![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwsbas | Structured version Visualization version GIF version |
Description: Base set of a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.) |
Ref | Expression |
---|---|
pwsbas.y | β’ π = (π βs πΌ) |
pwsbas.f | β’ π΅ = (Baseβπ ) |
Ref | Expression |
---|---|
pwsbas | β’ ((π β π β§ πΌ β π) β (π΅ βm πΌ) = (Baseβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwsbas.y | . . . 4 β’ π = (π βs πΌ) | |
2 | eqid 2732 | . . . 4 β’ (Scalarβπ ) = (Scalarβπ ) | |
3 | 1, 2 | pwsval 17428 | . . 3 β’ ((π β π β§ πΌ β π) β π = ((Scalarβπ )Xs(πΌ Γ {π }))) |
4 | 3 | fveq2d 6892 | . 2 β’ ((π β π β§ πΌ β π) β (Baseβπ) = (Baseβ((Scalarβπ )Xs(πΌ Γ {π })))) |
5 | eqid 2732 | . . . 4 β’ ((Scalarβπ )Xs(πΌ Γ {π })) = ((Scalarβπ )Xs(πΌ Γ {π })) | |
6 | fvexd 6903 | . . . 4 β’ ((π β π β§ πΌ β π) β (Scalarβπ ) β V) | |
7 | simpr 485 | . . . . 5 β’ ((π β π β§ πΌ β π) β πΌ β π) | |
8 | snex 5430 | . . . . 5 β’ {π } β V | |
9 | xpexg 7733 | . . . . 5 β’ ((πΌ β π β§ {π } β V) β (πΌ Γ {π }) β V) | |
10 | 7, 8, 9 | sylancl 586 | . . . 4 β’ ((π β π β§ πΌ β π) β (πΌ Γ {π }) β V) |
11 | eqid 2732 | . . . 4 β’ (Baseβ((Scalarβπ )Xs(πΌ Γ {π }))) = (Baseβ((Scalarβπ )Xs(πΌ Γ {π }))) | |
12 | snnzg 4777 | . . . . . 6 β’ (π β π β {π } β β ) | |
13 | 12 | adantr 481 | . . . . 5 β’ ((π β π β§ πΌ β π) β {π } β β ) |
14 | dmxp 5926 | . . . . 5 β’ ({π } β β β dom (πΌ Γ {π }) = πΌ) | |
15 | 13, 14 | syl 17 | . . . 4 β’ ((π β π β§ πΌ β π) β dom (πΌ Γ {π }) = πΌ) |
16 | 5, 6, 10, 11, 15 | prdsbas 17399 | . . 3 β’ ((π β π β§ πΌ β π) β (Baseβ((Scalarβπ )Xs(πΌ Γ {π }))) = Xπ₯ β πΌ (Baseβ((πΌ Γ {π })βπ₯))) |
17 | fvconst2g 7199 | . . . . . . 7 β’ ((π β π β§ π₯ β πΌ) β ((πΌ Γ {π })βπ₯) = π ) | |
18 | 17 | fveq2d 6892 | . . . . . 6 β’ ((π β π β§ π₯ β πΌ) β (Baseβ((πΌ Γ {π })βπ₯)) = (Baseβπ )) |
19 | 18 | ralrimiva 3146 | . . . . 5 β’ (π β π β βπ₯ β πΌ (Baseβ((πΌ Γ {π })βπ₯)) = (Baseβπ )) |
20 | 19 | adantr 481 | . . . 4 β’ ((π β π β§ πΌ β π) β βπ₯ β πΌ (Baseβ((πΌ Γ {π })βπ₯)) = (Baseβπ )) |
21 | ixpeq2 8901 | . . . 4 β’ (βπ₯ β πΌ (Baseβ((πΌ Γ {π })βπ₯)) = (Baseβπ ) β Xπ₯ β πΌ (Baseβ((πΌ Γ {π })βπ₯)) = Xπ₯ β πΌ (Baseβπ )) | |
22 | 20, 21 | syl 17 | . . 3 β’ ((π β π β§ πΌ β π) β Xπ₯ β πΌ (Baseβ((πΌ Γ {π })βπ₯)) = Xπ₯ β πΌ (Baseβπ )) |
23 | 16, 22 | eqtrd 2772 | . 2 β’ ((π β π β§ πΌ β π) β (Baseβ((Scalarβπ )Xs(πΌ Γ {π }))) = Xπ₯ β πΌ (Baseβπ )) |
24 | fvex 6901 | . . . 4 β’ (Baseβπ ) β V | |
25 | ixpconstg 8896 | . . . 4 β’ ((πΌ β π β§ (Baseβπ ) β V) β Xπ₯ β πΌ (Baseβπ ) = ((Baseβπ ) βm πΌ)) | |
26 | 7, 24, 25 | sylancl 586 | . . 3 β’ ((π β π β§ πΌ β π) β Xπ₯ β πΌ (Baseβπ ) = ((Baseβπ ) βm πΌ)) |
27 | pwsbas.f | . . . 4 β’ π΅ = (Baseβπ ) | |
28 | 27 | oveq1i 7415 | . . 3 β’ (π΅ βm πΌ) = ((Baseβπ ) βm πΌ) |
29 | 26, 28 | eqtr4di 2790 | . 2 β’ ((π β π β§ πΌ β π) β Xπ₯ β πΌ (Baseβπ ) = (π΅ βm πΌ)) |
30 | 4, 23, 29 | 3eqtrrd 2777 | 1 β’ ((π β π β§ πΌ β π) β (π΅ βm πΌ) = (Baseβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 β wne 2940 βwral 3061 Vcvv 3474 β c0 4321 {csn 4627 Γ cxp 5673 dom cdm 5675 βcfv 6540 (class class class)co 7405 βm cmap 8816 Xcixp 8887 Basecbs 17140 Scalarcsca 17196 Xscprds 17387 βs cpws 17388 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-struct 17076 df-slot 17111 df-ndx 17123 df-base 17141 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-hom 17217 df-cco 17218 df-prds 17389 df-pws 17391 |
This theorem is referenced by: pwselbasb 17430 pwssnf1o 17440 pwsdiagmhm 18708 pwsco1rhm 20269 pwsco2rhm 20270 frlmbas 21301 frlmsubgval 21311 psrgrp 21508 evls1val 21830 evls1rhmlem 21831 evl1val 21839 repwsmet 36690 rrnequiv 36691 mhphf2 41167 pwslnmlem0 41818 |
Copyright terms: Public domain | W3C validator |