MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpeq2dva Structured version   Visualization version   GIF version

Theorem ixpeq2dva 8862
Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.)
Hypothesis
Ref Expression
ixpeq2dva.1 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
ixpeq2dva (𝜑X𝑥𝐴 𝐵 = X𝑥𝐴 𝐶)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem ixpeq2dva
StepHypRef Expression
1 ixpeq2dva.1 . . 3 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
21ralrimiva 3125 . 2 (𝜑 → ∀𝑥𝐴 𝐵 = 𝐶)
3 ixpeq2 8861 . 2 (∀𝑥𝐴 𝐵 = 𝐶X𝑥𝐴 𝐵 = X𝑥𝐴 𝐶)
42, 3syl 17 1 (𝜑X𝑥𝐴 𝐵 = X𝑥𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Xcixp 8847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-ss 3928  df-ixp 8848
This theorem is referenced by:  ixpeq2dv  8863  dfac9  10066  xpsrnbas  17510  funcpropd  17840  natpropd  17917  prdsmgp  20036  frlmip  21663  elptr2  23437  dfac14  23481  xkoptsub  23517  prdsxmslem2  24393  rrxip  25266  ptrest  37586  prdsbnd2  37762  hoidmvlelem3  46568  ovnhoilem1  46572  ovnhoilem2  46573  hoicoto2  46576  ovnlecvr2  46581  ovncvr2  46582  ovnovollem1  46627  ovnovollem2  46628  hoimbl2  46636  vonhoire  46643  iccvonmbllem  46649  vonioolem2  46652  vonicclem2  46655  vonn0ioo2  46661  vonn0icc2  46663
  Copyright terms: Public domain W3C validator