Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onfin2 | Structured version Visualization version GIF version |
Description: A set is a natural number iff it is a finite ordinal. (Contributed by Mario Carneiro, 22-Jan-2013.) |
Ref | Expression |
---|---|
onfin2 | ⊢ ω = (On ∩ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon 7693 | . . . . 5 ⊢ (𝑥 ∈ ω → 𝑥 ∈ On) | |
2 | onfin 8944 | . . . . . 6 ⊢ (𝑥 ∈ On → (𝑥 ∈ Fin ↔ 𝑥 ∈ ω)) | |
3 | 2 | biimprcd 249 | . . . . 5 ⊢ (𝑥 ∈ ω → (𝑥 ∈ On → 𝑥 ∈ Fin)) |
4 | 1, 3 | jcai 516 | . . . 4 ⊢ (𝑥 ∈ ω → (𝑥 ∈ On ∧ 𝑥 ∈ Fin)) |
5 | 2 | biimpa 476 | . . . 4 ⊢ ((𝑥 ∈ On ∧ 𝑥 ∈ Fin) → 𝑥 ∈ ω) |
6 | 4, 5 | impbii 208 | . . 3 ⊢ (𝑥 ∈ ω ↔ (𝑥 ∈ On ∧ 𝑥 ∈ Fin)) |
7 | elin 3899 | . . 3 ⊢ (𝑥 ∈ (On ∩ Fin) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ Fin)) | |
8 | 6, 7 | bitr4i 277 | . 2 ⊢ (𝑥 ∈ ω ↔ 𝑥 ∈ (On ∩ Fin)) |
9 | 8 | eqriv 2735 | 1 ⊢ ω = (On ∩ Fin) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∩ cin 3882 Oncon0 6251 ωcom 7687 Fincfn 8691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-om 7688 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 |
This theorem is referenced by: nnfiOLD 8946 cantnfcl 9355 ackbij1lem9 9915 ackbij1lem10 9916 ackbij1b 9926 sdom2en01 9989 fin23lem26 10012 fin56 10080 fin1a2lem9 10095 fzfi 13620 fz1isolem 14103 ackbijnn 15468 hauspwdom 22560 dfom6 41036 |
Copyright terms: Public domain | W3C validator |