![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ixpeq2dva | Structured version Visualization version GIF version |
Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.) |
Ref | Expression |
---|---|
ixpeq2dva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
ixpeq2dva | ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixpeq2dva.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) | |
2 | 1 | ralrimiva 3144 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) |
3 | ixpeq2 8950 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 Xcixp 8936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-ss 3980 df-ixp 8937 |
This theorem is referenced by: ixpeq2dv 8952 dfac9 10175 xpsrnbas 17618 funcpropd 17954 natpropd 18033 prdsmgp 20169 frlmip 21816 elptr2 23598 dfac14 23642 xkoptsub 23678 prdsxmslem2 24558 rrxip 25438 ptrest 37606 prdsbnd2 37782 hoidmvlelem3 46553 ovnhoilem1 46557 ovnhoilem2 46558 hoicoto2 46561 ovnlecvr2 46566 ovncvr2 46567 ovnovollem1 46612 ovnovollem2 46613 hoimbl2 46621 vonhoire 46628 iccvonmbllem 46634 vonioolem2 46637 vonicclem2 46640 vonn0ioo2 46646 vonn0icc2 46648 |
Copyright terms: Public domain | W3C validator |