| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pttopon | Structured version Visualization version GIF version | ||
| Description: The base set for the product topology. (Contributed by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| ptunimpt.j | ⊢ 𝐽 = (∏t‘(𝑥 ∈ 𝐴 ↦ 𝐾)) |
| Ref | Expression |
|---|---|
| pttopon | ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ (TopOn‘𝐵)) → 𝐽 ∈ (TopOn‘X𝑥 ∈ 𝐴 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topontop 22851 | . . . . 5 ⊢ (𝐾 ∈ (TopOn‘𝐵) → 𝐾 ∈ Top) | |
| 2 | 1 | ralimi 3073 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐾 ∈ (TopOn‘𝐵) → ∀𝑥 ∈ 𝐴 𝐾 ∈ Top) |
| 3 | eqid 2735 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐾) = (𝑥 ∈ 𝐴 ↦ 𝐾) | |
| 4 | 3 | fmpt 7100 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐾 ∈ Top ↔ (𝑥 ∈ 𝐴 ↦ 𝐾):𝐴⟶Top) |
| 5 | 2, 4 | sylib 218 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐾 ∈ (TopOn‘𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐾):𝐴⟶Top) |
| 6 | ptunimpt.j | . . . 4 ⊢ 𝐽 = (∏t‘(𝑥 ∈ 𝐴 ↦ 𝐾)) | |
| 7 | pttop 23520 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ↦ 𝐾):𝐴⟶Top) → (∏t‘(𝑥 ∈ 𝐴 ↦ 𝐾)) ∈ Top) | |
| 8 | 6, 7 | eqeltrid 2838 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ↦ 𝐾):𝐴⟶Top) → 𝐽 ∈ Top) |
| 9 | 5, 8 | sylan2 593 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ (TopOn‘𝐵)) → 𝐽 ∈ Top) |
| 10 | toponuni 22852 | . . . . . 6 ⊢ (𝐾 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐾) | |
| 11 | 10 | ralimi 3073 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐾 ∈ (TopOn‘𝐵) → ∀𝑥 ∈ 𝐴 𝐵 = ∪ 𝐾) |
| 12 | ixpeq2 8925 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = ∪ 𝐾 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 ∪ 𝐾) | |
| 13 | 11, 12 | syl 17 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐾 ∈ (TopOn‘𝐵) → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 ∪ 𝐾) |
| 14 | 13 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ (TopOn‘𝐵)) → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 ∪ 𝐾) |
| 15 | 6 | ptunimpt 23533 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ Top) → X𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ 𝐽) |
| 16 | 2, 15 | sylan2 593 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ (TopOn‘𝐵)) → X𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ 𝐽) |
| 17 | 14, 16 | eqtrd 2770 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ (TopOn‘𝐵)) → X𝑥 ∈ 𝐴 𝐵 = ∪ 𝐽) |
| 18 | istopon 22850 | . 2 ⊢ (𝐽 ∈ (TopOn‘X𝑥 ∈ 𝐴 𝐵) ↔ (𝐽 ∈ Top ∧ X𝑥 ∈ 𝐴 𝐵 = ∪ 𝐽)) | |
| 19 | 9, 17, 18 | sylanbrc 583 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ (TopOn‘𝐵)) → 𝐽 ∈ (TopOn‘X𝑥 ∈ 𝐴 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∪ cuni 4883 ↦ cmpt 5201 ⟶wf 6527 ‘cfv 6531 Xcixp 8911 ∏tcpt 17452 Topctop 22831 TopOnctopon 22848 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-om 7862 df-1o 8480 df-2o 8481 df-ixp 8912 df-en 8960 df-fin 8963 df-fi 9423 df-topgen 17457 df-pt 17458 df-top 22832 df-topon 22849 df-bases 22884 |
| This theorem is referenced by: pttoponconst 23535 ptclsg 23553 dfac14lem 23555 ptcnp 23560 prdstps 23567 |
| Copyright terms: Public domain | W3C validator |