MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsbas Structured version   Visualization version   GIF version

Theorem pwsbas 17393
Description: Base set of a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.)
Hypotheses
Ref Expression
pwsbas.y 𝑌 = (𝑅s 𝐼)
pwsbas.f 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
pwsbas ((𝑅𝑉𝐼𝑊) → (𝐵m 𝐼) = (Base‘𝑌))

Proof of Theorem pwsbas
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pwsbas.y . . . 4 𝑌 = (𝑅s 𝐼)
2 eqid 2733 . . . 4 (Scalar‘𝑅) = (Scalar‘𝑅)
31, 2pwsval 17392 . . 3 ((𝑅𝑉𝐼𝑊) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
43fveq2d 6832 . 2 ((𝑅𝑉𝐼𝑊) → (Base‘𝑌) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
5 eqid 2733 . . . 4 ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))
6 fvexd 6843 . . . 4 ((𝑅𝑉𝐼𝑊) → (Scalar‘𝑅) ∈ V)
7 simpr 484 . . . . 5 ((𝑅𝑉𝐼𝑊) → 𝐼𝑊)
8 snex 5376 . . . . 5 {𝑅} ∈ V
9 xpexg 7689 . . . . 5 ((𝐼𝑊 ∧ {𝑅} ∈ V) → (𝐼 × {𝑅}) ∈ V)
107, 8, 9sylancl 586 . . . 4 ((𝑅𝑉𝐼𝑊) → (𝐼 × {𝑅}) ∈ V)
11 eqid 2733 . . . 4 (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
12 snnzg 4726 . . . . . 6 (𝑅𝑉 → {𝑅} ≠ ∅)
1312adantr 480 . . . . 5 ((𝑅𝑉𝐼𝑊) → {𝑅} ≠ ∅)
14 dmxp 5873 . . . . 5 ({𝑅} ≠ ∅ → dom (𝐼 × {𝑅}) = 𝐼)
1513, 14syl 17 . . . 4 ((𝑅𝑉𝐼𝑊) → dom (𝐼 × {𝑅}) = 𝐼)
165, 6, 10, 11, 15prdsbas 17363 . . 3 ((𝑅𝑉𝐼𝑊) → (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = X𝑥𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)))
17 fvconst2g 7142 . . . . . . 7 ((𝑅𝑉𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
1817fveq2d 6832 . . . . . 6 ((𝑅𝑉𝑥𝐼) → (Base‘((𝐼 × {𝑅})‘𝑥)) = (Base‘𝑅))
1918ralrimiva 3125 . . . . 5 (𝑅𝑉 → ∀𝑥𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = (Base‘𝑅))
2019adantr 480 . . . 4 ((𝑅𝑉𝐼𝑊) → ∀𝑥𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = (Base‘𝑅))
21 ixpeq2 8841 . . . 4 (∀𝑥𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = (Base‘𝑅) → X𝑥𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = X𝑥𝐼 (Base‘𝑅))
2220, 21syl 17 . . 3 ((𝑅𝑉𝐼𝑊) → X𝑥𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = X𝑥𝐼 (Base‘𝑅))
2316, 22eqtrd 2768 . 2 ((𝑅𝑉𝐼𝑊) → (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = X𝑥𝐼 (Base‘𝑅))
24 fvex 6841 . . . 4 (Base‘𝑅) ∈ V
25 ixpconstg 8836 . . . 4 ((𝐼𝑊 ∧ (Base‘𝑅) ∈ V) → X𝑥𝐼 (Base‘𝑅) = ((Base‘𝑅) ↑m 𝐼))
267, 24, 25sylancl 586 . . 3 ((𝑅𝑉𝐼𝑊) → X𝑥𝐼 (Base‘𝑅) = ((Base‘𝑅) ↑m 𝐼))
27 pwsbas.f . . . 4 𝐵 = (Base‘𝑅)
2827oveq1i 7362 . . 3 (𝐵m 𝐼) = ((Base‘𝑅) ↑m 𝐼)
2926, 28eqtr4di 2786 . 2 ((𝑅𝑉𝐼𝑊) → X𝑥𝐼 (Base‘𝑅) = (𝐵m 𝐼))
304, 23, 293eqtrrd 2773 1 ((𝑅𝑉𝐼𝑊) → (𝐵m 𝐼) = (Base‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  wral 3048  Vcvv 3437  c0 4282  {csn 4575   × cxp 5617  dom cdm 5619  cfv 6486  (class class class)co 7352  m cmap 8756  Xcixp 8827  Basecbs 17122  Scalarcsca 17166  Xscprds 17351  s cpws 17352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-fz 13410  df-struct 17060  df-slot 17095  df-ndx 17107  df-base 17123  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-hom 17187  df-cco 17188  df-prds 17353  df-pws 17355
This theorem is referenced by:  pwselbasb  17394  pwssnf1o  17404  pwsdiagmhm  18741  pwsco1rhm  20419  pwsco2rhm  20420  frlmbas  21694  frlmsubgval  21704  psrgrp  21895  evls1val  22236  evls1rhmlem  22237  evl1val  22245  repwsmet  37894  rrnequiv  37895  aks6d1c2lem4  42240  aks6d1c6lem2  42284  psrmnd  42663  mhphf2  42716  pwslnmlem0  43208
  Copyright terms: Public domain W3C validator