Proof of Theorem qirropth
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eldifn 4131 | . . . . . . . 8
⊢ (𝐴 ∈ (ℂ ∖
ℚ) → ¬ 𝐴
∈ ℚ) | 
| 2 | 1 | 3ad2ant1 1133 | . . . . . . 7
⊢ ((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) → ¬ 𝐴
∈ ℚ) | 
| 3 | 2 | adantr 480 | . . . . . 6
⊢ (((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → ¬ 𝐴 ∈ ℚ) | 
| 4 |  | simpll1 1212 | . . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐴 ∈ (ℂ ∖
ℚ)) | 
| 5 | 4 | eldifad 3962 | . . . . . . . . . . 11
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐴 ∈ ℂ) | 
| 6 |  | simp2r 1200 | . . . . . . . . . . . . 13
⊢ ((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) → 𝐶 ∈
ℚ) | 
| 7 | 6 | ad2antrr 726 | . . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐶 ∈ ℚ) | 
| 8 |  | qcn 13006 | . . . . . . . . . . . 12
⊢ (𝐶 ∈ ℚ → 𝐶 ∈
ℂ) | 
| 9 | 7, 8 | syl 17 | . . . . . . . . . . 11
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐶 ∈ ℂ) | 
| 10 |  | simp3r 1202 | . . . . . . . . . . . . 13
⊢ ((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) → 𝐸 ∈
ℚ) | 
| 11 | 10 | ad2antrr 726 | . . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐸 ∈ ℚ) | 
| 12 |  | qcn 13006 | . . . . . . . . . . . 12
⊢ (𝐸 ∈ ℚ → 𝐸 ∈
ℂ) | 
| 13 | 11, 12 | syl 17 | . . . . . . . . . . 11
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐸 ∈ ℂ) | 
| 14 | 5, 9, 13 | subdid 11720 | . . . . . . . . . 10
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐴 · (𝐶 − 𝐸)) = ((𝐴 · 𝐶) − (𝐴 · 𝐸))) | 
| 15 |  | qsubcl 13011 | . . . . . . . . . . . . 13
⊢ ((𝐶 ∈ ℚ ∧ 𝐸 ∈ ℚ) → (𝐶 − 𝐸) ∈ ℚ) | 
| 16 | 7, 11, 15 | syl2anc 584 | . . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐶 − 𝐸) ∈ ℚ) | 
| 17 |  | qcn 13006 | . . . . . . . . . . . 12
⊢ ((𝐶 − 𝐸) ∈ ℚ → (𝐶 − 𝐸) ∈ ℂ) | 
| 18 | 16, 17 | syl 17 | . . . . . . . . . . 11
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐶 − 𝐸) ∈ ℂ) | 
| 19 | 18, 5 | mulcomd 11283 | . . . . . . . . . 10
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → ((𝐶 − 𝐸) · 𝐴) = (𝐴 · (𝐶 − 𝐸))) | 
| 20 |  | simplr 768 | . . . . . . . . . . 11
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) | 
| 21 |  | simp2l 1199 | . . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) → 𝐵 ∈
ℚ) | 
| 22 | 21 | ad2antrr 726 | . . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐵 ∈ ℚ) | 
| 23 |  | qcn 13006 | . . . . . . . . . . . . 13
⊢ (𝐵 ∈ ℚ → 𝐵 ∈
ℂ) | 
| 24 | 22, 23 | syl 17 | . . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐵 ∈ ℂ) | 
| 25 | 5, 9 | mulcld 11282 | . . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐴 · 𝐶) ∈ ℂ) | 
| 26 |  | simp3l 1201 | . . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) → 𝐷 ∈
ℚ) | 
| 27 | 26 | ad2antrr 726 | . . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐷 ∈ ℚ) | 
| 28 |  | qcn 13006 | . . . . . . . . . . . . 13
⊢ (𝐷 ∈ ℚ → 𝐷 ∈
ℂ) | 
| 29 | 27, 28 | syl 17 | . . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐷 ∈ ℂ) | 
| 30 | 5, 13 | mulcld 11282 | . . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐴 · 𝐸) ∈ ℂ) | 
| 31 | 24, 25, 29, 30 | addsubeq4d 11672 | . . . . . . . . . . 11
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → ((𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸)) ↔ (𝐷 − 𝐵) = ((𝐴 · 𝐶) − (𝐴 · 𝐸)))) | 
| 32 | 20, 31 | mpbid 232 | . . . . . . . . . 10
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐷 − 𝐵) = ((𝐴 · 𝐶) − (𝐴 · 𝐸))) | 
| 33 | 14, 19, 32 | 3eqtr4d 2786 | . . . . . . . . 9
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → ((𝐶 − 𝐸) · 𝐴) = (𝐷 − 𝐵)) | 
| 34 |  | qsubcl 13011 | . . . . . . . . . . . 12
⊢ ((𝐷 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐷 − 𝐵) ∈ ℚ) | 
| 35 | 27, 22, 34 | syl2anc 584 | . . . . . . . . . . 11
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐷 − 𝐵) ∈ ℚ) | 
| 36 |  | qcn 13006 | . . . . . . . . . . 11
⊢ ((𝐷 − 𝐵) ∈ ℚ → (𝐷 − 𝐵) ∈ ℂ) | 
| 37 | 35, 36 | syl 17 | . . . . . . . . . 10
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐷 − 𝐵) ∈ ℂ) | 
| 38 |  | simpr 484 | . . . . . . . . . . 11
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → ¬ 𝐶 = 𝐸) | 
| 39 |  | subeq0 11536 | . . . . . . . . . . . . 13
⊢ ((𝐶 ∈ ℂ ∧ 𝐸 ∈ ℂ) → ((𝐶 − 𝐸) = 0 ↔ 𝐶 = 𝐸)) | 
| 40 | 39 | necon3abid 2976 | . . . . . . . . . . . 12
⊢ ((𝐶 ∈ ℂ ∧ 𝐸 ∈ ℂ) → ((𝐶 − 𝐸) ≠ 0 ↔ ¬ 𝐶 = 𝐸)) | 
| 41 | 9, 13, 40 | syl2anc 584 | . . . . . . . . . . 11
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → ((𝐶 − 𝐸) ≠ 0 ↔ ¬ 𝐶 = 𝐸)) | 
| 42 | 38, 41 | mpbird 257 | . . . . . . . . . 10
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐶 − 𝐸) ≠ 0) | 
| 43 | 37, 18, 5, 42 | divmuld 12066 | . . . . . . . . 9
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (((𝐷 − 𝐵) / (𝐶 − 𝐸)) = 𝐴 ↔ ((𝐶 − 𝐸) · 𝐴) = (𝐷 − 𝐵))) | 
| 44 | 33, 43 | mpbird 257 | . . . . . . . 8
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → ((𝐷 − 𝐵) / (𝐶 − 𝐸)) = 𝐴) | 
| 45 |  | qdivcl 13013 | . . . . . . . . 9
⊢ (((𝐷 − 𝐵) ∈ ℚ ∧ (𝐶 − 𝐸) ∈ ℚ ∧ (𝐶 − 𝐸) ≠ 0) → ((𝐷 − 𝐵) / (𝐶 − 𝐸)) ∈ ℚ) | 
| 46 | 35, 16, 42, 45 | syl3anc 1372 | . . . . . . . 8
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → ((𝐷 − 𝐵) / (𝐶 − 𝐸)) ∈ ℚ) | 
| 47 | 44, 46 | eqeltrrd 2841 | . . . . . . 7
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐴 ∈ ℚ) | 
| 48 | 47 | ex 412 | . . . . . 6
⊢ (((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → (¬ 𝐶 = 𝐸 → 𝐴 ∈ ℚ)) | 
| 49 | 3, 48 | mt3d 148 | . . . . 5
⊢ (((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → 𝐶 = 𝐸) | 
| 50 |  | simpl2l 1226 | . . . . . . . . 9
⊢ (((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → 𝐵 ∈ ℚ) | 
| 51 | 50, 23 | syl 17 | . . . . . . . 8
⊢ (((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → 𝐵 ∈ ℂ) | 
| 52 | 51 | adantr 480 | . . . . . . 7
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → 𝐵 ∈ ℂ) | 
| 53 |  | simpl3l 1228 | . . . . . . . . 9
⊢ (((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → 𝐷 ∈ ℚ) | 
| 54 | 53, 28 | syl 17 | . . . . . . . 8
⊢ (((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → 𝐷 ∈ ℂ) | 
| 55 | 54 | adantr 480 | . . . . . . 7
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → 𝐷 ∈ ℂ) | 
| 56 |  | simpl1 1191 | . . . . . . . . . 10
⊢ (((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → 𝐴 ∈ (ℂ ∖
ℚ)) | 
| 57 | 56 | eldifad 3962 | . . . . . . . . 9
⊢ (((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → 𝐴 ∈ ℂ) | 
| 58 |  | simpl3r 1229 | . . . . . . . . . 10
⊢ (((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → 𝐸 ∈ ℚ) | 
| 59 | 58, 12 | syl 17 | . . . . . . . . 9
⊢ (((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → 𝐸 ∈ ℂ) | 
| 60 | 57, 59 | mulcld 11282 | . . . . . . . 8
⊢ (((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → (𝐴 · 𝐸) ∈ ℂ) | 
| 61 | 60 | adantr 480 | . . . . . . 7
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → (𝐴 · 𝐸) ∈ ℂ) | 
| 62 |  | simpr 484 | . . . . . . . . . . 11
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → 𝐶 = 𝐸) | 
| 63 | 62 | eqcomd 2742 | . . . . . . . . . 10
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → 𝐸 = 𝐶) | 
| 64 | 63 | oveq2d 7448 | . . . . . . . . 9
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → (𝐴 · 𝐸) = (𝐴 · 𝐶)) | 
| 65 | 64 | oveq2d 7448 | . . . . . . . 8
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → (𝐵 + (𝐴 · 𝐸)) = (𝐵 + (𝐴 · 𝐶))) | 
| 66 |  | simplr 768 | . . . . . . . 8
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) | 
| 67 | 65, 66 | eqtrd 2776 | . . . . . . 7
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → (𝐵 + (𝐴 · 𝐸)) = (𝐷 + (𝐴 · 𝐸))) | 
| 68 | 52, 55, 61, 67 | addcan2ad 11468 | . . . . . 6
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → 𝐵 = 𝐷) | 
| 69 | 68 | ex 412 | . . . . 5
⊢ (((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → (𝐶 = 𝐸 → 𝐵 = 𝐷)) | 
| 70 | 49, 69 | jcai 516 | . . . 4
⊢ (((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → (𝐶 = 𝐸 ∧ 𝐵 = 𝐷)) | 
| 71 | 70 | ancomd 461 | . . 3
⊢ (((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → (𝐵 = 𝐷 ∧ 𝐶 = 𝐸)) | 
| 72 | 71 | ex 412 | . 2
⊢ ((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) → ((𝐵 +
(𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸)) → (𝐵 = 𝐷 ∧ 𝐶 = 𝐸))) | 
| 73 |  | id 22 | . . 3
⊢ (𝐵 = 𝐷 → 𝐵 = 𝐷) | 
| 74 |  | oveq2 7440 | . . 3
⊢ (𝐶 = 𝐸 → (𝐴 · 𝐶) = (𝐴 · 𝐸)) | 
| 75 | 73, 74 | oveqan12d 7451 | . 2
⊢ ((𝐵 = 𝐷 ∧ 𝐶 = 𝐸) → (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) | 
| 76 | 72, 75 | impbid1 225 | 1
⊢ ((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) → ((𝐵 +
(𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸)) ↔ (𝐵 = 𝐷 ∧ 𝐶 = 𝐸))) |