| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwsbas | Structured version Visualization version GIF version | ||
| Description: Base set of a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.) |
| Ref | Expression |
|---|---|
| pwsbas.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
| pwsbas.f | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| pwsbas | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝐵 ↑m 𝐼) = (Base‘𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsbas.y | . . . 4 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
| 2 | eqid 2731 | . . . 4 ⊢ (Scalar‘𝑅) = (Scalar‘𝑅) | |
| 3 | 1, 2 | pwsval 17387 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
| 4 | 3 | fveq2d 6826 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (Base‘𝑌) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 5 | eqid 2731 | . . . 4 ⊢ ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) | |
| 6 | fvexd 6837 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (Scalar‘𝑅) ∈ V) | |
| 7 | simpr 484 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐼 ∈ 𝑊) | |
| 8 | snex 5374 | . . . . 5 ⊢ {𝑅} ∈ V | |
| 9 | xpexg 7683 | . . . . 5 ⊢ ((𝐼 ∈ 𝑊 ∧ {𝑅} ∈ V) → (𝐼 × {𝑅}) ∈ V) | |
| 10 | 7, 8, 9 | sylancl 586 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝐼 × {𝑅}) ∈ V) |
| 11 | eqid 2731 | . . . 4 ⊢ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) | |
| 12 | snnzg 4727 | . . . . . 6 ⊢ (𝑅 ∈ 𝑉 → {𝑅} ≠ ∅) | |
| 13 | 12 | adantr 480 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → {𝑅} ≠ ∅) |
| 14 | dmxp 5869 | . . . . 5 ⊢ ({𝑅} ≠ ∅ → dom (𝐼 × {𝑅}) = 𝐼) | |
| 15 | 13, 14 | syl 17 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → dom (𝐼 × {𝑅}) = 𝐼) |
| 16 | 5, 6, 10, 11, 15 | prdsbas 17358 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = X𝑥 ∈ 𝐼 (Base‘((𝐼 × {𝑅})‘𝑥))) |
| 17 | fvconst2g 7136 | . . . . . . 7 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅) | |
| 18 | 17 | fveq2d 6826 | . . . . . 6 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼) → (Base‘((𝐼 × {𝑅})‘𝑥)) = (Base‘𝑅)) |
| 19 | 18 | ralrimiva 3124 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → ∀𝑥 ∈ 𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = (Base‘𝑅)) |
| 20 | 19 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → ∀𝑥 ∈ 𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = (Base‘𝑅)) |
| 21 | ixpeq2 8835 | . . . 4 ⊢ (∀𝑥 ∈ 𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = (Base‘𝑅) → X𝑥 ∈ 𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = X𝑥 ∈ 𝐼 (Base‘𝑅)) | |
| 22 | 20, 21 | syl 17 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → X𝑥 ∈ 𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = X𝑥 ∈ 𝐼 (Base‘𝑅)) |
| 23 | 16, 22 | eqtrd 2766 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = X𝑥 ∈ 𝐼 (Base‘𝑅)) |
| 24 | fvex 6835 | . . . 4 ⊢ (Base‘𝑅) ∈ V | |
| 25 | ixpconstg 8830 | . . . 4 ⊢ ((𝐼 ∈ 𝑊 ∧ (Base‘𝑅) ∈ V) → X𝑥 ∈ 𝐼 (Base‘𝑅) = ((Base‘𝑅) ↑m 𝐼)) | |
| 26 | 7, 24, 25 | sylancl 586 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → X𝑥 ∈ 𝐼 (Base‘𝑅) = ((Base‘𝑅) ↑m 𝐼)) |
| 27 | pwsbas.f | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 28 | 27 | oveq1i 7356 | . . 3 ⊢ (𝐵 ↑m 𝐼) = ((Base‘𝑅) ↑m 𝐼) |
| 29 | 26, 28 | eqtr4di 2784 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → X𝑥 ∈ 𝐼 (Base‘𝑅) = (𝐵 ↑m 𝐼)) |
| 30 | 4, 23, 29 | 3eqtrrd 2771 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝐵 ↑m 𝐼) = (Base‘𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 Vcvv 3436 ∅c0 4283 {csn 4576 × cxp 5614 dom cdm 5616 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 Xcixp 8821 Basecbs 17117 Scalarcsca 17161 Xscprds 17346 ↑s cpws 17347 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-fz 13405 df-struct 17055 df-slot 17090 df-ndx 17102 df-base 17118 df-plusg 17171 df-mulr 17172 df-sca 17174 df-vsca 17175 df-ip 17176 df-tset 17177 df-ple 17178 df-ds 17180 df-hom 17182 df-cco 17183 df-prds 17348 df-pws 17350 |
| This theorem is referenced by: pwselbasb 17389 pwssnf1o 17399 pwsdiagmhm 18736 pwsco1rhm 20415 pwsco2rhm 20416 frlmbas 21690 frlmsubgval 21700 psrgrp 21891 evls1val 22233 evls1rhmlem 22234 evl1val 22242 repwsmet 37873 rrnequiv 37874 aks6d1c2lem4 42159 aks6d1c6lem2 42203 psrmnd 42577 mhphf2 42630 pwslnmlem0 43123 |
| Copyright terms: Public domain | W3C validator |