|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > pttopon | Structured version Visualization version GIF version | ||
| Description: The base set for the product topology. (Contributed by Mario Carneiro, 22-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| ptunimpt.j | ⊢ 𝐽 = (∏t‘(𝑥 ∈ 𝐴 ↦ 𝐾)) | 
| Ref | Expression | 
|---|---|
| pttopon | ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ (TopOn‘𝐵)) → 𝐽 ∈ (TopOn‘X𝑥 ∈ 𝐴 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | topontop 22919 | . . . . 5 ⊢ (𝐾 ∈ (TopOn‘𝐵) → 𝐾 ∈ Top) | |
| 2 | 1 | ralimi 3083 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐾 ∈ (TopOn‘𝐵) → ∀𝑥 ∈ 𝐴 𝐾 ∈ Top) | 
| 3 | eqid 2737 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐾) = (𝑥 ∈ 𝐴 ↦ 𝐾) | |
| 4 | 3 | fmpt 7130 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐾 ∈ Top ↔ (𝑥 ∈ 𝐴 ↦ 𝐾):𝐴⟶Top) | 
| 5 | 2, 4 | sylib 218 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐾 ∈ (TopOn‘𝐵) → (𝑥 ∈ 𝐴 ↦ 𝐾):𝐴⟶Top) | 
| 6 | ptunimpt.j | . . . 4 ⊢ 𝐽 = (∏t‘(𝑥 ∈ 𝐴 ↦ 𝐾)) | |
| 7 | pttop 23590 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ↦ 𝐾):𝐴⟶Top) → (∏t‘(𝑥 ∈ 𝐴 ↦ 𝐾)) ∈ Top) | |
| 8 | 6, 7 | eqeltrid 2845 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ (𝑥 ∈ 𝐴 ↦ 𝐾):𝐴⟶Top) → 𝐽 ∈ Top) | 
| 9 | 5, 8 | sylan2 593 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ (TopOn‘𝐵)) → 𝐽 ∈ Top) | 
| 10 | toponuni 22920 | . . . . . 6 ⊢ (𝐾 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐾) | |
| 11 | 10 | ralimi 3083 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐾 ∈ (TopOn‘𝐵) → ∀𝑥 ∈ 𝐴 𝐵 = ∪ 𝐾) | 
| 12 | ixpeq2 8951 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝐵 = ∪ 𝐾 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 ∪ 𝐾) | |
| 13 | 11, 12 | syl 17 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐾 ∈ (TopOn‘𝐵) → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 ∪ 𝐾) | 
| 14 | 13 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ (TopOn‘𝐵)) → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 ∪ 𝐾) | 
| 15 | 6 | ptunimpt 23603 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ Top) → X𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ 𝐽) | 
| 16 | 2, 15 | sylan2 593 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ (TopOn‘𝐵)) → X𝑥 ∈ 𝐴 ∪ 𝐾 = ∪ 𝐽) | 
| 17 | 14, 16 | eqtrd 2777 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ (TopOn‘𝐵)) → X𝑥 ∈ 𝐴 𝐵 = ∪ 𝐽) | 
| 18 | istopon 22918 | . 2 ⊢ (𝐽 ∈ (TopOn‘X𝑥 ∈ 𝐴 𝐵) ↔ (𝐽 ∈ Top ∧ X𝑥 ∈ 𝐴 𝐵 = ∪ 𝐽)) | |
| 19 | 9, 17, 18 | sylanbrc 583 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ 𝐴 𝐾 ∈ (TopOn‘𝐵)) → 𝐽 ∈ (TopOn‘X𝑥 ∈ 𝐴 𝐵)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∪ cuni 4907 ↦ cmpt 5225 ⟶wf 6557 ‘cfv 6561 Xcixp 8937 ∏tcpt 17483 Topctop 22899 TopOnctopon 22916 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-om 7888 df-1o 8506 df-2o 8507 df-ixp 8938 df-en 8986 df-fin 8989 df-fi 9451 df-topgen 17488 df-pt 17489 df-top 22900 df-topon 22917 df-bases 22953 | 
| This theorem is referenced by: pttoponconst 23605 ptclsg 23623 dfac14lem 23625 ptcnp 23630 prdstps 23637 | 
| Copyright terms: Public domain | W3C validator |