Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwsbas | Structured version Visualization version GIF version |
Description: Base set of a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.) |
Ref | Expression |
---|---|
pwsbas.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
pwsbas.f | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
pwsbas | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝐵 ↑m 𝐼) = (Base‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwsbas.y | . . . 4 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
2 | eqid 2738 | . . . 4 ⊢ (Scalar‘𝑅) = (Scalar‘𝑅) | |
3 | 1, 2 | pwsval 17197 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
4 | 3 | fveq2d 6778 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (Base‘𝑌) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
5 | eqid 2738 | . . . 4 ⊢ ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) | |
6 | fvexd 6789 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (Scalar‘𝑅) ∈ V) | |
7 | simpr 485 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝐼 ∈ 𝑊) | |
8 | snex 5354 | . . . . 5 ⊢ {𝑅} ∈ V | |
9 | xpexg 7600 | . . . . 5 ⊢ ((𝐼 ∈ 𝑊 ∧ {𝑅} ∈ V) → (𝐼 × {𝑅}) ∈ V) | |
10 | 7, 8, 9 | sylancl 586 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝐼 × {𝑅}) ∈ V) |
11 | eqid 2738 | . . . 4 ⊢ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) | |
12 | snnzg 4710 | . . . . . 6 ⊢ (𝑅 ∈ 𝑉 → {𝑅} ≠ ∅) | |
13 | 12 | adantr 481 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → {𝑅} ≠ ∅) |
14 | dmxp 5838 | . . . . 5 ⊢ ({𝑅} ≠ ∅ → dom (𝐼 × {𝑅}) = 𝐼) | |
15 | 13, 14 | syl 17 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → dom (𝐼 × {𝑅}) = 𝐼) |
16 | 5, 6, 10, 11, 15 | prdsbas 17168 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = X𝑥 ∈ 𝐼 (Base‘((𝐼 × {𝑅})‘𝑥))) |
17 | fvconst2g 7077 | . . . . . . 7 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅) | |
18 | 17 | fveq2d 6778 | . . . . . 6 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼) → (Base‘((𝐼 × {𝑅})‘𝑥)) = (Base‘𝑅)) |
19 | 18 | ralrimiva 3103 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → ∀𝑥 ∈ 𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = (Base‘𝑅)) |
20 | 19 | adantr 481 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → ∀𝑥 ∈ 𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = (Base‘𝑅)) |
21 | ixpeq2 8699 | . . . 4 ⊢ (∀𝑥 ∈ 𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = (Base‘𝑅) → X𝑥 ∈ 𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = X𝑥 ∈ 𝐼 (Base‘𝑅)) | |
22 | 20, 21 | syl 17 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → X𝑥 ∈ 𝐼 (Base‘((𝐼 × {𝑅})‘𝑥)) = X𝑥 ∈ 𝐼 (Base‘𝑅)) |
23 | 16, 22 | eqtrd 2778 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = X𝑥 ∈ 𝐼 (Base‘𝑅)) |
24 | fvex 6787 | . . . 4 ⊢ (Base‘𝑅) ∈ V | |
25 | ixpconstg 8694 | . . . 4 ⊢ ((𝐼 ∈ 𝑊 ∧ (Base‘𝑅) ∈ V) → X𝑥 ∈ 𝐼 (Base‘𝑅) = ((Base‘𝑅) ↑m 𝐼)) | |
26 | 7, 24, 25 | sylancl 586 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → X𝑥 ∈ 𝐼 (Base‘𝑅) = ((Base‘𝑅) ↑m 𝐼)) |
27 | pwsbas.f | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
28 | 27 | oveq1i 7285 | . . 3 ⊢ (𝐵 ↑m 𝐼) = ((Base‘𝑅) ↑m 𝐼) |
29 | 26, 28 | eqtr4di 2796 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → X𝑥 ∈ 𝐼 (Base‘𝑅) = (𝐵 ↑m 𝐼)) |
30 | 4, 23, 29 | 3eqtrrd 2783 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝐵 ↑m 𝐼) = (Base‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 Vcvv 3432 ∅c0 4256 {csn 4561 × cxp 5587 dom cdm 5589 ‘cfv 6433 (class class class)co 7275 ↑m cmap 8615 Xcixp 8685 Basecbs 16912 Scalarcsca 16965 Xscprds 17156 ↑s cpws 17157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-struct 16848 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-hom 16986 df-cco 16987 df-prds 17158 df-pws 17160 |
This theorem is referenced by: pwselbasb 17199 pwssnf1o 17209 pwsdiagmhm 18469 pwsco1rhm 19982 pwsco2rhm 19983 frlmbas 20962 frlmsubgval 20972 evls1val 21486 evls1rhmlem 21487 evl1val 21495 repwsmet 35992 rrnequiv 35993 mhphf 40285 mhphf2 40286 pwslnmlem0 40916 |
Copyright terms: Public domain | W3C validator |