![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwsbas | Structured version Visualization version GIF version |
Description: Base set of a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.) |
Ref | Expression |
---|---|
pwsbas.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
pwsbas.f | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
pwsbas | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝐵 ↑𝑚 𝐼) = (Base‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwsbas.y | . . . 4 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
2 | eqid 2778 | . . . 4 ⊢ (Scalar‘𝑅) = (Scalar‘𝑅) | |
3 | 1, 2 | pwsval 16532 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
4 | 3 | fveq2d 6450 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (Base‘𝑌) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
5 | eqid 2778 | . . . 4 ⊢ ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) | |
6 | fvexd 6461 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (Scalar‘𝑅) ∈ V) | |
7 | simpr 479 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐼 ∈ 𝑊) | |
8 | snex 5140 | . . . . 5 ⊢ {𝑅} ∈ V | |
9 | xpexg 7237 | . . . . 5 ⊢ ((𝐼 ∈ 𝑊 ∧ {𝑅} ∈ V) → (𝐼 × {𝑅}) ∈ V) | |
10 | 7, 8, 9 | sylancl 580 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝐼 × {𝑅}) ∈ V) |
11 | eqid 2778 | . . . 4 ⊢ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) | |
12 | snnzg 4541 | . . . . . 6 ⊢ (𝑅 ∈ 𝑉 → {𝑅} ≠ ∅) | |
13 | 12 | adantr 474 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → {𝑅} ≠ ∅) |
14 | dmxp 5589 | . . . . 5 ⊢ ({𝑅} ≠ ∅ → dom (𝐼 × {𝑅}) = 𝐼) | |
15 | 13, 14 | syl 17 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → dom (𝐼 × {𝑅}) = 𝐼) |
16 | 5, 6, 10, 11, 15 | prdsbas 16503 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = X𝑥 ∈ 𝐼 (Base‘((𝐼 × {𝑅})‘𝑥))) |
17 | fvconst2g 6739 | . . . . . . 7 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅) | |
18 | 17 | fveq2d 6450 | . . . . . 6 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼) → (Base‘((𝐼 × {𝑅})‘𝑥)) = (Base‘𝑅)) |
19 | 18 | ralrimiva 3148 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → ∀𝑥 ∈ 𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = (Base‘𝑅)) |
20 | 19 | adantr 474 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → ∀𝑥 ∈ 𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = (Base‘𝑅)) |
21 | ixpeq2 8208 | . . . 4 ⊢ (∀𝑥 ∈ 𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = (Base‘𝑅) → X𝑥 ∈ 𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = X𝑥 ∈ 𝐼 (Base‘𝑅)) | |
22 | 20, 21 | syl 17 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → X𝑥 ∈ 𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = X𝑥 ∈ 𝐼 (Base‘𝑅)) |
23 | 16, 22 | eqtrd 2814 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = X𝑥 ∈ 𝐼 (Base‘𝑅)) |
24 | fvex 6459 | . . . 4 ⊢ (Base‘𝑅) ∈ V | |
25 | ixpconstg 8203 | . . . 4 ⊢ ((𝐼 ∈ 𝑊 ∧ (Base‘𝑅) ∈ V) → X𝑥 ∈ 𝐼 (Base‘𝑅) = ((Base‘𝑅) ↑𝑚 𝐼)) | |
26 | 7, 24, 25 | sylancl 580 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → X𝑥 ∈ 𝐼 (Base‘𝑅) = ((Base‘𝑅) ↑𝑚 𝐼)) |
27 | pwsbas.f | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
28 | 27 | oveq1i 6932 | . . 3 ⊢ (𝐵 ↑𝑚 𝐼) = ((Base‘𝑅) ↑𝑚 𝐼) |
29 | 26, 28 | syl6eqr 2832 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → X𝑥 ∈ 𝐼 (Base‘𝑅) = (𝐵 ↑𝑚 𝐼)) |
30 | 4, 23, 29 | 3eqtrrd 2819 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝐵 ↑𝑚 𝐼) = (Base‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ≠ wne 2969 ∀wral 3090 Vcvv 3398 ∅c0 4141 {csn 4398 × cxp 5353 dom cdm 5355 ‘cfv 6135 (class class class)co 6922 ↑𝑚 cmap 8140 Xcixp 8194 Basecbs 16255 Scalarcsca 16341 Xscprds 16492 ↑s cpws 16493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-oadd 7847 df-er 8026 df-map 8142 df-ixp 8195 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-sup 8636 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-5 11441 df-6 11442 df-7 11443 df-8 11444 df-9 11445 df-n0 11643 df-z 11729 df-dec 11846 df-uz 11993 df-fz 12644 df-struct 16257 df-ndx 16258 df-slot 16259 df-base 16261 df-plusg 16351 df-mulr 16352 df-sca 16354 df-vsca 16355 df-ip 16356 df-tset 16357 df-ple 16358 df-ds 16360 df-hom 16362 df-cco 16363 df-prds 16494 df-pws 16496 |
This theorem is referenced by: pwselbasb 16534 pwssnf1o 16544 pwsdiagmhm 17755 pwsco1rhm 19127 pwsco2rhm 19128 evls1val 20081 evls1rhmlem 20082 evl1val 20089 frlmbas 20498 frlmsubgval 20508 repwsmet 34259 rrnequiv 34260 pwslnmlem0 38624 |
Copyright terms: Public domain | W3C validator |