MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpeq2dva Structured version   Visualization version   GIF version

Theorem ixpeq2dva 8885
Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.)
Hypothesis
Ref Expression
ixpeq2dva.1 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
ixpeq2dva (𝜑X𝑥𝐴 𝐵 = X𝑥𝐴 𝐶)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem ixpeq2dva
StepHypRef Expression
1 ixpeq2dva.1 . . 3 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
21ralrimiva 3125 . 2 (𝜑 → ∀𝑥𝐴 𝐵 = 𝐶)
3 ixpeq2 8884 . 2 (∀𝑥𝐴 𝐵 = 𝐶X𝑥𝐴 𝐵 = X𝑥𝐴 𝐶)
42, 3syl 17 1 (𝜑X𝑥𝐴 𝐵 = X𝑥𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Xcixp 8870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-ss 3931  df-ixp 8871
This theorem is referenced by:  ixpeq2dv  8886  dfac9  10090  xpsrnbas  17534  funcpropd  17864  natpropd  17941  prdsmgp  20060  frlmip  21687  elptr2  23461  dfac14  23505  xkoptsub  23541  prdsxmslem2  24417  rrxip  25290  ptrest  37613  prdsbnd2  37789  hoidmvlelem3  46595  ovnhoilem1  46599  ovnhoilem2  46600  hoicoto2  46603  ovnlecvr2  46608  ovncvr2  46609  ovnovollem1  46654  ovnovollem2  46655  hoimbl2  46663  vonhoire  46670  iccvonmbllem  46676  vonioolem2  46679  vonicclem2  46682  vonn0ioo2  46688  vonn0icc2  46690
  Copyright terms: Public domain W3C validator