![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pttopon | Structured version Visualization version GIF version |
Description: The base set for the product topology. (Contributed by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
ptunimpt.j | β’ π½ = (βtβ(π₯ β π΄ β¦ πΎ)) |
Ref | Expression |
---|---|
pttopon | β’ ((π΄ β π β§ βπ₯ β π΄ πΎ β (TopOnβπ΅)) β π½ β (TopOnβXπ₯ β π΄ π΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topontop 22406 | . . . . 5 β’ (πΎ β (TopOnβπ΅) β πΎ β Top) | |
2 | 1 | ralimi 3083 | . . . 4 β’ (βπ₯ β π΄ πΎ β (TopOnβπ΅) β βπ₯ β π΄ πΎ β Top) |
3 | eqid 2732 | . . . . 5 β’ (π₯ β π΄ β¦ πΎ) = (π₯ β π΄ β¦ πΎ) | |
4 | 3 | fmpt 7106 | . . . 4 β’ (βπ₯ β π΄ πΎ β Top β (π₯ β π΄ β¦ πΎ):π΄βΆTop) |
5 | 2, 4 | sylib 217 | . . 3 β’ (βπ₯ β π΄ πΎ β (TopOnβπ΅) β (π₯ β π΄ β¦ πΎ):π΄βΆTop) |
6 | ptunimpt.j | . . . 4 β’ π½ = (βtβ(π₯ β π΄ β¦ πΎ)) | |
7 | pttop 23077 | . . . 4 β’ ((π΄ β π β§ (π₯ β π΄ β¦ πΎ):π΄βΆTop) β (βtβ(π₯ β π΄ β¦ πΎ)) β Top) | |
8 | 6, 7 | eqeltrid 2837 | . . 3 β’ ((π΄ β π β§ (π₯ β π΄ β¦ πΎ):π΄βΆTop) β π½ β Top) |
9 | 5, 8 | sylan2 593 | . 2 β’ ((π΄ β π β§ βπ₯ β π΄ πΎ β (TopOnβπ΅)) β π½ β Top) |
10 | toponuni 22407 | . . . . . 6 β’ (πΎ β (TopOnβπ΅) β π΅ = βͺ πΎ) | |
11 | 10 | ralimi 3083 | . . . . 5 β’ (βπ₯ β π΄ πΎ β (TopOnβπ΅) β βπ₯ β π΄ π΅ = βͺ πΎ) |
12 | ixpeq2 8901 | . . . . 5 β’ (βπ₯ β π΄ π΅ = βͺ πΎ β Xπ₯ β π΄ π΅ = Xπ₯ β π΄ βͺ πΎ) | |
13 | 11, 12 | syl 17 | . . . 4 β’ (βπ₯ β π΄ πΎ β (TopOnβπ΅) β Xπ₯ β π΄ π΅ = Xπ₯ β π΄ βͺ πΎ) |
14 | 13 | adantl 482 | . . 3 β’ ((π΄ β π β§ βπ₯ β π΄ πΎ β (TopOnβπ΅)) β Xπ₯ β π΄ π΅ = Xπ₯ β π΄ βͺ πΎ) |
15 | 6 | ptunimpt 23090 | . . . 4 β’ ((π΄ β π β§ βπ₯ β π΄ πΎ β Top) β Xπ₯ β π΄ βͺ πΎ = βͺ π½) |
16 | 2, 15 | sylan2 593 | . . 3 β’ ((π΄ β π β§ βπ₯ β π΄ πΎ β (TopOnβπ΅)) β Xπ₯ β π΄ βͺ πΎ = βͺ π½) |
17 | 14, 16 | eqtrd 2772 | . 2 β’ ((π΄ β π β§ βπ₯ β π΄ πΎ β (TopOnβπ΅)) β Xπ₯ β π΄ π΅ = βͺ π½) |
18 | istopon 22405 | . 2 β’ (π½ β (TopOnβXπ₯ β π΄ π΅) β (π½ β Top β§ Xπ₯ β π΄ π΅ = βͺ π½)) | |
19 | 9, 17, 18 | sylanbrc 583 | 1 β’ ((π΄ β π β§ βπ₯ β π΄ πΎ β (TopOnβπ΅)) β π½ β (TopOnβXπ₯ β π΄ π΅)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 βwral 3061 βͺ cuni 4907 β¦ cmpt 5230 βΆwf 6536 βcfv 6540 Xcixp 8887 βtcpt 17380 Topctop 22386 TopOnctopon 22403 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-om 7852 df-1o 8462 df-er 8699 df-ixp 8888 df-en 8936 df-fin 8939 df-fi 9402 df-topgen 17385 df-pt 17386 df-top 22387 df-topon 22404 df-bases 22440 |
This theorem is referenced by: pttoponconst 23092 ptclsg 23110 dfac14lem 23112 ptcnp 23117 prdstps 23124 |
Copyright terms: Public domain | W3C validator |