| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ixpeq2dva | Structured version Visualization version GIF version | ||
| Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.) |
| Ref | Expression |
|---|---|
| ixpeq2dva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| ixpeq2dva | ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixpeq2dva.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) | |
| 2 | 1 | ralrimiva 3132 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) |
| 3 | ixpeq2 8925 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 Xcixp 8911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-ss 3943 df-ixp 8912 |
| This theorem is referenced by: ixpeq2dv 8927 dfac9 10151 xpsrnbas 17585 funcpropd 17915 natpropd 17992 prdsmgp 20111 frlmip 21738 elptr2 23512 dfac14 23556 xkoptsub 23592 prdsxmslem2 24468 rrxip 25342 ptrest 37643 prdsbnd2 37819 hoidmvlelem3 46626 ovnhoilem1 46630 ovnhoilem2 46631 hoicoto2 46634 ovnlecvr2 46639 ovncvr2 46640 ovnovollem1 46685 ovnovollem2 46686 hoimbl2 46694 vonhoire 46701 iccvonmbllem 46707 vonioolem2 46710 vonicclem2 46713 vonn0ioo2 46719 vonn0icc2 46721 |
| Copyright terms: Public domain | W3C validator |