MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsbas Structured version   Visualization version   GIF version

Theorem pwsbas 16739
Description: Base set of a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.)
Hypotheses
Ref Expression
pwsbas.y 𝑌 = (𝑅s 𝐼)
pwsbas.f 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
pwsbas ((𝑅𝑉𝐼𝑊) → (𝐵m 𝐼) = (Base‘𝑌))

Proof of Theorem pwsbas
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pwsbas.y . . . 4 𝑌 = (𝑅s 𝐼)
2 eqid 2820 . . . 4 (Scalar‘𝑅) = (Scalar‘𝑅)
31, 2pwsval 16738 . . 3 ((𝑅𝑉𝐼𝑊) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
43fveq2d 6650 . 2 ((𝑅𝑉𝐼𝑊) → (Base‘𝑌) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
5 eqid 2820 . . . 4 ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))
6 fvexd 6661 . . . 4 ((𝑅𝑉𝐼𝑊) → (Scalar‘𝑅) ∈ V)
7 simpr 487 . . . . 5 ((𝑅𝑉𝐼𝑊) → 𝐼𝑊)
8 snex 5308 . . . . 5 {𝑅} ∈ V
9 xpexg 7451 . . . . 5 ((𝐼𝑊 ∧ {𝑅} ∈ V) → (𝐼 × {𝑅}) ∈ V)
107, 8, 9sylancl 588 . . . 4 ((𝑅𝑉𝐼𝑊) → (𝐼 × {𝑅}) ∈ V)
11 eqid 2820 . . . 4 (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
12 snnzg 4686 . . . . . 6 (𝑅𝑉 → {𝑅} ≠ ∅)
1312adantr 483 . . . . 5 ((𝑅𝑉𝐼𝑊) → {𝑅} ≠ ∅)
14 dmxp 5775 . . . . 5 ({𝑅} ≠ ∅ → dom (𝐼 × {𝑅}) = 𝐼)
1513, 14syl 17 . . . 4 ((𝑅𝑉𝐼𝑊) → dom (𝐼 × {𝑅}) = 𝐼)
165, 6, 10, 11, 15prdsbas 16709 . . 3 ((𝑅𝑉𝐼𝑊) → (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = X𝑥𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)))
17 fvconst2g 6940 . . . . . . 7 ((𝑅𝑉𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
1817fveq2d 6650 . . . . . 6 ((𝑅𝑉𝑥𝐼) → (Base‘((𝐼 × {𝑅})‘𝑥)) = (Base‘𝑅))
1918ralrimiva 3169 . . . . 5 (𝑅𝑉 → ∀𝑥𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = (Base‘𝑅))
2019adantr 483 . . . 4 ((𝑅𝑉𝐼𝑊) → ∀𝑥𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = (Base‘𝑅))
21 ixpeq2 8453 . . . 4 (∀𝑥𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = (Base‘𝑅) → X𝑥𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = X𝑥𝐼 (Base‘𝑅))
2220, 21syl 17 . . 3 ((𝑅𝑉𝐼𝑊) → X𝑥𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = X𝑥𝐼 (Base‘𝑅))
2316, 22eqtrd 2855 . 2 ((𝑅𝑉𝐼𝑊) → (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = X𝑥𝐼 (Base‘𝑅))
24 fvex 6659 . . . 4 (Base‘𝑅) ∈ V
25 ixpconstg 8448 . . . 4 ((𝐼𝑊 ∧ (Base‘𝑅) ∈ V) → X𝑥𝐼 (Base‘𝑅) = ((Base‘𝑅) ↑m 𝐼))
267, 24, 25sylancl 588 . . 3 ((𝑅𝑉𝐼𝑊) → X𝑥𝐼 (Base‘𝑅) = ((Base‘𝑅) ↑m 𝐼))
27 pwsbas.f . . . 4 𝐵 = (Base‘𝑅)
2827oveq1i 7143 . . 3 (𝐵m 𝐼) = ((Base‘𝑅) ↑m 𝐼)
2926, 28syl6eqr 2873 . 2 ((𝑅𝑉𝐼𝑊) → X𝑥𝐼 (Base‘𝑅) = (𝐵m 𝐼))
304, 23, 293eqtrrd 2860 1 ((𝑅𝑉𝐼𝑊) → (𝐵m 𝐼) = (Base‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3006  wral 3125  Vcvv 3473  c0 4269  {csn 4543   × cxp 5529  dom cdm 5531  cfv 6331  (class class class)co 7133  m cmap 8384  Xcixp 8439  Basecbs 16462  Scalarcsca 16547  Xscprds 16698  s cpws 16699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-int 4853  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-om 7559  df-1st 7667  df-2nd 7668  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-1o 8080  df-oadd 8084  df-er 8267  df-map 8386  df-ixp 8440  df-en 8488  df-dom 8489  df-sdom 8490  df-fin 8491  df-sup 8884  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-nn 11617  df-2 11679  df-3 11680  df-4 11681  df-5 11682  df-6 11683  df-7 11684  df-8 11685  df-9 11686  df-n0 11877  df-z 11961  df-dec 12078  df-uz 12223  df-fz 12877  df-struct 16464  df-ndx 16465  df-slot 16466  df-base 16468  df-plusg 16557  df-mulr 16558  df-sca 16560  df-vsca 16561  df-ip 16562  df-tset 16563  df-ple 16564  df-ds 16566  df-hom 16568  df-cco 16569  df-prds 16700  df-pws 16702
This theorem is referenced by:  pwselbasb  16740  pwssnf1o  16750  pwsdiagmhm  17974  pwsco1rhm  19469  pwsco2rhm  19470  evls1val  20459  evls1rhmlem  20460  evl1val  20468  frlmbas  20875  frlmsubgval  20885  repwsmet  35148  rrnequiv  35149  pwslnmlem0  39828
  Copyright terms: Public domain W3C validator