Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naddcnff Structured version   Visualization version   GIF version

Theorem naddcnff 41253
Description: Addition operator for Cantor normal forms is a function into Cantor normal forms. (Contributed by RP, 2-Jan-2025.)
Assertion
Ref Expression
naddcnff ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ( ∘f +o ↾ (𝑆 × 𝑆)):(𝑆 × 𝑆)⟶𝑆)

Proof of Theorem naddcnff
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 486 . . . . . 6 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑆 = dom (ω CNF 𝑋))
21eleq2d 2822 . . . . 5 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑓𝑆𝑓 ∈ dom (ω CNF 𝑋)))
3 eqid 2736 . . . . . 6 dom (ω CNF 𝑋) = dom (ω CNF 𝑋)
4 omelon 9452 . . . . . . 7 ω ∈ On
54a1i 11 . . . . . 6 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ω ∈ On)
6 simpl 484 . . . . . 6 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑋 ∈ On)
73, 5, 6cantnfs 9472 . . . . 5 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑓 ∈ dom (ω CNF 𝑋) ↔ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)))
82, 7bitrd 279 . . . 4 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑓𝑆 ↔ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)))
91eleq2d 2822 . . . . . . . . 9 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑔𝑆𝑔 ∈ dom (ω CNF 𝑋)))
103, 5, 6cantnfs 9472 . . . . . . . . 9 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑔 ∈ dom (ω CNF 𝑋) ↔ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)))
119, 10bitrd 279 . . . . . . . 8 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑔𝑆 ↔ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)))
1211adantr 482 . . . . . . 7 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) → (𝑔𝑆 ↔ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)))
13 simpl 484 . . . . . . . . . . . . . 14 ((𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅) → 𝑓:𝑋⟶ω)
14 simpl 484 . . . . . . . . . . . . . 14 ((𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅) → 𝑔:𝑋⟶ω)
1513, 14anim12i 614 . . . . . . . . . . . . 13 (((𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) → (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω))
166, 15anim12i 614 . . . . . . . . . . . 12 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ ((𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅))) → (𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)))
1716anassrs 469 . . . . . . . . . . 11 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) → (𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)))
18 simprl 769 . . . . . . . . . . . . . . 15 ((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) → 𝑓:𝑋⟶ω)
1918ffnd 6631 . . . . . . . . . . . . . 14 ((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) → 𝑓 Fn 𝑋)
20 simprr 771 . . . . . . . . . . . . . . 15 ((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) → 𝑔:𝑋⟶ω)
2120ffnd 6631 . . . . . . . . . . . . . 14 ((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) → 𝑔 Fn 𝑋)
22 simpl 484 . . . . . . . . . . . . . 14 ((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) → 𝑋 ∈ On)
23 inidm 4158 . . . . . . . . . . . . . 14 (𝑋𝑋) = 𝑋
2419, 21, 22, 22, 23offn 7578 . . . . . . . . . . . . 13 ((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) → (𝑓f +o 𝑔) Fn 𝑋)
25 simpr 486 . . . . . . . . . . . . . . 15 (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ (𝑓f +o 𝑔) Fn 𝑋) → (𝑓f +o 𝑔) Fn 𝑋)
26 simplrl 775 . . . . . . . . . . . . . . . . . . . . 21 (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ 𝑥𝑋) → 𝑓:𝑋⟶ω)
2726ffnd 6631 . . . . . . . . . . . . . . . . . . . 20 (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ 𝑥𝑋) → 𝑓 Fn 𝑋)
28 simplrr 776 . . . . . . . . . . . . . . . . . . . . 21 (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ 𝑥𝑋) → 𝑔:𝑋⟶ω)
2928ffnd 6631 . . . . . . . . . . . . . . . . . . . 20 (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ 𝑥𝑋) → 𝑔 Fn 𝑋)
30 simpll 765 . . . . . . . . . . . . . . . . . . . 20 (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ 𝑥𝑋) → 𝑋 ∈ On)
31 simpr 486 . . . . . . . . . . . . . . . . . . . 20 (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ 𝑥𝑋) → 𝑥𝑋)
32 fnfvof 7582 . . . . . . . . . . . . . . . . . . . 20 (((𝑓 Fn 𝑋𝑔 Fn 𝑋) ∧ (𝑋 ∈ On ∧ 𝑥𝑋)) → ((𝑓f +o 𝑔)‘𝑥) = ((𝑓𝑥) +o (𝑔𝑥)))
3327, 29, 30, 31, 32syl22anc 837 . . . . . . . . . . . . . . . . . . 19 (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ 𝑥𝑋) → ((𝑓f +o 𝑔)‘𝑥) = ((𝑓𝑥) +o (𝑔𝑥)))
3418ffvelcdmda 6993 . . . . . . . . . . . . . . . . . . . 20 (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ 𝑥𝑋) → (𝑓𝑥) ∈ ω)
3520ffvelcdmda 6993 . . . . . . . . . . . . . . . . . . . 20 (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ 𝑥𝑋) → (𝑔𝑥) ∈ ω)
36 nnacl 8473 . . . . . . . . . . . . . . . . . . . 20 (((𝑓𝑥) ∈ ω ∧ (𝑔𝑥) ∈ ω) → ((𝑓𝑥) +o (𝑔𝑥)) ∈ ω)
3734, 35, 36syl2anc 585 . . . . . . . . . . . . . . . . . . 19 (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ 𝑥𝑋) → ((𝑓𝑥) +o (𝑔𝑥)) ∈ ω)
3833, 37eqeltrd 2837 . . . . . . . . . . . . . . . . . 18 (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ 𝑥𝑋) → ((𝑓f +o 𝑔)‘𝑥) ∈ ω)
3938ex 414 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) → (𝑥𝑋 → ((𝑓f +o 𝑔)‘𝑥) ∈ ω))
4039ralrimiv 3138 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) → ∀𝑥𝑋 ((𝑓f +o 𝑔)‘𝑥) ∈ ω)
4140adantr 482 . . . . . . . . . . . . . . 15 (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ (𝑓f +o 𝑔) Fn 𝑋) → ∀𝑥𝑋 ((𝑓f +o 𝑔)‘𝑥) ∈ ω)
42 fnfvrnss 7026 . . . . . . . . . . . . . . 15 (((𝑓f +o 𝑔) Fn 𝑋 ∧ ∀𝑥𝑋 ((𝑓f +o 𝑔)‘𝑥) ∈ ω) → ran (𝑓f +o 𝑔) ⊆ ω)
4325, 41, 42syl2anc 585 . . . . . . . . . . . . . 14 (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ (𝑓f +o 𝑔) Fn 𝑋) → ran (𝑓f +o 𝑔) ⊆ ω)
4443ex 414 . . . . . . . . . . . . 13 ((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) → ((𝑓f +o 𝑔) Fn 𝑋 → ran (𝑓f +o 𝑔) ⊆ ω))
4524, 44jcai 518 . . . . . . . . . . . 12 ((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) → ((𝑓f +o 𝑔) Fn 𝑋 ∧ ran (𝑓f +o 𝑔) ⊆ ω))
46 df-f 6462 . . . . . . . . . . . 12 ((𝑓f +o 𝑔):𝑋⟶ω ↔ ((𝑓f +o 𝑔) Fn 𝑋 ∧ ran (𝑓f +o 𝑔) ⊆ ω))
4745, 46sylibr 233 . . . . . . . . . . 11 ((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) → (𝑓f +o 𝑔):𝑋⟶ω)
4817, 47syl 17 . . . . . . . . . 10 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) → (𝑓f +o 𝑔):𝑋⟶ω)
49 ffun 6633 . . . . . . . . . . . . 13 ((𝑓f +o 𝑔):𝑋⟶ω → Fun (𝑓f +o 𝑔))
5049adantl 483 . . . . . . . . . . . 12 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓f +o 𝑔):𝑋⟶ω) → Fun (𝑓f +o 𝑔))
51 simplrr 776 . . . . . . . . . . . . . . 15 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) → 𝑓 finSupp ∅)
5251adantr 482 . . . . . . . . . . . . . 14 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓f +o 𝑔):𝑋⟶ω) → 𝑓 finSupp ∅)
53 simplrr 776 . . . . . . . . . . . . . 14 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓f +o 𝑔):𝑋⟶ω) → 𝑔 finSupp ∅)
5452, 53fsuppunfi 9196 . . . . . . . . . . . . 13 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓f +o 𝑔):𝑋⟶ω) → ((𝑓 supp ∅) ∪ (𝑔 supp ∅)) ∈ Fin)
55 simp-4l 781 . . . . . . . . . . . . . 14 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓f +o 𝑔):𝑋⟶ω) → 𝑋 ∈ On)
56 peano1 7767 . . . . . . . . . . . . . . 15 ∅ ∈ ω
5756a1i 11 . . . . . . . . . . . . . 14 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓f +o 𝑔):𝑋⟶ω) → ∅ ∈ ω)
58 simplrl 775 . . . . . . . . . . . . . . 15 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) → 𝑓:𝑋⟶ω)
5958adantr 482 . . . . . . . . . . . . . 14 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓f +o 𝑔):𝑋⟶ω) → 𝑓:𝑋⟶ω)
60 simplrl 775 . . . . . . . . . . . . . 14 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓f +o 𝑔):𝑋⟶ω) → 𝑔:𝑋⟶ω)
61 0elon 6334 . . . . . . . . . . . . . . 15 ∅ ∈ On
62 oa0 8377 . . . . . . . . . . . . . . 15 (∅ ∈ On → (∅ +o ∅) = ∅)
6361, 62mp1i 13 . . . . . . . . . . . . . 14 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓f +o 𝑔):𝑋⟶ω) → (∅ +o ∅) = ∅)
6455, 57, 59, 60, 63suppofssd 8050 . . . . . . . . . . . . 13 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓f +o 𝑔):𝑋⟶ω) → ((𝑓f +o 𝑔) supp ∅) ⊆ ((𝑓 supp ∅) ∪ (𝑔 supp ∅)))
6554, 64ssfid 9088 . . . . . . . . . . . 12 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓f +o 𝑔):𝑋⟶ω) → ((𝑓f +o 𝑔) supp ∅) ∈ Fin)
66 ovexd 7342 . . . . . . . . . . . . 13 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓f +o 𝑔):𝑋⟶ω) → (𝑓f +o 𝑔) ∈ V)
67 isfsupp 9180 . . . . . . . . . . . . 13 (((𝑓f +o 𝑔) ∈ V ∧ ∅ ∈ On) → ((𝑓f +o 𝑔) finSupp ∅ ↔ (Fun (𝑓f +o 𝑔) ∧ ((𝑓f +o 𝑔) supp ∅) ∈ Fin)))
6866, 61, 67sylancl 587 . . . . . . . . . . . 12 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓f +o 𝑔):𝑋⟶ω) → ((𝑓f +o 𝑔) finSupp ∅ ↔ (Fun (𝑓f +o 𝑔) ∧ ((𝑓f +o 𝑔) supp ∅) ∈ Fin)))
6950, 65, 68mpbir2and 711 . . . . . . . . . . 11 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓f +o 𝑔):𝑋⟶ω) → (𝑓f +o 𝑔) finSupp ∅)
7069ex 414 . . . . . . . . . 10 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) → ((𝑓f +o 𝑔):𝑋⟶ω → (𝑓f +o 𝑔) finSupp ∅))
7148, 70jcai 518 . . . . . . . . 9 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) → ((𝑓f +o 𝑔):𝑋⟶ω ∧ (𝑓f +o 𝑔) finSupp ∅))
721eleq2d 2822 . . . . . . . . . . 11 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑓f +o 𝑔) ∈ 𝑆 ↔ (𝑓f +o 𝑔) ∈ dom (ω CNF 𝑋)))
733, 5, 6cantnfs 9472 . . . . . . . . . . 11 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑓f +o 𝑔) ∈ dom (ω CNF 𝑋) ↔ ((𝑓f +o 𝑔):𝑋⟶ω ∧ (𝑓f +o 𝑔) finSupp ∅)))
7472, 73bitrd 279 . . . . . . . . . 10 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑓f +o 𝑔) ∈ 𝑆 ↔ ((𝑓f +o 𝑔):𝑋⟶ω ∧ (𝑓f +o 𝑔) finSupp ∅)))
7574ad2antrr 724 . . . . . . . . 9 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) → ((𝑓f +o 𝑔) ∈ 𝑆 ↔ ((𝑓f +o 𝑔):𝑋⟶ω ∧ (𝑓f +o 𝑔) finSupp ∅)))
7671, 75mpbird 257 . . . . . . . 8 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) → (𝑓f +o 𝑔) ∈ 𝑆)
7776ex 414 . . . . . . 7 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) → ((𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅) → (𝑓f +o 𝑔) ∈ 𝑆))
7812, 77sylbid 239 . . . . . 6 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) → (𝑔𝑆 → (𝑓f +o 𝑔) ∈ 𝑆))
7978ralrimiv 3138 . . . . 5 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) → ∀𝑔𝑆 (𝑓f +o 𝑔) ∈ 𝑆)
8079ex 414 . . . 4 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅) → ∀𝑔𝑆 (𝑓f +o 𝑔) ∈ 𝑆))
818, 80sylbid 239 . . 3 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑓𝑆 → ∀𝑔𝑆 (𝑓f +o 𝑔) ∈ 𝑆))
8281ralrimiv 3138 . 2 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ∀𝑓𝑆𝑔𝑆 (𝑓f +o 𝑔) ∈ 𝑆)
83 ofmres 7859 . . 3 ( ∘f +o ↾ (𝑆 × 𝑆)) = (𝑓𝑆, 𝑔𝑆 ↦ (𝑓f +o 𝑔))
8483fmpo 7940 . 2 (∀𝑓𝑆𝑔𝑆 (𝑓f +o 𝑔) ∈ 𝑆 ↔ ( ∘f +o ↾ (𝑆 × 𝑆)):(𝑆 × 𝑆)⟶𝑆)
8582, 84sylib 217 1 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ( ∘f +o ↾ (𝑆 × 𝑆)):(𝑆 × 𝑆)⟶𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539  wcel 2104  wral 3061  Vcvv 3437  cun 3890  wss 3892  c0 4262   class class class wbr 5081   × cxp 5598  dom cdm 5600  ran crn 5601  cres 5602  Oncon0 6281  Fun wfun 6452   Fn wfn 6453  wf 6454  cfv 6458  (class class class)co 7307  f cof 7563  ωcom 7744   supp csupp 8008   +o coa 8325  Fincfn 8764   finSupp cfsupp 9176   CNF ccnf 9467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-inf2 9447
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3332  df-rab 3333  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-of 7565  df-om 7745  df-1st 7863  df-2nd 7864  df-supp 8009  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-seqom 8310  df-1o 8328  df-oadd 8332  df-map 8648  df-en 8765  df-fin 8768  df-fsupp 9177  df-cnf 9468
This theorem is referenced by:  naddcnffn  41254  naddcnffo  41255  naddcnfcl  41256
  Copyright terms: Public domain W3C validator