![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onfin2 | Structured version Visualization version GIF version |
Description: A set is a natural number iff it is a finite ordinal. (Contributed by Mario Carneiro, 22-Jan-2013.) |
Ref | Expression |
---|---|
onfin2 | ⊢ ω = (On ∩ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon 7882 | . . . . 5 ⊢ (𝑥 ∈ ω → 𝑥 ∈ On) | |
2 | onfin 9264 | . . . . . 6 ⊢ (𝑥 ∈ On → (𝑥 ∈ Fin ↔ 𝑥 ∈ ω)) | |
3 | 2 | biimprcd 249 | . . . . 5 ⊢ (𝑥 ∈ ω → (𝑥 ∈ On → 𝑥 ∈ Fin)) |
4 | 1, 3 | jcai 515 | . . . 4 ⊢ (𝑥 ∈ ω → (𝑥 ∈ On ∧ 𝑥 ∈ Fin)) |
5 | 2 | biimpa 475 | . . . 4 ⊢ ((𝑥 ∈ On ∧ 𝑥 ∈ Fin) → 𝑥 ∈ ω) |
6 | 4, 5 | impbii 208 | . . 3 ⊢ (𝑥 ∈ ω ↔ (𝑥 ∈ On ∧ 𝑥 ∈ Fin)) |
7 | elin 3963 | . . 3 ⊢ (𝑥 ∈ (On ∩ Fin) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ Fin)) | |
8 | 6, 7 | bitr4i 277 | . 2 ⊢ (𝑥 ∈ ω ↔ 𝑥 ∈ (On ∩ Fin)) |
9 | 8 | eqriv 2723 | 1 ⊢ ω = (On ∩ Fin) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∩ cin 3946 Oncon0 6376 ωcom 7876 Fincfn 8974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-om 7877 df-1o 8496 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 |
This theorem is referenced by: nnfiOLD 9266 cantnfcl 9710 ackbij1lem9 10271 ackbij1lem10 10272 ackbij1b 10282 sdom2en01 10345 fin23lem26 10368 fin56 10436 fin1a2lem9 10451 fzfi 13992 fz1isolem 14480 ackbijnn 15832 hauspwdom 23496 0finon 43115 1finon 43116 2finon 43117 3finon 43118 4finon 43119 finona1cl 43120 finonex 43121 dfom6 43198 |
Copyright terms: Public domain | W3C validator |