MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpeq2dva Structured version   Visualization version   GIF version

Theorem ixpeq2dva 8836
Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.)
Hypothesis
Ref Expression
ixpeq2dva.1 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
ixpeq2dva (𝜑X𝑥𝐴 𝐵 = X𝑥𝐴 𝐶)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem ixpeq2dva
StepHypRef Expression
1 ixpeq2dva.1 . . 3 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
21ralrimiva 3124 . 2 (𝜑 → ∀𝑥𝐴 𝐵 = 𝐶)
3 ixpeq2 8835 . 2 (∀𝑥𝐴 𝐵 = 𝐶X𝑥𝐴 𝐵 = X𝑥𝐴 𝐶)
42, 3syl 17 1 (𝜑X𝑥𝐴 𝐵 = X𝑥𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  Xcixp 8821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-ss 3914  df-ixp 8822
This theorem is referenced by:  ixpeq2dv  8837  dfac9  10028  xpsrnbas  17475  funcpropd  17809  natpropd  17886  prdsmgp  20069  frlmip  21715  elptr2  23489  dfac14  23533  xkoptsub  23569  prdsxmslem2  24444  rrxip  25317  ptrest  37667  prdsbnd2  37843  hoidmvlelem3  46643  ovnhoilem1  46647  ovnhoilem2  46648  hoicoto2  46651  ovnlecvr2  46656  ovncvr2  46657  ovnovollem1  46702  ovnovollem2  46703  hoimbl2  46711  vonhoire  46718  iccvonmbllem  46724  vonioolem2  46727  vonicclem2  46730  vonn0ioo2  46736  vonn0icc2  46738
  Copyright terms: Public domain W3C validator