| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ixpeq2dva | Structured version Visualization version GIF version | ||
| Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.) |
| Ref | Expression |
|---|---|
| ixpeq2dva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| ixpeq2dva | ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixpeq2dva.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) | |
| 2 | 1 | ralrimiva 3124 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) |
| 3 | ixpeq2 8835 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Xcixp 8821 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-ss 3914 df-ixp 8822 |
| This theorem is referenced by: ixpeq2dv 8837 dfac9 10028 xpsrnbas 17475 funcpropd 17809 natpropd 17886 prdsmgp 20069 frlmip 21715 elptr2 23489 dfac14 23533 xkoptsub 23569 prdsxmslem2 24444 rrxip 25317 ptrest 37667 prdsbnd2 37843 hoidmvlelem3 46643 ovnhoilem1 46647 ovnhoilem2 46648 hoicoto2 46651 ovnlecvr2 46656 ovncvr2 46657 ovnovollem1 46702 ovnovollem2 46703 hoimbl2 46711 vonhoire 46718 iccvonmbllem 46724 vonioolem2 46727 vonicclem2 46730 vonn0ioo2 46736 vonn0icc2 46738 |
| Copyright terms: Public domain | W3C validator |