MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcld Structured version   Visualization version   GIF version

Theorem ptcld 22764
Description: A closed box in the product topology. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Hypotheses
Ref Expression
ptcld.a (𝜑𝐴𝑉)
ptcld.f (𝜑𝐹:𝐴⟶Top)
ptcld.c ((𝜑𝑘𝐴) → 𝐶 ∈ (Clsd‘(𝐹𝑘)))
Assertion
Ref Expression
ptcld (𝜑X𝑘𝐴 𝐶 ∈ (Clsd‘(∏t𝐹)))
Distinct variable groups:   𝜑,𝑘   𝐴,𝑘   𝑘,𝐹   𝑘,𝑉
Allowed substitution hint:   𝐶(𝑘)

Proof of Theorem ptcld
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ptcld.c . . . . 5 ((𝜑𝑘𝐴) → 𝐶 ∈ (Clsd‘(𝐹𝑘)))
2 eqid 2738 . . . . . 6 (𝐹𝑘) = (𝐹𝑘)
32cldss 22180 . . . . 5 (𝐶 ∈ (Clsd‘(𝐹𝑘)) → 𝐶 (𝐹𝑘))
41, 3syl 17 . . . 4 ((𝜑𝑘𝐴) → 𝐶 (𝐹𝑘))
54ralrimiva 3103 . . 3 (𝜑 → ∀𝑘𝐴 𝐶 (𝐹𝑘))
6 boxriin 8728 . . 3 (∀𝑘𝐴 𝐶 (𝐹𝑘) → X𝑘𝐴 𝐶 = (X𝑘𝐴 (𝐹𝑘) ∩ 𝑥𝐴 X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))))
75, 6syl 17 . 2 (𝜑X𝑘𝐴 𝐶 = (X𝑘𝐴 (𝐹𝑘) ∩ 𝑥𝐴 X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))))
8 ptcld.a . . . . 5 (𝜑𝐴𝑉)
9 ptcld.f . . . . 5 (𝜑𝐹:𝐴⟶Top)
10 eqid 2738 . . . . . 6 (∏t𝐹) = (∏t𝐹)
1110ptuni 22745 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑘𝐴 (𝐹𝑘) = (∏t𝐹))
128, 9, 11syl2anc 584 . . . 4 (𝜑X𝑘𝐴 (𝐹𝑘) = (∏t𝐹))
1312ineq1d 4145 . . 3 (𝜑 → (X𝑘𝐴 (𝐹𝑘) ∩ 𝑥𝐴 X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))) = ( (∏t𝐹) ∩ 𝑥𝐴 X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))))
14 pttop 22733 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top) → (∏t𝐹) ∈ Top)
158, 9, 14syl2anc 584 . . . 4 (𝜑 → (∏t𝐹) ∈ Top)
16 sseq1 3946 . . . . . . . . . . 11 (𝐶 = if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) → (𝐶 (𝐹𝑘) ↔ if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ⊆ (𝐹𝑘)))
17 sseq1 3946 . . . . . . . . . . 11 ( (𝐹𝑘) = if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) → ( (𝐹𝑘) ⊆ (𝐹𝑘) ↔ if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ⊆ (𝐹𝑘)))
18 simpl 483 . . . . . . . . . . 11 ((𝐶 (𝐹𝑘) ∧ 𝑘 = 𝑥) → 𝐶 (𝐹𝑘))
19 ssidd 3944 . . . . . . . . . . 11 ((𝐶 (𝐹𝑘) ∧ ¬ 𝑘 = 𝑥) → (𝐹𝑘) ⊆ (𝐹𝑘))
2016, 17, 18, 19ifbothda 4497 . . . . . . . . . 10 (𝐶 (𝐹𝑘) → if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ⊆ (𝐹𝑘))
2120ralimi 3087 . . . . . . . . 9 (∀𝑘𝐴 𝐶 (𝐹𝑘) → ∀𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ⊆ (𝐹𝑘))
22 ss2ixp 8698 . . . . . . . . 9 (∀𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ⊆ (𝐹𝑘) → X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ⊆ X𝑘𝐴 (𝐹𝑘))
235, 21, 223syl 18 . . . . . . . 8 (𝜑X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ⊆ X𝑘𝐴 (𝐹𝑘))
2423adantr 481 . . . . . . 7 ((𝜑𝑥𝐴) → X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ⊆ X𝑘𝐴 (𝐹𝑘))
2512adantr 481 . . . . . . 7 ((𝜑𝑥𝐴) → X𝑘𝐴 (𝐹𝑘) = (∏t𝐹))
2624, 25sseqtrd 3961 . . . . . 6 ((𝜑𝑥𝐴) → X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ⊆ (∏t𝐹))
2712eqcomd 2744 . . . . . . . . . 10 (𝜑 (∏t𝐹) = X𝑘𝐴 (𝐹𝑘))
2827difeq1d 4056 . . . . . . . . 9 (𝜑 → ( (∏t𝐹) ∖ X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))) = (X𝑘𝐴 (𝐹𝑘) ∖ X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))))
2928adantr 481 . . . . . . . 8 ((𝜑𝑥𝐴) → ( (∏t𝐹) ∖ X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))) = (X𝑘𝐴 (𝐹𝑘) ∖ X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))))
30 simpr 485 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥𝐴)
315adantr 481 . . . . . . . . 9 ((𝜑𝑥𝐴) → ∀𝑘𝐴 𝐶 (𝐹𝑘))
32 boxcutc 8729 . . . . . . . . 9 ((𝑥𝐴 ∧ ∀𝑘𝐴 𝐶 (𝐹𝑘)) → (X𝑘𝐴 (𝐹𝑘) ∖ X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))) = X𝑘𝐴 if(𝑘 = 𝑥, ( (𝐹𝑘) ∖ 𝐶), (𝐹𝑘)))
3330, 31, 32syl2anc 584 . . . . . . . 8 ((𝜑𝑥𝐴) → (X𝑘𝐴 (𝐹𝑘) ∖ X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))) = X𝑘𝐴 if(𝑘 = 𝑥, ( (𝐹𝑘) ∖ 𝐶), (𝐹𝑘)))
34 ixpeq2 8699 . . . . . . . . . 10 (∀𝑘𝐴 if(𝑘 = 𝑥, ( (𝐹𝑘) ∖ 𝐶), (𝐹𝑘)) = if(𝑘 = 𝑥, ( (𝐹𝑥) ∖ 𝑥 / 𝑘𝐶), (𝐹𝑘)) → X𝑘𝐴 if(𝑘 = 𝑥, ( (𝐹𝑘) ∖ 𝐶), (𝐹𝑘)) = X𝑘𝐴 if(𝑘 = 𝑥, ( (𝐹𝑥) ∖ 𝑥 / 𝑘𝐶), (𝐹𝑘)))
35 fveq2 6774 . . . . . . . . . . . . . 14 (𝑘 = 𝑥 → (𝐹𝑘) = (𝐹𝑥))
3635unieqd 4853 . . . . . . . . . . . . 13 (𝑘 = 𝑥 (𝐹𝑘) = (𝐹𝑥))
37 csbeq1a 3846 . . . . . . . . . . . . 13 (𝑘 = 𝑥𝐶 = 𝑥 / 𝑘𝐶)
3836, 37difeq12d 4058 . . . . . . . . . . . 12 (𝑘 = 𝑥 → ( (𝐹𝑘) ∖ 𝐶) = ( (𝐹𝑥) ∖ 𝑥 / 𝑘𝐶))
3938adantl 482 . . . . . . . . . . 11 ((𝑘𝐴𝑘 = 𝑥) → ( (𝐹𝑘) ∖ 𝐶) = ( (𝐹𝑥) ∖ 𝑥 / 𝑘𝐶))
4039ifeq1da 4490 . . . . . . . . . 10 (𝑘𝐴 → if(𝑘 = 𝑥, ( (𝐹𝑘) ∖ 𝐶), (𝐹𝑘)) = if(𝑘 = 𝑥, ( (𝐹𝑥) ∖ 𝑥 / 𝑘𝐶), (𝐹𝑘)))
4134, 40mprg 3078 . . . . . . . . 9 X𝑘𝐴 if(𝑘 = 𝑥, ( (𝐹𝑘) ∖ 𝐶), (𝐹𝑘)) = X𝑘𝐴 if(𝑘 = 𝑥, ( (𝐹𝑥) ∖ 𝑥 / 𝑘𝐶), (𝐹𝑘))
4241a1i 11 . . . . . . . 8 ((𝜑𝑥𝐴) → X𝑘𝐴 if(𝑘 = 𝑥, ( (𝐹𝑘) ∖ 𝐶), (𝐹𝑘)) = X𝑘𝐴 if(𝑘 = 𝑥, ( (𝐹𝑥) ∖ 𝑥 / 𝑘𝐶), (𝐹𝑘)))
4329, 33, 423eqtrd 2782 . . . . . . 7 ((𝜑𝑥𝐴) → ( (∏t𝐹) ∖ X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))) = X𝑘𝐴 if(𝑘 = 𝑥, ( (𝐹𝑥) ∖ 𝑥 / 𝑘𝐶), (𝐹𝑘)))
448adantr 481 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐴𝑉)
459adantr 481 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐹:𝐴⟶Top)
461ralrimiva 3103 . . . . . . . . . . 11 (𝜑 → ∀𝑘𝐴 𝐶 ∈ (Clsd‘(𝐹𝑘)))
47 nfv 1917 . . . . . . . . . . . 12 𝑥 𝐶 ∈ (Clsd‘(𝐹𝑘))
48 nfcsb1v 3857 . . . . . . . . . . . . 13 𝑘𝑥 / 𝑘𝐶
4948nfel1 2923 . . . . . . . . . . . 12 𝑘𝑥 / 𝑘𝐶 ∈ (Clsd‘(𝐹𝑥))
50 2fveq3 6779 . . . . . . . . . . . . 13 (𝑘 = 𝑥 → (Clsd‘(𝐹𝑘)) = (Clsd‘(𝐹𝑥)))
5137, 50eleq12d 2833 . . . . . . . . . . . 12 (𝑘 = 𝑥 → (𝐶 ∈ (Clsd‘(𝐹𝑘)) ↔ 𝑥 / 𝑘𝐶 ∈ (Clsd‘(𝐹𝑥))))
5247, 49, 51cbvralw 3373 . . . . . . . . . . 11 (∀𝑘𝐴 𝐶 ∈ (Clsd‘(𝐹𝑘)) ↔ ∀𝑥𝐴 𝑥 / 𝑘𝐶 ∈ (Clsd‘(𝐹𝑥)))
5346, 52sylib 217 . . . . . . . . . 10 (𝜑 → ∀𝑥𝐴 𝑥 / 𝑘𝐶 ∈ (Clsd‘(𝐹𝑥)))
5453r19.21bi 3134 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥 / 𝑘𝐶 ∈ (Clsd‘(𝐹𝑥)))
55 eqid 2738 . . . . . . . . . 10 (𝐹𝑥) = (𝐹𝑥)
5655cldopn 22182 . . . . . . . . 9 (𝑥 / 𝑘𝐶 ∈ (Clsd‘(𝐹𝑥)) → ( (𝐹𝑥) ∖ 𝑥 / 𝑘𝐶) ∈ (𝐹𝑥))
5754, 56syl 17 . . . . . . . 8 ((𝜑𝑥𝐴) → ( (𝐹𝑥) ∖ 𝑥 / 𝑘𝐶) ∈ (𝐹𝑥))
5844, 45, 57ptopn2 22735 . . . . . . 7 ((𝜑𝑥𝐴) → X𝑘𝐴 if(𝑘 = 𝑥, ( (𝐹𝑥) ∖ 𝑥 / 𝑘𝐶), (𝐹𝑘)) ∈ (∏t𝐹))
5943, 58eqeltrd 2839 . . . . . 6 ((𝜑𝑥𝐴) → ( (∏t𝐹) ∖ X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))) ∈ (∏t𝐹))
60 eqid 2738 . . . . . . . . 9 (∏t𝐹) = (∏t𝐹)
6160iscld 22178 . . . . . . . 8 ((∏t𝐹) ∈ Top → (X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ∈ (Clsd‘(∏t𝐹)) ↔ (X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ⊆ (∏t𝐹) ∧ ( (∏t𝐹) ∖ X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))) ∈ (∏t𝐹))))
6215, 61syl 17 . . . . . . 7 (𝜑 → (X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ∈ (Clsd‘(∏t𝐹)) ↔ (X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ⊆ (∏t𝐹) ∧ ( (∏t𝐹) ∖ X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))) ∈ (∏t𝐹))))
6362adantr 481 . . . . . 6 ((𝜑𝑥𝐴) → (X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ∈ (Clsd‘(∏t𝐹)) ↔ (X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ⊆ (∏t𝐹) ∧ ( (∏t𝐹) ∖ X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))) ∈ (∏t𝐹))))
6426, 59, 63mpbir2and 710 . . . . 5 ((𝜑𝑥𝐴) → X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ∈ (Clsd‘(∏t𝐹)))
6564ralrimiva 3103 . . . 4 (𝜑 → ∀𝑥𝐴 X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ∈ (Clsd‘(∏t𝐹)))
6660riincld 22195 . . . 4 (((∏t𝐹) ∈ Top ∧ ∀𝑥𝐴 X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘)) ∈ (Clsd‘(∏t𝐹))) → ( (∏t𝐹) ∩ 𝑥𝐴 X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))) ∈ (Clsd‘(∏t𝐹)))
6715, 65, 66syl2anc 584 . . 3 (𝜑 → ( (∏t𝐹) ∩ 𝑥𝐴 X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))) ∈ (Clsd‘(∏t𝐹)))
6813, 67eqeltrd 2839 . 2 (𝜑 → (X𝑘𝐴 (𝐹𝑘) ∩ 𝑥𝐴 X𝑘𝐴 if(𝑘 = 𝑥, 𝐶, (𝐹𝑘))) ∈ (Clsd‘(∏t𝐹)))
697, 68eqeltrd 2839 1 (𝜑X𝑘𝐴 𝐶 ∈ (Clsd‘(∏t𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  csb 3832  cdif 3884  cin 3886  wss 3887  ifcif 4459   cuni 4839   ciin 4925  wf 6429  cfv 6433  Xcixp 8685  tcpt 17149  Topctop 22042  Clsdccld 22167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1o 8297  df-er 8498  df-ixp 8686  df-en 8734  df-fin 8737  df-fi 9170  df-topgen 17154  df-pt 17155  df-top 22043  df-bases 22096  df-cld 22170
This theorem is referenced by:  ptcldmpt  22765
  Copyright terms: Public domain W3C validator