Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pttopon | Structured version Visualization version GIF version |
Description: The base set for the product topology. (Contributed by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
ptunimpt.j | ⊢ 𝐽 = (∏t‘(𝑥 ∈ 𝐴 ↦ 𝐾)) |
Ref | Expression |
---|---|
pttopon | ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ (TopOn‘𝐵)) → 𝐽 ∈ (TopOn‘X𝑥 ∈ 𝐴 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topontop 22168 | . . . . 5 ⊢ (𝐾 ∈ (TopOn‘𝐵) → 𝐾 ∈ Top) | |
2 | 1 | ralimi 3083 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐾 ∈ (TopOn‘𝐵) → ∀𝑥 ∈ 𝐴 𝐾 ∈ Top) |
3 | eqid 2737 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐾) = (𝑥 ∈ 𝐴 ↦ 𝐾) | |
4 | 3 | fmpt 7045 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐾 ∈ Top ↔ (𝑥 ∈ 𝐴 ↦ 𝐾):𝐴⟶Top) |
5 | 2, 4 | sylib 217 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐾 ∈ (TopOn‘𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐾):𝐴⟶Top) |
6 | ptunimpt.j | . . . 4 ⊢ 𝐽 = (∏t‘(𝑥 ∈ 𝐴 ↦ 𝐾)) | |
7 | pttop 22839 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ↦ 𝐾):𝐴⟶Top) → (∏t‘(𝑥 ∈ 𝐴 ↦ 𝐾)) ∈ Top) | |
8 | 6, 7 | eqeltrid 2842 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ↦ 𝐾):𝐴⟶Top) → 𝐽 ∈ Top) |
9 | 5, 8 | sylan2 594 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ (TopOn‘𝐵)) → 𝐽 ∈ Top) |
10 | toponuni 22169 | . . . . . 6 ⊢ (𝐾 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐾) | |
11 | 10 | ralimi 3083 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐾 ∈ (TopOn‘𝐵) → ∀𝑥 ∈ 𝐴 𝐵 = ∪ 𝐾) |
12 | ixpeq2 8775 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = ∪ 𝐾 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 ∪ 𝐾) | |
13 | 11, 12 | syl 17 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐾 ∈ (TopOn‘𝐵) → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 ∪ 𝐾) |
14 | 13 | adantl 483 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ (TopOn‘𝐵)) → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 ∪ 𝐾) |
15 | 6 | ptunimpt 22852 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ Top) → X𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ 𝐽) |
16 | 2, 15 | sylan2 594 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ (TopOn‘𝐵)) → X𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ 𝐽) |
17 | 14, 16 | eqtrd 2777 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ (TopOn‘𝐵)) → X𝑥 ∈ 𝐴 𝐵 = ∪ 𝐽) |
18 | istopon 22167 | . 2 ⊢ (𝐽 ∈ (TopOn‘X𝑥 ∈ 𝐴 𝐵) ↔ (𝐽 ∈ Top ∧ X𝑥 ∈ 𝐴 𝐵 = ∪ 𝐽)) | |
19 | 9, 17, 18 | sylanbrc 584 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ (TopOn‘𝐵)) → 𝐽 ∈ (TopOn‘X𝑥 ∈ 𝐴 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ∀wral 3062 ∪ cuni 4857 ↦ cmpt 5180 ⟶wf 6480 ‘cfv 6484 Xcixp 8761 ∏tcpt 17247 Topctop 22148 TopOnctopon 22165 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-int 4900 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-om 7786 df-1o 8372 df-er 8574 df-ixp 8762 df-en 8810 df-fin 8813 df-fi 9273 df-topgen 17252 df-pt 17253 df-top 22149 df-topon 22166 df-bases 22202 |
This theorem is referenced by: pttoponconst 22854 ptclsg 22872 dfac14lem 22874 ptcnp 22879 prdstps 22886 |
Copyright terms: Public domain | W3C validator |