MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsbas Structured version   Visualization version   GIF version

Theorem pwsbas 16533
Description: Base set of a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.)
Hypotheses
Ref Expression
pwsbas.y 𝑌 = (𝑅s 𝐼)
pwsbas.f 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
pwsbas ((𝑅𝑉𝐼𝑊) → (𝐵𝑚 𝐼) = (Base‘𝑌))

Proof of Theorem pwsbas
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pwsbas.y . . . 4 𝑌 = (𝑅s 𝐼)
2 eqid 2778 . . . 4 (Scalar‘𝑅) = (Scalar‘𝑅)
31, 2pwsval 16532 . . 3 ((𝑅𝑉𝐼𝑊) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
43fveq2d 6450 . 2 ((𝑅𝑉𝐼𝑊) → (Base‘𝑌) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
5 eqid 2778 . . . 4 ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))
6 fvexd 6461 . . . 4 ((𝑅𝑉𝐼𝑊) → (Scalar‘𝑅) ∈ V)
7 simpr 479 . . . . 5 ((𝑅𝑉𝐼𝑊) → 𝐼𝑊)
8 snex 5140 . . . . 5 {𝑅} ∈ V
9 xpexg 7237 . . . . 5 ((𝐼𝑊 ∧ {𝑅} ∈ V) → (𝐼 × {𝑅}) ∈ V)
107, 8, 9sylancl 580 . . . 4 ((𝑅𝑉𝐼𝑊) → (𝐼 × {𝑅}) ∈ V)
11 eqid 2778 . . . 4 (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
12 snnzg 4541 . . . . . 6 (𝑅𝑉 → {𝑅} ≠ ∅)
1312adantr 474 . . . . 5 ((𝑅𝑉𝐼𝑊) → {𝑅} ≠ ∅)
14 dmxp 5589 . . . . 5 ({𝑅} ≠ ∅ → dom (𝐼 × {𝑅}) = 𝐼)
1513, 14syl 17 . . . 4 ((𝑅𝑉𝐼𝑊) → dom (𝐼 × {𝑅}) = 𝐼)
165, 6, 10, 11, 15prdsbas 16503 . . 3 ((𝑅𝑉𝐼𝑊) → (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = X𝑥𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)))
17 fvconst2g 6739 . . . . . . 7 ((𝑅𝑉𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
1817fveq2d 6450 . . . . . 6 ((𝑅𝑉𝑥𝐼) → (Base‘((𝐼 × {𝑅})‘𝑥)) = (Base‘𝑅))
1918ralrimiva 3148 . . . . 5 (𝑅𝑉 → ∀𝑥𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = (Base‘𝑅))
2019adantr 474 . . . 4 ((𝑅𝑉𝐼𝑊) → ∀𝑥𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = (Base‘𝑅))
21 ixpeq2 8208 . . . 4 (∀𝑥𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = (Base‘𝑅) → X𝑥𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = X𝑥𝐼 (Base‘𝑅))
2220, 21syl 17 . . 3 ((𝑅𝑉𝐼𝑊) → X𝑥𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = X𝑥𝐼 (Base‘𝑅))
2316, 22eqtrd 2814 . 2 ((𝑅𝑉𝐼𝑊) → (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = X𝑥𝐼 (Base‘𝑅))
24 fvex 6459 . . . 4 (Base‘𝑅) ∈ V
25 ixpconstg 8203 . . . 4 ((𝐼𝑊 ∧ (Base‘𝑅) ∈ V) → X𝑥𝐼 (Base‘𝑅) = ((Base‘𝑅) ↑𝑚 𝐼))
267, 24, 25sylancl 580 . . 3 ((𝑅𝑉𝐼𝑊) → X𝑥𝐼 (Base‘𝑅) = ((Base‘𝑅) ↑𝑚 𝐼))
27 pwsbas.f . . . 4 𝐵 = (Base‘𝑅)
2827oveq1i 6932 . . 3 (𝐵𝑚 𝐼) = ((Base‘𝑅) ↑𝑚 𝐼)
2926, 28syl6eqr 2832 . 2 ((𝑅𝑉𝐼𝑊) → X𝑥𝐼 (Base‘𝑅) = (𝐵𝑚 𝐼))
304, 23, 293eqtrrd 2819 1 ((𝑅𝑉𝐼𝑊) → (𝐵𝑚 𝐼) = (Base‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  wne 2969  wral 3090  Vcvv 3398  c0 4141  {csn 4398   × cxp 5353  dom cdm 5355  cfv 6135  (class class class)co 6922  𝑚 cmap 8140  Xcixp 8194  Basecbs 16255  Scalarcsca 16341  Xscprds 16492  s cpws 16493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-map 8142  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-sup 8636  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-fz 12644  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-plusg 16351  df-mulr 16352  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-hom 16362  df-cco 16363  df-prds 16494  df-pws 16496
This theorem is referenced by:  pwselbasb  16534  pwssnf1o  16544  pwsdiagmhm  17755  pwsco1rhm  19127  pwsco2rhm  19128  evls1val  20081  evls1rhmlem  20082  evl1val  20089  frlmbas  20498  frlmsubgval  20508  repwsmet  34259  rrnequiv  34260  pwslnmlem0  38624
  Copyright terms: Public domain W3C validator