MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcld Structured version   Visualization version   GIF version

Theorem ptcld 23534
Description: A closed box in the product topology. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Hypotheses
Ref Expression
ptcld.a (𝜑𝐴𝑉)
ptcld.f (𝜑𝐹:𝐴⟶Top)
ptcld.c ((𝜑𝑘𝐴) → 𝐶 ∈ (Clsd‘(𝐹𝑘)))
Assertion
Ref Expression
ptcld (𝜑X𝑘𝐴 𝐶 ∈ (Clsd‘(∏t𝐹)))
Distinct variable groups:   𝜑,𝑘   𝐴,𝑘   𝑘,𝐹   𝑘,𝑉
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem ptcld
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ptcld.c . . . . 5 ((𝜑𝑘𝐴) → 𝐶 ∈ (Clsd‘(𝐹𝑘)))
2 eqid 2729 . . . . . 6 (𝐹𝑘) = (𝐹𝑘)
32cldss 22950 . . . . 5 (𝐶 ∈ (Clsd‘(𝐹𝑘)) → 𝐶 (𝐹𝑘))
41, 3syl 17 . . . 4 ((𝜑𝑘𝐴) → 𝐶 (𝐹𝑘))
54ralrimiva 3125 . . 3 (𝜑 → ∀𝑘𝐴 𝐶 (𝐹𝑘))
6 boxriin 8890 . . 3 (∀𝑘𝐴 𝐶 (𝐹𝑘) → X𝑘𝐴 𝐶 = (X𝑘𝐴 (𝐹𝑘) ∩ 𝑥𝐴 X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))))
75, 6syl 17 . 2 (𝜑X𝑘𝐴 𝐶 = (X𝑘𝐴 (𝐹𝑘) ∩ 𝑥𝐴 X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))))
8 ptcld.a . . . . 5 (𝜑𝐴𝑉)
9 ptcld.f . . . . 5 (𝜑𝐹:𝐴⟶Top)
10 eqid 2729 . . . . . 6 (∏t𝐹) = (∏t𝐹)
1110ptuni 23515 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑘𝐴 (𝐹𝑘) = (∏t𝐹))
128, 9, 11syl2anc 584 . . . 4 (𝜑X𝑘𝐴 (𝐹𝑘) = (∏t𝐹))
1312ineq1d 4178 . . 3 (𝜑 → (X𝑘𝐴 (𝐹𝑘) ∩ 𝑥𝐴 X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))) = ( (∏t𝐹) ∩ 𝑥𝐴 X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))))
14 pttop 23503 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top) → (∏t𝐹) ∈ Top)
158, 9, 14syl2anc 584 . . . 4 (𝜑 → (∏t𝐹) ∈ Top)
16 sseq1 3969 . . . . . . . . . . 11 (𝐶 = if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) → (𝐶 (𝐹𝑘) ↔ if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ⊆ (𝐹𝑘)))
17 sseq1 3969 . . . . . . . . . . 11 ( (𝐹𝑘) = if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) → ( (𝐹𝑘) ⊆ (𝐹𝑘) ↔ if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ⊆ (𝐹𝑘)))
18 simpl 482 . . . . . . . . . . 11 ((𝐶 (𝐹𝑘) ∧ 𝑘 = 𝑥) → 𝐶 (𝐹𝑘))
19 ssidd 3967 . . . . . . . . . . 11 ((𝐶 (𝐹𝑘) ∧ ¬ 𝑘 = 𝑥) → (𝐹𝑘) ⊆ (𝐹𝑘))
2016, 17, 18, 19ifbothda 4523 . . . . . . . . . 10 (𝐶 (𝐹𝑘) → if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ⊆ (𝐹𝑘))
2120ralimi 3066 . . . . . . . . 9 (∀𝑘𝐴 𝐶 (𝐹𝑘) → ∀𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ⊆ (𝐹𝑘))
22 ss2ixp 8860 . . . . . . . . 9 (∀𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ⊆ (𝐹𝑘) → X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ⊆ X𝑘𝐴 (𝐹𝑘))
235, 21, 223syl 18 . . . . . . . 8 (𝜑X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ⊆ X𝑘𝐴 (𝐹𝑘))
2423adantr 480 . . . . . . 7 ((𝜑𝑥𝐴) → X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ⊆ X𝑘𝐴 (𝐹𝑘))
2512adantr 480 . . . . . . 7 ((𝜑𝑥𝐴) → X𝑘𝐴 (𝐹𝑘) = (∏t𝐹))
2624, 25sseqtrd 3980 . . . . . 6 ((𝜑𝑥𝐴) → X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ⊆ (∏t𝐹))
2712eqcomd 2735 . . . . . . . . . 10 (𝜑 (∏t𝐹) = X𝑘𝐴 (𝐹𝑘))
2827difeq1d 4084 . . . . . . . . 9 (𝜑 → ( (∏t𝐹) ∖ X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))) = (X𝑘𝐴 (𝐹𝑘) ∖ X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))))
2928adantr 480 . . . . . . . 8 ((𝜑𝑥𝐴) → ( (∏t𝐹) ∖ X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))) = (X𝑘𝐴 (𝐹𝑘) ∖ X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))))
30 simpr 484 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥𝐴)
315adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐴) → ∀𝑘𝐴 𝐶 (𝐹𝑘))
32 boxcutc 8891 . . . . . . . . 9 ((𝑥𝐴 ∧ ∀𝑘𝐴 𝐶 (𝐹𝑘)) → (X𝑘𝐴 (𝐹𝑘) ∖ X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))) = X𝑘𝐴 if(𝑘 = 𝑥, ( (𝐹𝑘) ∖ 𝐶), (𝐹𝑘)))
3330, 31, 32syl2anc 584 . . . . . . . 8 ((𝜑𝑥𝐴) → (X𝑘𝐴 (𝐹𝑘) ∖ X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))) = X𝑘𝐴 if(𝑘 = 𝑥, ( (𝐹𝑘) ∖ 𝐶), (𝐹𝑘)))
34 ixpeq2 8861 . . . . . . . . . 10 (∀𝑘𝐴 if(𝑘 = 𝑥, ( (𝐹𝑘) ∖ 𝐶), (𝐹𝑘)) = if(𝑘 = 𝑥, ( (𝐹𝑥) ∖ 𝑥 / 𝑘𝐶), (𝐹𝑘)) → X𝑘𝐴 if(𝑘 = 𝑥, ( (𝐹𝑘) ∖ 𝐶), (𝐹𝑘)) = X𝑘𝐴 if(𝑘 = 𝑥, ( (𝐹𝑥) ∖ 𝑥 / 𝑘𝐶), (𝐹𝑘)))
35 fveq2 6840 . . . . . . . . . . . . . 14 (𝑘 = 𝑥 → (𝐹𝑘) = (𝐹𝑥))
3635unieqd 4880 . . . . . . . . . . . . 13 (𝑘 = 𝑥 (𝐹𝑘) = (𝐹𝑥))
37 csbeq1a 3873 . . . . . . . . . . . . 13 (𝑘 = 𝑥𝐶 = 𝑥 / 𝑘𝐶)
3836, 37difeq12d 4086 . . . . . . . . . . . 12 (𝑘 = 𝑥 → ( (𝐹𝑘) ∖ 𝐶) = ( (𝐹𝑥) ∖ 𝑥 / 𝑘𝐶))
3938adantl 481 . . . . . . . . . . 11 ((𝑘𝐴𝑘 = 𝑥) → ( (𝐹𝑘) ∖ 𝐶) = ( (𝐹𝑥) ∖ 𝑥 / 𝑘𝐶))
4039ifeq1da 4516 . . . . . . . . . 10 (𝑘𝐴 → if(𝑘 = 𝑥, ( (𝐹𝑘) ∖ 𝐶), (𝐹𝑘)) = if(𝑘 = 𝑥, ( (𝐹𝑥) ∖ 𝑥 / 𝑘𝐶), (𝐹𝑘)))
4134, 40mprg 3050 . . . . . . . . 9 X𝑘𝐴 if(𝑘 = 𝑥, ( (𝐹𝑘) ∖ 𝐶), (𝐹𝑘)) = X𝑘𝐴 if(𝑘 = 𝑥, ( (𝐹𝑥) ∖ 𝑥 / 𝑘𝐶), (𝐹𝑘))
4241a1i 11 . . . . . . . 8 ((𝜑𝑥𝐴) → X𝑘𝐴 if(𝑘 = 𝑥, ( (𝐹𝑘) ∖ 𝐶), (𝐹𝑘)) = X𝑘𝐴 if(𝑘 = 𝑥, ( (𝐹𝑥) ∖ 𝑥 / 𝑘𝐶), (𝐹𝑘)))
4329, 33, 423eqtrd 2768 . . . . . . 7 ((𝜑𝑥𝐴) → ( (∏t𝐹) ∖ X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))) = X𝑘𝐴 if(𝑘 = 𝑥, ( (𝐹𝑥) ∖ 𝑥 / 𝑘𝐶), (𝐹𝑘)))
448adantr 480 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐴𝑉)
459adantr 480 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐹:𝐴⟶Top)
461ralrimiva 3125 . . . . . . . . . . 11 (𝜑 → ∀𝑘𝐴 𝐶 ∈ (Clsd‘(𝐹𝑘)))
47 nfv 1914 . . . . . . . . . . . 12 𝑥 𝐶 ∈ (Clsd‘(𝐹𝑘))
48 nfcsb1v 3883 . . . . . . . . . . . . 13 𝑘𝑥 / 𝑘𝐶
4948nfel1 2908 . . . . . . . . . . . 12 𝑘𝑥 / 𝑘𝐶 ∈ (Clsd‘(𝐹𝑥))
50 2fveq3 6845 . . . . . . . . . . . . 13 (𝑘 = 𝑥 → (Clsd‘(𝐹𝑘)) = (Clsd‘(𝐹𝑥)))
5137, 50eleq12d 2822 . . . . . . . . . . . 12 (𝑘 = 𝑥 → (𝐶 ∈ (Clsd‘(𝐹𝑘)) ↔ 𝑥 / 𝑘𝐶 ∈ (Clsd‘(𝐹𝑥))))
5247, 49, 51cbvralw 3278 . . . . . . . . . . 11 (∀𝑘𝐴 𝐶 ∈ (Clsd‘(𝐹𝑘)) ↔ ∀𝑥𝐴 𝑥 / 𝑘𝐶 ∈ (Clsd‘(𝐹𝑥)))
5346, 52sylib 218 . . . . . . . . . 10 (𝜑 → ∀𝑥𝐴 𝑥 / 𝑘𝐶 ∈ (Clsd‘(𝐹𝑥)))
5453r19.21bi 3227 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥 / 𝑘𝐶 ∈ (Clsd‘(𝐹𝑥)))
55 eqid 2729 . . . . . . . . . 10 (𝐹𝑥) = (𝐹𝑥)
5655cldopn 22952 . . . . . . . . 9 (𝑥 / 𝑘𝐶 ∈ (Clsd‘(𝐹𝑥)) → ( (𝐹𝑥) ∖ 𝑥 / 𝑘𝐶) ∈ (𝐹𝑥))
5754, 56syl 17 . . . . . . . 8 ((𝜑𝑥𝐴) → ( (𝐹𝑥) ∖ 𝑥 / 𝑘𝐶) ∈ (𝐹𝑥))
5844, 45, 57ptopn2 23505 . . . . . . 7 ((𝜑𝑥𝐴) → X𝑘𝐴 if(𝑘 = 𝑥, ( (𝐹𝑥) ∖ 𝑥 / 𝑘𝐶), (𝐹𝑘)) ∈ (∏t𝐹))
5943, 58eqeltrd 2828 . . . . . 6 ((𝜑𝑥𝐴) → ( (∏t𝐹) ∖ X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))) ∈ (∏t𝐹))
60 eqid 2729 . . . . . . . . 9 (∏t𝐹) = (∏t𝐹)
6160iscld 22948 . . . . . . . 8 ((∏t𝐹) ∈ Top → (X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ∈ (Clsd‘(∏t𝐹)) ↔ (X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ⊆ (∏t𝐹) ∧ ( (∏t𝐹) ∖ X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))) ∈ (∏t𝐹))))
6215, 61syl 17 . . . . . . 7 (𝜑 → (X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ∈ (Clsd‘(∏t𝐹)) ↔ (X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ⊆ (∏t𝐹) ∧ ( (∏t𝐹) ∖ X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))) ∈ (∏t𝐹))))
6362adantr 480 . . . . . 6 ((𝜑𝑥𝐴) → (X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ∈ (Clsd‘(∏t𝐹)) ↔ (X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ⊆ (∏t𝐹) ∧ ( (∏t𝐹) ∖ X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))) ∈ (∏t𝐹))))
6426, 59, 63mpbir2and 713 . . . . 5 ((𝜑𝑥𝐴) → X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ∈ (Clsd‘(∏t𝐹)))
6564ralrimiva 3125 . . . 4 (𝜑 → ∀𝑥𝐴 X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ∈ (Clsd‘(∏t𝐹)))
6660riincld 22965 . . . 4 (((∏t𝐹) ∈ Top ∧ ∀𝑥𝐴 X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ∈ (Clsd‘(∏t𝐹))) → ( (∏t𝐹) ∩ 𝑥𝐴 X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))) ∈ (Clsd‘(∏t𝐹)))
6715, 65, 66syl2anc 584 . . 3 (𝜑 → ( (∏t𝐹) ∩ 𝑥𝐴 X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))) ∈ (Clsd‘(∏t𝐹)))
6813, 67eqeltrd 2828 . 2 (𝜑 → (X𝑘𝐴 (𝐹𝑘) ∩ 𝑥𝐴 X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))) ∈ (Clsd‘(∏t𝐹)))
697, 68eqeltrd 2828 1 (𝜑X𝑘𝐴 𝐶 ∈ (Clsd‘(∏t𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  csb 3859  cdif 3908  cin 3910  wss 3911  ifcif 4484   cuni 4867   ciin 4952  wf 6495  cfv 6499  Xcixp 8847  tcpt 17378  Topctop 22814  Clsdccld 22937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-om 7823  df-1o 8411  df-2o 8412  df-ixp 8848  df-en 8896  df-fin 8899  df-fi 9338  df-topgen 17383  df-pt 17384  df-top 22815  df-bases 22867  df-cld 22940
This theorem is referenced by:  ptcldmpt  23535
  Copyright terms: Public domain W3C validator