![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfmpo | Structured version Visualization version GIF version |
Description: Alternate definition for the maps-to notation df-mpo 7436 (although it requires that 𝐶 be a set). (Contributed by NM, 19-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
dfmpo.1 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
dfmpo | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 {〈〈𝑥, 𝑦〉, 𝐶〉} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpompts 8089 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑤 ∈ (𝐴 × 𝐵) ↦ ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶) | |
2 | dfmpo.1 | . . . . 5 ⊢ 𝐶 ∈ V | |
3 | 2 | csbex 5317 | . . . 4 ⊢ ⦋(2nd ‘𝑤) / 𝑦⦌𝐶 ∈ V |
4 | 3 | csbex 5317 | . . 3 ⊢ ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶 ∈ V |
5 | 4 | dfmpt 7164 | . 2 ⊢ (𝑤 ∈ (𝐴 × 𝐵) ↦ ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶) = ∪ 𝑤 ∈ (𝐴 × 𝐵){〈𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶〉} |
6 | nfcv 2903 | . . . . 5 ⊢ Ⅎ𝑥𝑤 | |
7 | nfcsb1v 3933 | . . . . 5 ⊢ Ⅎ𝑥⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶 | |
8 | 6, 7 | nfop 4894 | . . . 4 ⊢ Ⅎ𝑥〈𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶〉 |
9 | 8 | nfsn 4712 | . . 3 ⊢ Ⅎ𝑥{〈𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶〉} |
10 | nfcv 2903 | . . . . 5 ⊢ Ⅎ𝑦𝑤 | |
11 | nfcv 2903 | . . . . . 6 ⊢ Ⅎ𝑦(1st ‘𝑤) | |
12 | nfcsb1v 3933 | . . . . . 6 ⊢ Ⅎ𝑦⦋(2nd ‘𝑤) / 𝑦⦌𝐶 | |
13 | 11, 12 | nfcsbw 3935 | . . . . 5 ⊢ Ⅎ𝑦⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶 |
14 | 10, 13 | nfop 4894 | . . . 4 ⊢ Ⅎ𝑦〈𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶〉 |
15 | 14 | nfsn 4712 | . . 3 ⊢ Ⅎ𝑦{〈𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶〉} |
16 | nfcv 2903 | . . 3 ⊢ Ⅎ𝑤{〈〈𝑥, 𝑦〉, 𝐶〉} | |
17 | id 22 | . . . . 5 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → 𝑤 = 〈𝑥, 𝑦〉) | |
18 | csbopeq1a 8074 | . . . . 5 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶 = 𝐶) | |
19 | 17, 18 | opeq12d 4886 | . . . 4 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → 〈𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶〉 = 〈〈𝑥, 𝑦〉, 𝐶〉) |
20 | 19 | sneqd 4643 | . . 3 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → {〈𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶〉} = {〈〈𝑥, 𝑦〉, 𝐶〉}) |
21 | 9, 15, 16, 20 | iunxpf 5862 | . 2 ⊢ ∪ 𝑤 ∈ (𝐴 × 𝐵){〈𝑤, ⦋(1st ‘𝑤) / 𝑥⦌⦋(2nd ‘𝑤) / 𝑦⦌𝐶〉} = ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 {〈〈𝑥, 𝑦〉, 𝐶〉} |
22 | 1, 5, 21 | 3eqtri 2767 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 {〈〈𝑥, 𝑦〉, 𝐶〉} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 Vcvv 3478 ⦋csb 3908 {csn 4631 〈cop 4637 ∪ ciun 4996 ↦ cmpt 5231 × cxp 5687 ‘cfv 6563 ∈ cmpo 7433 1st c1st 8011 2nd c2nd 8012 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 |
This theorem is referenced by: fpar 8140 |
Copyright terms: Public domain | W3C validator |