MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pttopon Structured version   Visualization version   GIF version

Theorem pttopon 23620
Description: The base set for the product topology. (Contributed by Mario Carneiro, 22-Aug-2015.)
Hypothesis
Ref Expression
ptunimpt.j 𝐽 = (∏t‘(𝑥𝐴𝐾))
Assertion
Ref Expression
pttopon ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ (TopOn‘𝐵)) → 𝐽 ∈ (TopOn‘X𝑥𝐴 𝐵))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐽(𝑥)   𝐾(𝑥)   𝑉(𝑥)

Proof of Theorem pttopon
StepHypRef Expression
1 topontop 22935 . . . . 5 (𝐾 ∈ (TopOn‘𝐵) → 𝐾 ∈ Top)
21ralimi 3081 . . . 4 (∀𝑥𝐴 𝐾 ∈ (TopOn‘𝐵) → ∀𝑥𝐴 𝐾 ∈ Top)
3 eqid 2735 . . . . 5 (𝑥𝐴𝐾) = (𝑥𝐴𝐾)
43fmpt 7130 . . . 4 (∀𝑥𝐴 𝐾 ∈ Top ↔ (𝑥𝐴𝐾):𝐴⟶Top)
52, 4sylib 218 . . 3 (∀𝑥𝐴 𝐾 ∈ (TopOn‘𝐵) → (𝑥𝐴𝐾):𝐴⟶Top)
6 ptunimpt.j . . . 4 𝐽 = (∏t‘(𝑥𝐴𝐾))
7 pttop 23606 . . . 4 ((𝐴𝑉 ∧ (𝑥𝐴𝐾):𝐴⟶Top) → (∏t‘(𝑥𝐴𝐾)) ∈ Top)
86, 7eqeltrid 2843 . . 3 ((𝐴𝑉 ∧ (𝑥𝐴𝐾):𝐴⟶Top) → 𝐽 ∈ Top)
95, 8sylan2 593 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ (TopOn‘𝐵)) → 𝐽 ∈ Top)
10 toponuni 22936 . . . . . 6 (𝐾 ∈ (TopOn‘𝐵) → 𝐵 = 𝐾)
1110ralimi 3081 . . . . 5 (∀𝑥𝐴 𝐾 ∈ (TopOn‘𝐵) → ∀𝑥𝐴 𝐵 = 𝐾)
12 ixpeq2 8950 . . . . 5 (∀𝑥𝐴 𝐵 = 𝐾X𝑥𝐴 𝐵 = X𝑥𝐴 𝐾)
1311, 12syl 17 . . . 4 (∀𝑥𝐴 𝐾 ∈ (TopOn‘𝐵) → X𝑥𝐴 𝐵 = X𝑥𝐴 𝐾)
1413adantl 481 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ (TopOn‘𝐵)) → X𝑥𝐴 𝐵 = X𝑥𝐴 𝐾)
156ptunimpt 23619 . . . 4 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ Top) → X𝑥𝐴 𝐾 = 𝐽)
162, 15sylan2 593 . . 3 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ (TopOn‘𝐵)) → X𝑥𝐴 𝐾 = 𝐽)
1714, 16eqtrd 2775 . 2 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ (TopOn‘𝐵)) → X𝑥𝐴 𝐵 = 𝐽)
18 istopon 22934 . 2 (𝐽 ∈ (TopOn‘X𝑥𝐴 𝐵) ↔ (𝐽 ∈ Top ∧ X𝑥𝐴 𝐵 = 𝐽))
199, 17, 18sylanbrc 583 1 ((𝐴𝑉 ∧ ∀𝑥𝐴 𝐾 ∈ (TopOn‘𝐵)) → 𝐽 ∈ (TopOn‘X𝑥𝐴 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059   cuni 4912  cmpt 5231  wf 6559  cfv 6563  Xcixp 8936  tcpt 17485  Topctop 22915  TopOnctopon 22932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-om 7888  df-1o 8505  df-2o 8506  df-ixp 8937  df-en 8985  df-fin 8988  df-fi 9449  df-topgen 17490  df-pt 17491  df-top 22916  df-topon 22933  df-bases 22969
This theorem is referenced by:  pttoponconst  23621  ptclsg  23639  dfac14lem  23641  ptcnp  23646  prdstps  23653
  Copyright terms: Public domain W3C validator