| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onfin2 | Structured version Visualization version GIF version | ||
| Description: A set is a natural number iff it is a finite ordinal. (Contributed by Mario Carneiro, 22-Jan-2013.) |
| Ref | Expression |
|---|---|
| onfin2 | ⊢ ω = (On ∩ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon 7812 | . . . . 5 ⊢ (𝑥 ∈ ω → 𝑥 ∈ On) | |
| 2 | onfin 9139 | . . . . . 6 ⊢ (𝑥 ∈ On → (𝑥 ∈ Fin ↔ 𝑥 ∈ ω)) | |
| 3 | 2 | biimprcd 250 | . . . . 5 ⊢ (𝑥 ∈ ω → (𝑥 ∈ On → 𝑥 ∈ Fin)) |
| 4 | 1, 3 | jcai 516 | . . . 4 ⊢ (𝑥 ∈ ω → (𝑥 ∈ On ∧ 𝑥 ∈ Fin)) |
| 5 | 2 | biimpa 476 | . . . 4 ⊢ ((𝑥 ∈ On ∧ 𝑥 ∈ Fin) → 𝑥 ∈ ω) |
| 6 | 4, 5 | impbii 209 | . . 3 ⊢ (𝑥 ∈ ω ↔ (𝑥 ∈ On ∧ 𝑥 ∈ Fin)) |
| 7 | elin 3921 | . . 3 ⊢ (𝑥 ∈ (On ∩ Fin) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ Fin)) | |
| 8 | 6, 7 | bitr4i 278 | . 2 ⊢ (𝑥 ∈ ω ↔ 𝑥 ∈ (On ∩ Fin)) |
| 9 | 8 | eqriv 2726 | 1 ⊢ ω = (On ∩ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3904 Oncon0 6311 ωcom 7806 Fincfn 8879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-om 7807 df-1o 8395 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 |
| This theorem is referenced by: cantnfcl 9582 ackbij1lem9 10140 ackbij1lem10 10141 ackbij1b 10151 sdom2en01 10215 fin23lem26 10238 fin56 10306 fin1a2lem9 10321 fzfi 13897 fz1isolem 14386 ackbijnn 15753 hauspwdom 23404 0finon 43421 1finon 43422 2finon 43423 3finon 43424 4finon 43425 finona1cl 43426 finonex 43427 dfom6 43504 |
| Copyright terms: Public domain | W3C validator |