Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ixpeq2dva | Structured version Visualization version GIF version |
Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.) |
Ref | Expression |
---|---|
ixpeq2dva.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
ixpeq2dva | ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixpeq2dva.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) | |
2 | 1 | ralrimiva 3107 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 = 𝐶) |
3 | ixpeq2 8657 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = 𝐶 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Xcixp 8643 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-v 3424 df-in 3890 df-ss 3900 df-ixp 8644 |
This theorem is referenced by: ixpeq2dv 8659 dfac9 9823 xpsrnbas 17199 funcpropd 17532 natpropd 17610 prdsmgp 19764 frlmip 20895 elptr2 22633 dfac14 22677 xkoptsub 22713 prdsxmslem2 23591 rrxip 24459 ptrest 35703 prdsbnd2 35880 hoidmvlelem3 44025 ovnhoilem1 44029 ovnhoilem2 44030 hoicoto2 44033 ovnlecvr2 44038 ovncvr2 44039 ovnovollem1 44084 ovnovollem2 44085 hoimbl2 44093 vonhoire 44100 iccvonmbllem 44106 vonioolem2 44109 vonicclem2 44112 vonn0ioo2 44118 vonn0icc2 44120 |
Copyright terms: Public domain | W3C validator |