MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpeq2dva Structured version   Visualization version   GIF version

Theorem ixpeq2dva 8771
Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.)
Hypothesis
Ref Expression
ixpeq2dva.1 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
ixpeq2dva (𝜑X𝑥𝐴 𝐵 = X𝑥𝐴 𝐶)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem ixpeq2dva
StepHypRef Expression
1 ixpeq2dva.1 . . 3 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
21ralrimiva 3139 . 2 (𝜑 → ∀𝑥𝐴 𝐵 = 𝐶)
3 ixpeq2 8770 . 2 (∀𝑥𝐴 𝐵 = 𝐶X𝑥𝐴 𝐵 = X𝑥𝐴 𝐶)
42, 3syl 17 1 (𝜑X𝑥𝐴 𝐵 = X𝑥𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  wral 3061  Xcixp 8756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-v 3443  df-in 3905  df-ss 3915  df-ixp 8757
This theorem is referenced by:  ixpeq2dv  8772  dfac9  9993  xpsrnbas  17379  funcpropd  17713  natpropd  17791  prdsmgp  19944  frlmip  21091  elptr2  22831  dfac14  22875  xkoptsub  22911  prdsxmslem2  23791  rrxip  24660  ptrest  35889  prdsbnd2  36066  hoidmvlelem3  44480  ovnhoilem1  44484  ovnhoilem2  44485  hoicoto2  44488  ovnlecvr2  44493  ovncvr2  44494  ovnovollem1  44539  ovnovollem2  44540  hoimbl2  44548  vonhoire  44555  iccvonmbllem  44561  vonioolem2  44564  vonicclem2  44567  vonn0ioo2  44573  vonn0icc2  44575
  Copyright terms: Public domain W3C validator