| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ixpeq2dva | Structured version Visualization version GIF version | ||
| Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.) |
| Ref | Expression |
|---|---|
| ixpeq2dva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| ixpeq2dva | ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixpeq2dva.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) | |
| 2 | 1 | ralrimiva 3121 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) |
| 3 | ixpeq2 8838 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Xcixp 8824 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-ss 3920 df-ixp 8825 |
| This theorem is referenced by: ixpeq2dv 8840 dfac9 10031 xpsrnbas 17475 funcpropd 17809 natpropd 17886 prdsmgp 20036 frlmip 21685 elptr2 23459 dfac14 23503 xkoptsub 23539 prdsxmslem2 24415 rrxip 25288 ptrest 37599 prdsbnd2 37775 hoidmvlelem3 46578 ovnhoilem1 46582 ovnhoilem2 46583 hoicoto2 46586 ovnlecvr2 46591 ovncvr2 46592 ovnovollem1 46637 ovnovollem2 46638 hoimbl2 46646 vonhoire 46653 iccvonmbllem 46659 vonioolem2 46662 vonicclem2 46665 vonn0ioo2 46671 vonn0icc2 46673 |
| Copyright terms: Public domain | W3C validator |