Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qirropth Structured version   Visualization version   GIF version

Theorem qirropth 42903
Description: This lemma implements the concept of "equate rational and irrational parts", used to prove many arithmetical properties of the X and Y sequences. (Contributed by Stefan O'Rear, 21-Sep-2014.)
Assertion
Ref Expression
qirropth ((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) → ((𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸)) ↔ (𝐵 = 𝐷𝐶 = 𝐸)))

Proof of Theorem qirropth
StepHypRef Expression
1 eldifn 4098 . . . . . . . 8 (𝐴 ∈ (ℂ ∖ ℚ) → ¬ 𝐴 ∈ ℚ)
213ad2ant1 1133 . . . . . . 7 ((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) → ¬ 𝐴 ∈ ℚ)
32adantr 480 . . . . . 6 (((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → ¬ 𝐴 ∈ ℚ)
4 simpll1 1213 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐴 ∈ (ℂ ∖ ℚ))
54eldifad 3929 . . . . . . . . . . 11 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐴 ∈ ℂ)
6 simp2r 1201 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) → 𝐶 ∈ ℚ)
76ad2antrr 726 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐶 ∈ ℚ)
8 qcn 12929 . . . . . . . . . . . 12 (𝐶 ∈ ℚ → 𝐶 ∈ ℂ)
97, 8syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐶 ∈ ℂ)
10 simp3r 1203 . . . . . . . . . . . . 13 ((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) → 𝐸 ∈ ℚ)
1110ad2antrr 726 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐸 ∈ ℚ)
12 qcn 12929 . . . . . . . . . . . 12 (𝐸 ∈ ℚ → 𝐸 ∈ ℂ)
1311, 12syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐸 ∈ ℂ)
145, 9, 13subdid 11641 . . . . . . . . . 10 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐴 · (𝐶𝐸)) = ((𝐴 · 𝐶) − (𝐴 · 𝐸)))
15 qsubcl 12934 . . . . . . . . . . . . 13 ((𝐶 ∈ ℚ ∧ 𝐸 ∈ ℚ) → (𝐶𝐸) ∈ ℚ)
167, 11, 15syl2anc 584 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐶𝐸) ∈ ℚ)
17 qcn 12929 . . . . . . . . . . . 12 ((𝐶𝐸) ∈ ℚ → (𝐶𝐸) ∈ ℂ)
1816, 17syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐶𝐸) ∈ ℂ)
1918, 5mulcomd 11202 . . . . . . . . . 10 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → ((𝐶𝐸) · 𝐴) = (𝐴 · (𝐶𝐸)))
20 simplr 768 . . . . . . . . . . 11 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸)))
21 simp2l 1200 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) → 𝐵 ∈ ℚ)
2221ad2antrr 726 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐵 ∈ ℚ)
23 qcn 12929 . . . . . . . . . . . . 13 (𝐵 ∈ ℚ → 𝐵 ∈ ℂ)
2422, 23syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐵 ∈ ℂ)
255, 9mulcld 11201 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐴 · 𝐶) ∈ ℂ)
26 simp3l 1202 . . . . . . . . . . . . . 14 ((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) → 𝐷 ∈ ℚ)
2726ad2antrr 726 . . . . . . . . . . . . 13 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐷 ∈ ℚ)
28 qcn 12929 . . . . . . . . . . . . 13 (𝐷 ∈ ℚ → 𝐷 ∈ ℂ)
2927, 28syl 17 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐷 ∈ ℂ)
305, 13mulcld 11201 . . . . . . . . . . . 12 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐴 · 𝐸) ∈ ℂ)
3124, 25, 29, 30addsubeq4d 11591 . . . . . . . . . . 11 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → ((𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸)) ↔ (𝐷𝐵) = ((𝐴 · 𝐶) − (𝐴 · 𝐸))))
3220, 31mpbid 232 . . . . . . . . . 10 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐷𝐵) = ((𝐴 · 𝐶) − (𝐴 · 𝐸)))
3314, 19, 323eqtr4d 2775 . . . . . . . . 9 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → ((𝐶𝐸) · 𝐴) = (𝐷𝐵))
34 qsubcl 12934 . . . . . . . . . . . 12 ((𝐷 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐷𝐵) ∈ ℚ)
3527, 22, 34syl2anc 584 . . . . . . . . . . 11 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐷𝐵) ∈ ℚ)
36 qcn 12929 . . . . . . . . . . 11 ((𝐷𝐵) ∈ ℚ → (𝐷𝐵) ∈ ℂ)
3735, 36syl 17 . . . . . . . . . 10 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐷𝐵) ∈ ℂ)
38 simpr 484 . . . . . . . . . . 11 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → ¬ 𝐶 = 𝐸)
39 subeq0 11455 . . . . . . . . . . . . 13 ((𝐶 ∈ ℂ ∧ 𝐸 ∈ ℂ) → ((𝐶𝐸) = 0 ↔ 𝐶 = 𝐸))
4039necon3abid 2962 . . . . . . . . . . . 12 ((𝐶 ∈ ℂ ∧ 𝐸 ∈ ℂ) → ((𝐶𝐸) ≠ 0 ↔ ¬ 𝐶 = 𝐸))
419, 13, 40syl2anc 584 . . . . . . . . . . 11 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → ((𝐶𝐸) ≠ 0 ↔ ¬ 𝐶 = 𝐸))
4238, 41mpbird 257 . . . . . . . . . 10 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐶𝐸) ≠ 0)
4337, 18, 5, 42divmuld 11987 . . . . . . . . 9 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (((𝐷𝐵) / (𝐶𝐸)) = 𝐴 ↔ ((𝐶𝐸) · 𝐴) = (𝐷𝐵)))
4433, 43mpbird 257 . . . . . . . 8 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → ((𝐷𝐵) / (𝐶𝐸)) = 𝐴)
45 qdivcl 12936 . . . . . . . . 9 (((𝐷𝐵) ∈ ℚ ∧ (𝐶𝐸) ∈ ℚ ∧ (𝐶𝐸) ≠ 0) → ((𝐷𝐵) / (𝐶𝐸)) ∈ ℚ)
4635, 16, 42, 45syl3anc 1373 . . . . . . . 8 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → ((𝐷𝐵) / (𝐶𝐸)) ∈ ℚ)
4744, 46eqeltrrd 2830 . . . . . . 7 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐴 ∈ ℚ)
4847ex 412 . . . . . 6 (((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → (¬ 𝐶 = 𝐸𝐴 ∈ ℚ))
493, 48mt3d 148 . . . . 5 (((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → 𝐶 = 𝐸)
50 simpl2l 1227 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → 𝐵 ∈ ℚ)
5150, 23syl 17 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → 𝐵 ∈ ℂ)
5251adantr 480 . . . . . . 7 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → 𝐵 ∈ ℂ)
53 simpl3l 1229 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → 𝐷 ∈ ℚ)
5453, 28syl 17 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → 𝐷 ∈ ℂ)
5554adantr 480 . . . . . . 7 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → 𝐷 ∈ ℂ)
56 simpl1 1192 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → 𝐴 ∈ (ℂ ∖ ℚ))
5756eldifad 3929 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → 𝐴 ∈ ℂ)
58 simpl3r 1230 . . . . . . . . . 10 (((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → 𝐸 ∈ ℚ)
5958, 12syl 17 . . . . . . . . 9 (((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → 𝐸 ∈ ℂ)
6057, 59mulcld 11201 . . . . . . . 8 (((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → (𝐴 · 𝐸) ∈ ℂ)
6160adantr 480 . . . . . . 7 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → (𝐴 · 𝐸) ∈ ℂ)
62 simpr 484 . . . . . . . . . . 11 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → 𝐶 = 𝐸)
6362eqcomd 2736 . . . . . . . . . 10 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → 𝐸 = 𝐶)
6463oveq2d 7406 . . . . . . . . 9 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → (𝐴 · 𝐸) = (𝐴 · 𝐶))
6564oveq2d 7406 . . . . . . . 8 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → (𝐵 + (𝐴 · 𝐸)) = (𝐵 + (𝐴 · 𝐶)))
66 simplr 768 . . . . . . . 8 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸)))
6765, 66eqtrd 2765 . . . . . . 7 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → (𝐵 + (𝐴 · 𝐸)) = (𝐷 + (𝐴 · 𝐸)))
6852, 55, 61, 67addcan2ad 11387 . . . . . 6 ((((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → 𝐵 = 𝐷)
6968ex 412 . . . . 5 (((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → (𝐶 = 𝐸𝐵 = 𝐷))
7049, 69jcai 516 . . . 4 (((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → (𝐶 = 𝐸𝐵 = 𝐷))
7170ancomd 461 . . 3 (((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → (𝐵 = 𝐷𝐶 = 𝐸))
7271ex 412 . 2 ((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) → ((𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸)) → (𝐵 = 𝐷𝐶 = 𝐸)))
73 id 22 . . 3 (𝐵 = 𝐷𝐵 = 𝐷)
74 oveq2 7398 . . 3 (𝐶 = 𝐸 → (𝐴 · 𝐶) = (𝐴 · 𝐸))
7573, 74oveqan12d 7409 . 2 ((𝐵 = 𝐷𝐶 = 𝐸) → (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸)))
7672, 75impbid1 225 1 ((𝐴 ∈ (ℂ ∖ ℚ) ∧ (𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) ∧ (𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ)) → ((𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸)) ↔ (𝐵 = 𝐷𝐶 = 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  cdif 3914  (class class class)co 7390  cc 11073  0cc0 11075   + caddc 11078   · cmul 11080  cmin 11412   / cdiv 11842  cq 12914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-n0 12450  df-z 12537  df-q 12915
This theorem is referenced by:  rmxypairf1o  42907  rmxycomplete  42913  rmxyneg  42916  rmxyadd  42917  rmxy1  42918  rmxy0  42919  jm2.22  42991
  Copyright terms: Public domain W3C validator