈〈𝑥, 𝑦〉, 𝐶〉}) |
21 | 9, 15, 16, 20 | iunxpf 5851 | . 2 ⊢ ∪ 𝑤 ∈ (𝐴 × 𝐵){〈𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶〉} = ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 {〈〈𝑥, 𝑦〉, 𝐶〉} |
22 | 1, 5, 21 | 3eqtri 2757 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 {〈〈𝑥, 𝑦〉, 𝐶〉} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 Vcvv 3461 ⦋csb 3889 {csn 4630 〈cop 4636 ∪ ciun 4997 ↦ cmpt 5232 × cxp 5676 ‘cfv 6549 ∈ cmpo 7421 1st c1st 7992 2nd c2nd 7993 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-oprab 7423 df-mpo 7424 df-1st 7994 df-2nd 7995 |
This theorem is referenced by: fpar 8121 |
Copyright terms: Public domain | W3C validator |