| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onfin2 | Structured version Visualization version GIF version | ||
| Description: A set is a natural number iff it is a finite ordinal. (Contributed by Mario Carneiro, 22-Jan-2013.) |
| Ref | Expression |
|---|---|
| onfin2 | ⊢ ω = (On ∩ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon 7808 | . . . . 5 ⊢ (𝑥 ∈ ω → 𝑥 ∈ On) | |
| 2 | onfin 9131 | . . . . . 6 ⊢ (𝑥 ∈ On → (𝑥 ∈ Fin ↔ 𝑥 ∈ ω)) | |
| 3 | 2 | biimprcd 250 | . . . . 5 ⊢ (𝑥 ∈ ω → (𝑥 ∈ On → 𝑥 ∈ Fin)) |
| 4 | 1, 3 | jcai 516 | . . . 4 ⊢ (𝑥 ∈ ω → (𝑥 ∈ On ∧ 𝑥 ∈ Fin)) |
| 5 | 2 | biimpa 476 | . . . 4 ⊢ ((𝑥 ∈ On ∧ 𝑥 ∈ Fin) → 𝑥 ∈ ω) |
| 6 | 4, 5 | impbii 209 | . . 3 ⊢ (𝑥 ∈ ω ↔ (𝑥 ∈ On ∧ 𝑥 ∈ Fin)) |
| 7 | elin 3914 | . . 3 ⊢ (𝑥 ∈ (On ∩ Fin) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ Fin)) | |
| 8 | 6, 7 | bitr4i 278 | . 2 ⊢ (𝑥 ∈ ω ↔ 𝑥 ∈ (On ∩ Fin)) |
| 9 | 8 | eqriv 2730 | 1 ⊢ ω = (On ∩ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∩ cin 3897 Oncon0 6311 ωcom 7802 Fincfn 8875 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-om 7803 df-1o 8391 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 |
| This theorem is referenced by: cantnfcl 9564 ackbij1lem9 10125 ackbij1lem10 10126 ackbij1b 10136 sdom2en01 10200 fin23lem26 10223 fin56 10291 fin1a2lem9 10306 fzfi 13881 fz1isolem 14370 ackbijnn 15737 hauspwdom 23417 fineqvomon 35155 0finon 43566 1finon 43567 2finon 43568 3finon 43569 4finon 43570 finona1cl 43571 finonex 43572 dfom6 43649 |
| Copyright terms: Public domain | W3C validator |