MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfmpo Structured version   Visualization version   GIF version

Theorem dfmpo 8143
Description: Alternate definition for the maps-to notation df-mpo 7453 (although it requires that 𝐶 be a set). (Contributed by NM, 19-Dec-2008.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
dfmpo.1 𝐶 ∈ V
Assertion
Ref Expression
dfmpo (𝑥𝐴, 𝑦𝐵𝐶) = 𝑥𝐴 𝑦𝐵 {⟨⟨𝑥, 𝑦⟩, 𝐶⟩}
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)

Proof of Theorem dfmpo
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 mpompts 8106 . 2 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑤 ∈ (𝐴 × 𝐵) ↦ (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶)
2 dfmpo.1 . . . . 5 𝐶 ∈ V
32csbex 5329 . . . 4 (2nd𝑤) / 𝑦𝐶 ∈ V
43csbex 5329 . . 3 (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶 ∈ V
54dfmpt 7178 . 2 (𝑤 ∈ (𝐴 × 𝐵) ↦ (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶) = 𝑤 ∈ (𝐴 × 𝐵){⟨𝑤, (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶⟩}
6 nfcv 2908 . . . . 5 𝑥𝑤
7 nfcsb1v 3946 . . . . 5 𝑥(1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶
86, 7nfop 4913 . . . 4 𝑥𝑤, (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶
98nfsn 4732 . . 3 𝑥{⟨𝑤, (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶⟩}
10 nfcv 2908 . . . . 5 𝑦𝑤
11 nfcv 2908 . . . . . 6 𝑦(1st𝑤)
12 nfcsb1v 3946 . . . . . 6 𝑦(2nd𝑤) / 𝑦𝐶
1311, 12nfcsbw 3948 . . . . 5 𝑦(1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶
1410, 13nfop 4913 . . . 4 𝑦𝑤, (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶
1514nfsn 4732 . . 3 𝑦{⟨𝑤, (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶⟩}
16 nfcv 2908 . . 3 𝑤{⟨⟨𝑥, 𝑦⟩, 𝐶⟩}
17 id 22 . . . . 5 (𝑤 = ⟨𝑥, 𝑦⟩ → 𝑤 = ⟨𝑥, 𝑦⟩)
18 csbopeq1a 8091 . . . . 5 (𝑤 = ⟨𝑥, 𝑦⟩ → (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶 = 𝐶)
1917, 18opeq12d 4905 . . . 4 (𝑤 = ⟨𝑥, 𝑦⟩ → ⟨𝑤, (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶⟩ = ⟨⟨𝑥, 𝑦⟩, 𝐶⟩)
2019sneqd 4660 . . 3 (𝑤 = ⟨𝑥, 𝑦⟩ → {⟨𝑤, (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶⟩} = {⟨⟨𝑥, 𝑦⟩, 𝐶⟩})
219, 15, 16, 20iunxpf 5873 . 2 𝑤 ∈ (𝐴 × 𝐵){⟨𝑤, (1st𝑤) / 𝑥(2nd𝑤) / 𝑦𝐶⟩} = 𝑥𝐴 𝑦𝐵 {⟨⟨𝑥, 𝑦⟩, 𝐶⟩}
221, 5, 213eqtri 2772 1 (𝑥𝐴, 𝑦𝐵𝐶) = 𝑥𝐴 𝑦𝐵 {⟨⟨𝑥, 𝑦⟩, 𝐶⟩}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  Vcvv 3488  csb 3921  {csn 4648  cop 4654   ciun 5015  cmpt 5249   × cxp 5698  cfv 6573  cmpo 7450  1st c1st 8028  2nd c2nd 8029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031
This theorem is referenced by:  fpar  8157
  Copyright terms: Public domain W3C validator