MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onfin2 Structured version   Visualization version   GIF version

Theorem onfin2 8945
Description: A set is a natural number iff it is a finite ordinal. (Contributed by Mario Carneiro, 22-Jan-2013.)
Assertion
Ref Expression
onfin2 ω = (On ∩ Fin)

Proof of Theorem onfin2
StepHypRef Expression
1 nnon 7693 . . . . 5 (𝑥 ∈ ω → 𝑥 ∈ On)
2 onfin 8944 . . . . . 6 (𝑥 ∈ On → (𝑥 ∈ Fin ↔ 𝑥 ∈ ω))
32biimprcd 249 . . . . 5 (𝑥 ∈ ω → (𝑥 ∈ On → 𝑥 ∈ Fin))
41, 3jcai 516 . . . 4 (𝑥 ∈ ω → (𝑥 ∈ On ∧ 𝑥 ∈ Fin))
52biimpa 476 . . . 4 ((𝑥 ∈ On ∧ 𝑥 ∈ Fin) → 𝑥 ∈ ω)
64, 5impbii 208 . . 3 (𝑥 ∈ ω ↔ (𝑥 ∈ On ∧ 𝑥 ∈ Fin))
7 elin 3899 . . 3 (𝑥 ∈ (On ∩ Fin) ↔ (𝑥 ∈ On ∧ 𝑥 ∈ Fin))
86, 7bitr4i 277 . 2 (𝑥 ∈ ω ↔ 𝑥 ∈ (On ∩ Fin))
98eqriv 2735 1 ω = (On ∩ Fin)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wcel 2108  cin 3882  Oncon0 6251  ωcom 7687  Fincfn 8691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695
This theorem is referenced by:  nnfiOLD  8946  cantnfcl  9355  ackbij1lem9  9915  ackbij1lem10  9916  ackbij1b  9926  sdom2en01  9989  fin23lem26  10012  fin56  10080  fin1a2lem9  10095  fzfi  13620  fz1isolem  14103  ackbijnn  15468  hauspwdom  22560  dfom6  41036
  Copyright terms: Public domain W3C validator