MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pttopon Structured version   Visualization version   GIF version

Theorem pttopon 22447
Description: The base set for the product topology. (Contributed by Mario Carneiro, 22-Aug-2015.)
Hypothesis
Ref Expression
ptunimpt.j 𝐽 = (∏t‘(𝑥𝐴𝐾))
Assertion
Ref Expression
pttopon ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ (TopOn‘𝐵)) → 𝐽 ∈ (TopOn‘X𝑥𝐴 𝐵))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐽(𝑥)   𝐾(𝑥)   𝑉(𝑥)

Proof of Theorem pttopon
StepHypRef Expression
1 topontop 21764 . . . . 5 (𝐾 ∈ (TopOn‘𝐵) → 𝐾 ∈ Top)
21ralimi 3073 . . . 4 (∀𝑥𝐴 𝐾 ∈ (TopOn‘𝐵) → ∀𝑥𝐴 𝐾 ∈ Top)
3 eqid 2736 . . . . 5 (𝑥𝐴𝐾) = (𝑥𝐴𝐾)
43fmpt 6905 . . . 4 (∀𝑥𝐴 𝐾 ∈ Top ↔ (𝑥𝐴𝐾):𝐴⟶Top)
52, 4sylib 221 . . 3 (∀𝑥𝐴 𝐾 ∈ (TopOn‘𝐵) → (𝑥𝐴𝐾):𝐴⟶Top)
6 ptunimpt.j . . . 4 𝐽 = (∏t‘(𝑥𝐴𝐾))
7 pttop 22433 . . . 4 ((𝐴𝑉 ∧ (𝑥𝐴𝐾):𝐴⟶Top) → (∏t‘(𝑥𝐴𝐾)) ∈ Top)
86, 7eqeltrid 2835 . . 3 ((𝐴𝑉 ∧ (𝑥𝐴𝐾):𝐴⟶Top) → 𝐽 ∈ Top)
95, 8sylan2 596 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ (TopOn‘𝐵)) → 𝐽 ∈ Top)
10 toponuni 21765 . . . . . 6 (𝐾 ∈ (TopOn‘𝐵) → 𝐵 = 𝐾)
1110ralimi 3073 . . . . 5 (∀𝑥𝐴 𝐾 ∈ (TopOn‘𝐵) → ∀𝑥𝐴 𝐵 = 𝐾)
12 ixpeq2 8570 . . . . 5 (∀𝑥𝐴 𝐵 = 𝐾X𝑥𝐴 𝐵 = X𝑥𝐴 𝐾)
1311, 12syl 17 . . . 4 (∀𝑥𝐴 𝐾 ∈ (TopOn‘𝐵) → X𝑥𝐴 𝐵 = X𝑥𝐴 𝐾)
1413adantl 485 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ (TopOn‘𝐵)) → X𝑥𝐴 𝐵 = X𝑥𝐴 𝐾)
156ptunimpt 22446 . . . 4 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ Top) → X𝑥𝐴 𝐾 = 𝐽)
162, 15sylan2 596 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ (TopOn‘𝐵)) → X𝑥𝐴 𝐾 = 𝐽)
1714, 16eqtrd 2771 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ (TopOn‘𝐵)) → X𝑥𝐴 𝐵 = 𝐽)
18 istopon 21763 . 2 (𝐽 ∈ (TopOn‘X𝑥𝐴 𝐵) ↔ (𝐽 ∈ Top ∧ X𝑥𝐴 𝐵 = 𝐽))
199, 17, 18sylanbrc 586 1 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ (TopOn‘𝐵)) → 𝐽 ∈ (TopOn‘X𝑥𝐴 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  wral 3051   cuni 4805  cmpt 5120  wf 6354  cfv 6358  Xcixp 8556  tcpt 16897  Topctop 21744  TopOnctopon 21761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-om 7623  df-1o 8180  df-er 8369  df-ixp 8557  df-en 8605  df-fin 8608  df-fi 9005  df-topgen 16902  df-pt 16903  df-top 21745  df-topon 21762  df-bases 21797
This theorem is referenced by:  pttoponconst  22448  ptclsg  22466  dfac14lem  22468  ptcnp  22473  prdstps  22480
  Copyright terms: Public domain W3C validator