MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onfin2 Structured version   Visualization version   GIF version

Theorem onfin2 9182
Description: A set is a natural number iff it is a finite ordinal. (Contributed by Mario Carneiro, 22-Jan-2013.)
Assertion
Ref Expression
onfin2 ω = (On ∩ Fin)

Proof of Theorem onfin2
StepHypRef Expression
1 nnon 7813 . . . . 5 (𝑥 ∈ ω → 𝑥 ∈ On)
2 onfin 9181 . . . . . 6 (𝑥 ∈ On → (𝑥 ∈ Fin ↔ 𝑥 ∈ ω))
32biimprcd 250 . . . . 5 (𝑥 ∈ ω → (𝑥 ∈ On → 𝑥 ∈ Fin))
41, 3jcai 518 . . . 4 (𝑥 ∈ ω → (𝑥 ∈ On ∧ 𝑥 ∈ Fin))
52biimpa 478 . . . 4 ((𝑥 ∈ On ∧ 𝑥 ∈ Fin) → 𝑥 ∈ ω)
64, 5impbii 208 . . 3 (𝑥 ∈ ω ↔ (𝑥 ∈ On ∧ 𝑥 ∈ Fin))
7 elin 3931 . . 3 (𝑥 ∈ (On ∩ Fin) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ Fin))
86, 7bitr4i 278 . 2 (𝑥 ∈ ω ↔ 𝑥 ∈ (On ∩ Fin))
98eqriv 2734 1 ω = (On ∩ Fin)
Colors of variables: wff setvar class
Syntax hints:  wa 397   = wceq 1542  wcel 2107  cin 3914  Oncon0 6322  ωcom 7807  Fincfn 8890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-om 7808  df-1o 8417  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894
This theorem is referenced by:  nnfiOLD  9183  cantnfcl  9610  ackbij1lem9  10171  ackbij1lem10  10172  ackbij1b  10182  sdom2en01  10245  fin23lem26  10268  fin56  10336  fin1a2lem9  10351  fzfi  13884  fz1isolem  14367  ackbijnn  15720  hauspwdom  22868  0finon  41794  1finon  41795  2finon  41796  3finon  41797  4finon  41798  finona1cl  41799  finonex  41800  dfom6  41877
  Copyright terms: Public domain W3C validator