| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ixpeq2dva | Structured version Visualization version GIF version | ||
| Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.) |
| Ref | Expression |
|---|---|
| ixpeq2dva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| ixpeq2dva | ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixpeq2dva.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) | |
| 2 | 1 | ralrimiva 3126 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) |
| 3 | ixpeq2 8887 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 Xcixp 8873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-ss 3934 df-ixp 8874 |
| This theorem is referenced by: ixpeq2dv 8889 dfac9 10097 xpsrnbas 17541 funcpropd 17871 natpropd 17948 prdsmgp 20067 frlmip 21694 elptr2 23468 dfac14 23512 xkoptsub 23548 prdsxmslem2 24424 rrxip 25297 ptrest 37620 prdsbnd2 37796 hoidmvlelem3 46602 ovnhoilem1 46606 ovnhoilem2 46607 hoicoto2 46610 ovnlecvr2 46615 ovncvr2 46616 ovnovollem1 46661 ovnovollem2 46662 hoimbl2 46670 vonhoire 46677 iccvonmbllem 46683 vonioolem2 46686 vonicclem2 46689 vonn0ioo2 46695 vonn0icc2 46697 |
| Copyright terms: Public domain | W3C validator |