MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpeq2dva Structured version   Visualization version   GIF version

Theorem ixpeq2dva 8926
Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.)
Hypothesis
Ref Expression
ixpeq2dva.1 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
ixpeq2dva (𝜑X𝑥𝐴 𝐵 = X𝑥𝐴 𝐶)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem ixpeq2dva
StepHypRef Expression
1 ixpeq2dva.1 . . 3 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
21ralrimiva 3132 . 2 (𝜑 → ∀𝑥𝐴 𝐵 = 𝐶)
3 ixpeq2 8925 . 2 (∀𝑥𝐴 𝐵 = 𝐶X𝑥𝐴 𝐵 = X𝑥𝐴 𝐶)
42, 3syl 17 1 (𝜑X𝑥𝐴 𝐵 = X𝑥𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  Xcixp 8911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-ss 3943  df-ixp 8912
This theorem is referenced by:  ixpeq2dv  8927  dfac9  10151  xpsrnbas  17585  funcpropd  17915  natpropd  17992  prdsmgp  20111  frlmip  21738  elptr2  23512  dfac14  23556  xkoptsub  23592  prdsxmslem2  24468  rrxip  25342  ptrest  37643  prdsbnd2  37819  hoidmvlelem3  46626  ovnhoilem1  46630  ovnhoilem2  46631  hoicoto2  46634  ovnlecvr2  46639  ovncvr2  46640  ovnovollem1  46685  ovnovollem2  46686  hoimbl2  46694  vonhoire  46701  iccvonmbllem  46707  vonioolem2  46710  vonicclem2  46713  vonn0ioo2  46719  vonn0icc2  46721
  Copyright terms: Public domain W3C validator