Proof of Theorem qirropth
Step | Hyp | Ref
| Expression |
1 | | eldifn 4062 |
. . . . . . . 8
⊢ (𝐴 ∈ (ℂ ∖
ℚ) → ¬ 𝐴
∈ ℚ) |
2 | 1 | 3ad2ant1 1132 |
. . . . . . 7
⊢ ((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) → ¬ 𝐴
∈ ℚ) |
3 | 2 | adantr 481 |
. . . . . 6
⊢ (((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → ¬ 𝐴 ∈ ℚ) |
4 | | simpll1 1211 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐴 ∈ (ℂ ∖
ℚ)) |
5 | 4 | eldifad 3899 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐴 ∈ ℂ) |
6 | | simp2r 1199 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) → 𝐶 ∈
ℚ) |
7 | 6 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐶 ∈ ℚ) |
8 | | qcn 12703 |
. . . . . . . . . . . 12
⊢ (𝐶 ∈ ℚ → 𝐶 ∈
ℂ) |
9 | 7, 8 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐶 ∈ ℂ) |
10 | | simp3r 1201 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) → 𝐸 ∈
ℚ) |
11 | 10 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐸 ∈ ℚ) |
12 | | qcn 12703 |
. . . . . . . . . . . 12
⊢ (𝐸 ∈ ℚ → 𝐸 ∈
ℂ) |
13 | 11, 12 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐸 ∈ ℂ) |
14 | 5, 9, 13 | subdid 11431 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐴 · (𝐶 − 𝐸)) = ((𝐴 · 𝐶) − (𝐴 · 𝐸))) |
15 | | qsubcl 12708 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ ℚ ∧ 𝐸 ∈ ℚ) → (𝐶 − 𝐸) ∈ ℚ) |
16 | 7, 11, 15 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐶 − 𝐸) ∈ ℚ) |
17 | | qcn 12703 |
. . . . . . . . . . . 12
⊢ ((𝐶 − 𝐸) ∈ ℚ → (𝐶 − 𝐸) ∈ ℂ) |
18 | 16, 17 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐶 − 𝐸) ∈ ℂ) |
19 | 18, 5 | mulcomd 10996 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → ((𝐶 − 𝐸) · 𝐴) = (𝐴 · (𝐶 − 𝐸))) |
20 | | simplr 766 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) |
21 | | simp2l 1198 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) → 𝐵 ∈
ℚ) |
22 | 21 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐵 ∈ ℚ) |
23 | | qcn 12703 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ ℚ → 𝐵 ∈
ℂ) |
24 | 22, 23 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐵 ∈ ℂ) |
25 | 5, 9 | mulcld 10995 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐴 · 𝐶) ∈ ℂ) |
26 | | simp3l 1200 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) → 𝐷 ∈
ℚ) |
27 | 26 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐷 ∈ ℚ) |
28 | | qcn 12703 |
. . . . . . . . . . . . 13
⊢ (𝐷 ∈ ℚ → 𝐷 ∈
ℂ) |
29 | 27, 28 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐷 ∈ ℂ) |
30 | 5, 13 | mulcld 10995 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐴 · 𝐸) ∈ ℂ) |
31 | 24, 25, 29, 30 | addsubeq4d 11383 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → ((𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸)) ↔ (𝐷 − 𝐵) = ((𝐴 · 𝐶) − (𝐴 · 𝐸)))) |
32 | 20, 31 | mpbid 231 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐷 − 𝐵) = ((𝐴 · 𝐶) − (𝐴 · 𝐸))) |
33 | 14, 19, 32 | 3eqtr4d 2788 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → ((𝐶 − 𝐸) · 𝐴) = (𝐷 − 𝐵)) |
34 | | qsubcl 12708 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐷 − 𝐵) ∈ ℚ) |
35 | 27, 22, 34 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐷 − 𝐵) ∈ ℚ) |
36 | | qcn 12703 |
. . . . . . . . . . 11
⊢ ((𝐷 − 𝐵) ∈ ℚ → (𝐷 − 𝐵) ∈ ℂ) |
37 | 35, 36 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐷 − 𝐵) ∈ ℂ) |
38 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → ¬ 𝐶 = 𝐸) |
39 | | subeq0 11247 |
. . . . . . . . . . . . 13
⊢ ((𝐶 ∈ ℂ ∧ 𝐸 ∈ ℂ) → ((𝐶 − 𝐸) = 0 ↔ 𝐶 = 𝐸)) |
40 | 39 | necon3abid 2980 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ ℂ ∧ 𝐸 ∈ ℂ) → ((𝐶 − 𝐸) ≠ 0 ↔ ¬ 𝐶 = 𝐸)) |
41 | 9, 13, 40 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → ((𝐶 − 𝐸) ≠ 0 ↔ ¬ 𝐶 = 𝐸)) |
42 | 38, 41 | mpbird 256 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (𝐶 − 𝐸) ≠ 0) |
43 | 37, 18, 5, 42 | divmuld 11773 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → (((𝐷 − 𝐵) / (𝐶 − 𝐸)) = 𝐴 ↔ ((𝐶 − 𝐸) · 𝐴) = (𝐷 − 𝐵))) |
44 | 33, 43 | mpbird 256 |
. . . . . . . 8
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → ((𝐷 − 𝐵) / (𝐶 − 𝐸)) = 𝐴) |
45 | | qdivcl 12710 |
. . . . . . . . 9
⊢ (((𝐷 − 𝐵) ∈ ℚ ∧ (𝐶 − 𝐸) ∈ ℚ ∧ (𝐶 − 𝐸) ≠ 0) → ((𝐷 − 𝐵) / (𝐶 − 𝐸)) ∈ ℚ) |
46 | 35, 16, 42, 45 | syl3anc 1370 |
. . . . . . . 8
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → ((𝐷 − 𝐵) / (𝐶 − 𝐸)) ∈ ℚ) |
47 | 44, 46 | eqeltrrd 2840 |
. . . . . . 7
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ ¬ 𝐶 = 𝐸) → 𝐴 ∈ ℚ) |
48 | 47 | ex 413 |
. . . . . 6
⊢ (((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → (¬ 𝐶 = 𝐸 → 𝐴 ∈ ℚ)) |
49 | 3, 48 | mt3d 148 |
. . . . 5
⊢ (((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → 𝐶 = 𝐸) |
50 | | simpl2l 1225 |
. . . . . . . . 9
⊢ (((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → 𝐵 ∈ ℚ) |
51 | 50, 23 | syl 17 |
. . . . . . . 8
⊢ (((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → 𝐵 ∈ ℂ) |
52 | 51 | adantr 481 |
. . . . . . 7
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → 𝐵 ∈ ℂ) |
53 | | simpl3l 1227 |
. . . . . . . . 9
⊢ (((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → 𝐷 ∈ ℚ) |
54 | 53, 28 | syl 17 |
. . . . . . . 8
⊢ (((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → 𝐷 ∈ ℂ) |
55 | 54 | adantr 481 |
. . . . . . 7
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → 𝐷 ∈ ℂ) |
56 | | simpl1 1190 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → 𝐴 ∈ (ℂ ∖
ℚ)) |
57 | 56 | eldifad 3899 |
. . . . . . . . 9
⊢ (((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → 𝐴 ∈ ℂ) |
58 | | simpl3r 1228 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → 𝐸 ∈ ℚ) |
59 | 58, 12 | syl 17 |
. . . . . . . . 9
⊢ (((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → 𝐸 ∈ ℂ) |
60 | 57, 59 | mulcld 10995 |
. . . . . . . 8
⊢ (((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → (𝐴 · 𝐸) ∈ ℂ) |
61 | 60 | adantr 481 |
. . . . . . 7
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → (𝐴 · 𝐸) ∈ ℂ) |
62 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → 𝐶 = 𝐸) |
63 | 62 | eqcomd 2744 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → 𝐸 = 𝐶) |
64 | 63 | oveq2d 7291 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → (𝐴 · 𝐸) = (𝐴 · 𝐶)) |
65 | 64 | oveq2d 7291 |
. . . . . . . 8
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → (𝐵 + (𝐴 · 𝐸)) = (𝐵 + (𝐴 · 𝐶))) |
66 | | simplr 766 |
. . . . . . . 8
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) |
67 | 65, 66 | eqtrd 2778 |
. . . . . . 7
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → (𝐵 + (𝐴 · 𝐸)) = (𝐷 + (𝐴 · 𝐸))) |
68 | 52, 55, 61, 67 | addcan2ad 11181 |
. . . . . 6
⊢ ((((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) ∧ 𝐶 = 𝐸) → 𝐵 = 𝐷) |
69 | 68 | ex 413 |
. . . . 5
⊢ (((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → (𝐶 = 𝐸 → 𝐵 = 𝐷)) |
70 | 49, 69 | jcai 517 |
. . . 4
⊢ (((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → (𝐶 = 𝐸 ∧ 𝐵 = 𝐷)) |
71 | 70 | ancomd 462 |
. . 3
⊢ (((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) ∧ (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) → (𝐵 = 𝐷 ∧ 𝐶 = 𝐸)) |
72 | 71 | ex 413 |
. 2
⊢ ((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) → ((𝐵 +
(𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸)) → (𝐵 = 𝐷 ∧ 𝐶 = 𝐸))) |
73 | | id 22 |
. . 3
⊢ (𝐵 = 𝐷 → 𝐵 = 𝐷) |
74 | | oveq2 7283 |
. . 3
⊢ (𝐶 = 𝐸 → (𝐴 · 𝐶) = (𝐴 · 𝐸)) |
75 | 73, 74 | oveqan12d 7294 |
. 2
⊢ ((𝐵 = 𝐷 ∧ 𝐶 = 𝐸) → (𝐵 + (𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸))) |
76 | 72, 75 | impbid1 224 |
1
⊢ ((𝐴 ∈ (ℂ ∖
ℚ) ∧ (𝐵 ∈
ℚ ∧ 𝐶 ∈
ℚ) ∧ (𝐷 ∈
ℚ ∧ 𝐸 ∈
ℚ)) → ((𝐵 +
(𝐴 · 𝐶)) = (𝐷 + (𝐴 · 𝐸)) ↔ (𝐵 = 𝐷 ∧ 𝐶 = 𝐸))) |