MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pttopon Structured version   Visualization version   GIF version

Theorem pttopon 23604
Description: The base set for the product topology. (Contributed by Mario Carneiro, 22-Aug-2015.)
Hypothesis
Ref Expression
ptunimpt.j 𝐽 = (∏t‘(𝑥𝐴𝐾))
Assertion
Ref Expression
pttopon ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ (TopOn‘𝐵)) → 𝐽 ∈ (TopOn‘X𝑥𝐴 𝐵))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐽(𝑥)   𝐾(𝑥)   𝑉(𝑥)

Proof of Theorem pttopon
StepHypRef Expression
1 topontop 22919 . . . . 5 (𝐾 ∈ (TopOn‘𝐵) → 𝐾 ∈ Top)
21ralimi 3083 . . . 4 (∀𝑥𝐴 𝐾 ∈ (TopOn‘𝐵) → ∀𝑥𝐴 𝐾 ∈ Top)
3 eqid 2737 . . . . 5 (𝑥𝐴𝐾) = (𝑥𝐴𝐾)
43fmpt 7130 . . . 4 (∀𝑥𝐴 𝐾 ∈ Top ↔ (𝑥𝐴𝐾):𝐴⟶Top)
52, 4sylib 218 . . 3 (∀𝑥𝐴 𝐾 ∈ (TopOn‘𝐵) → (𝑥𝐴𝐾):𝐴⟶Top)
6 ptunimpt.j . . . 4 𝐽 = (∏t‘(𝑥𝐴𝐾))
7 pttop 23590 . . . 4 ((𝐴𝑉 ∧ (𝑥𝐴𝐾):𝐴⟶Top) → (∏t‘(𝑥𝐴𝐾)) ∈ Top)
86, 7eqeltrid 2845 . . 3 ((𝐴𝑉 ∧ (𝑥𝐴𝐾):𝐴⟶Top) → 𝐽 ∈ Top)
95, 8sylan2 593 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ (TopOn‘𝐵)) → 𝐽 ∈ Top)
10 toponuni 22920 . . . . . 6 (𝐾 ∈ (TopOn‘𝐵) → 𝐵 = 𝐾)
1110ralimi 3083 . . . . 5 (∀𝑥𝐴 𝐾 ∈ (TopOn‘𝐵) → ∀𝑥𝐴 𝐵 = 𝐾)
12 ixpeq2 8951 . . . . 5 (∀𝑥𝐴 𝐵 = 𝐾X𝑥𝐴 𝐵 = X𝑥𝐴 𝐾)
1311, 12syl 17 . . . 4 (∀𝑥𝐴 𝐾 ∈ (TopOn‘𝐵) → X𝑥𝐴 𝐵 = X𝑥𝐴 𝐾)
1413adantl 481 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ (TopOn‘𝐵)) → X𝑥𝐴 𝐵 = X𝑥𝐴 𝐾)
156ptunimpt 23603 . . . 4 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ Top) → X𝑥𝐴 𝐾 = 𝐽)
162, 15sylan2 593 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ (TopOn‘𝐵)) → X𝑥𝐴 𝐾 = 𝐽)
1714, 16eqtrd 2777 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ (TopOn‘𝐵)) → X𝑥𝐴 𝐵 = 𝐽)
18 istopon 22918 . 2 (𝐽 ∈ (TopOn‘X𝑥𝐴 𝐵) ↔ (𝐽 ∈ Top ∧ X𝑥𝐴 𝐵 = 𝐽))
199, 17, 18sylanbrc 583 1 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ (TopOn‘𝐵)) → 𝐽 ∈ (TopOn‘X𝑥𝐴 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061   cuni 4907  cmpt 5225  wf 6557  cfv 6561  Xcixp 8937  tcpt 17483  Topctop 22899  TopOnctopon 22916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-om 7888  df-1o 8506  df-2o 8507  df-ixp 8938  df-en 8986  df-fin 8989  df-fi 9451  df-topgen 17488  df-pt 17489  df-top 22900  df-topon 22917  df-bases 22953
This theorem is referenced by:  pttoponconst  23605  ptclsg  23623  dfac14lem  23625  ptcnp  23630  prdstps  23637
  Copyright terms: Public domain W3C validator