MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onfin2 Structured version   Visualization version   GIF version

Theorem onfin2 8695
Description: A set is a natural number iff it is a finite ordinal. (Contributed by Mario Carneiro, 22-Jan-2013.)
Assertion
Ref Expression
onfin2 ω = (On ∩ Fin)

Proof of Theorem onfin2
StepHypRef Expression
1 nnon 7566 . . . . 5 (𝑥 ∈ ω → 𝑥 ∈ On)
2 onfin 8694 . . . . . 6 (𝑥 ∈ On → (𝑥 ∈ Fin ↔ 𝑥 ∈ ω))
32biimprcd 253 . . . . 5 (𝑥 ∈ ω → (𝑥 ∈ On → 𝑥 ∈ Fin))
41, 3jcai 520 . . . 4 (𝑥 ∈ ω → (𝑥 ∈ On ∧ 𝑥 ∈ Fin))
52biimpa 480 . . . 4 ((𝑥 ∈ On ∧ 𝑥 ∈ Fin) → 𝑥 ∈ ω)
64, 5impbii 212 . . 3 (𝑥 ∈ ω ↔ (𝑥 ∈ On ∧ 𝑥 ∈ Fin))
7 elin 3897 . . 3 (𝑥 ∈ (On ∩ Fin) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ Fin))
86, 7bitr4i 281 . 2 (𝑥 ∈ ω ↔ 𝑥 ∈ (On ∩ Fin))
98eqriv 2795 1 ω = (On ∩ Fin)
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1538  wcel 2111  cin 3880  Oncon0 6159  ωcom 7560  Fincfn 8492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-om 7561  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496
This theorem is referenced by:  nnfi  8696  cantnfcl  9114  ackbij1lem9  9639  ackbij1lem10  9640  ackbij1b  9650  sdom2en01  9713  fin23lem26  9736  fin56  9804  fin1a2lem9  9819  fzfi  13335  fz1isolem  13815  ackbijnn  15175  hauspwdom  22106  dfom6  40239
  Copyright terms: Public domain W3C validator