Step | Hyp | Ref
| Expression |
1 | | simpr 486 |
. . . . . 6
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑆 = dom (ω CNF 𝑋)) |
2 | 1 | eleq2d 2822 |
. . . . 5
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑓 ∈ 𝑆 ↔ 𝑓 ∈ dom (ω CNF 𝑋))) |
3 | | eqid 2736 |
. . . . . 6
⊢ dom
(ω CNF 𝑋) = dom
(ω CNF 𝑋) |
4 | | omelon 9452 |
. . . . . . 7
⊢ ω
∈ On |
5 | 4 | a1i 11 |
. . . . . 6
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ω ∈
On) |
6 | | simpl 484 |
. . . . . 6
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑋 ∈ On) |
7 | 3, 5, 6 | cantnfs 9472 |
. . . . 5
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑓 ∈ dom (ω CNF 𝑋) ↔ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅))) |
8 | 2, 7 | bitrd 279 |
. . . 4
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑓 ∈ 𝑆 ↔ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅))) |
9 | 1 | eleq2d 2822 |
. . . . . . . . 9
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑔 ∈ 𝑆 ↔ 𝑔 ∈ dom (ω CNF 𝑋))) |
10 | 3, 5, 6 | cantnfs 9472 |
. . . . . . . . 9
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑔 ∈ dom (ω CNF 𝑋) ↔ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅))) |
11 | 9, 10 | bitrd 279 |
. . . . . . . 8
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑔 ∈ 𝑆 ↔ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅))) |
12 | 11 | adantr 482 |
. . . . . . 7
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) → (𝑔 ∈ 𝑆 ↔ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅))) |
13 | | simpl 484 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅) → 𝑓:𝑋⟶ω) |
14 | | simpl 484 |
. . . . . . . . . . . . . 14
⊢ ((𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅) → 𝑔:𝑋⟶ω) |
15 | 13, 14 | anim12i 614 |
. . . . . . . . . . . . 13
⊢ (((𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) → (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) |
16 | 6, 15 | anim12i 614 |
. . . . . . . . . . . 12
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ ((𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅))) → (𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω))) |
17 | 16 | anassrs 469 |
. . . . . . . . . . 11
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) → (𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω))) |
18 | | simprl 769 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) → 𝑓:𝑋⟶ω) |
19 | 18 | ffnd 6631 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) → 𝑓 Fn 𝑋) |
20 | | simprr 771 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) → 𝑔:𝑋⟶ω) |
21 | 20 | ffnd 6631 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) → 𝑔 Fn 𝑋) |
22 | | simpl 484 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) → 𝑋 ∈ On) |
23 | | inidm 4158 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∩ 𝑋) = 𝑋 |
24 | 19, 21, 22, 22, 23 | offn 7578 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) → (𝑓 ∘f +o 𝑔) Fn 𝑋) |
25 | | simpr 486 |
. . . . . . . . . . . . . . 15
⊢ (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ (𝑓 ∘f +o 𝑔) Fn 𝑋) → (𝑓 ∘f +o 𝑔) Fn 𝑋) |
26 | | simplrl 775 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ 𝑥 ∈ 𝑋) → 𝑓:𝑋⟶ω) |
27 | 26 | ffnd 6631 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ 𝑥 ∈ 𝑋) → 𝑓 Fn 𝑋) |
28 | | simplrr 776 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ 𝑥 ∈ 𝑋) → 𝑔:𝑋⟶ω) |
29 | 28 | ffnd 6631 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ 𝑥 ∈ 𝑋) → 𝑔 Fn 𝑋) |
30 | | simpll 765 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ 𝑥 ∈ 𝑋) → 𝑋 ∈ On) |
31 | | simpr 486 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
32 | | fnfvof 7582 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑓 Fn 𝑋 ∧ 𝑔 Fn 𝑋) ∧ (𝑋 ∈ On ∧ 𝑥 ∈ 𝑋)) → ((𝑓 ∘f +o 𝑔)‘𝑥) = ((𝑓‘𝑥) +o (𝑔‘𝑥))) |
33 | 27, 29, 30, 31, 32 | syl22anc 837 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ 𝑥 ∈ 𝑋) → ((𝑓 ∘f +o 𝑔)‘𝑥) = ((𝑓‘𝑥) +o (𝑔‘𝑥))) |
34 | 18 | ffvelcdmda 6993 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ 𝑥 ∈ 𝑋) → (𝑓‘𝑥) ∈ ω) |
35 | 20 | ffvelcdmda 6993 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ 𝑥 ∈ 𝑋) → (𝑔‘𝑥) ∈ ω) |
36 | | nnacl 8473 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑓‘𝑥) ∈ ω ∧ (𝑔‘𝑥) ∈ ω) → ((𝑓‘𝑥) +o (𝑔‘𝑥)) ∈ ω) |
37 | 34, 35, 36 | syl2anc 585 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ 𝑥 ∈ 𝑋) → ((𝑓‘𝑥) +o (𝑔‘𝑥)) ∈ ω) |
38 | 33, 37 | eqeltrd 2837 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ 𝑥 ∈ 𝑋) → ((𝑓 ∘f +o 𝑔)‘𝑥) ∈ ω) |
39 | 38 | ex 414 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) → (𝑥 ∈ 𝑋 → ((𝑓 ∘f +o 𝑔)‘𝑥) ∈ ω)) |
40 | 39 | ralrimiv 3138 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) → ∀𝑥 ∈ 𝑋 ((𝑓 ∘f +o 𝑔)‘𝑥) ∈ ω) |
41 | 40 | adantr 482 |
. . . . . . . . . . . . . . 15
⊢ (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ (𝑓 ∘f +o 𝑔) Fn 𝑋) → ∀𝑥 ∈ 𝑋 ((𝑓 ∘f +o 𝑔)‘𝑥) ∈ ω) |
42 | | fnfvrnss 7026 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓 ∘f
+o 𝑔) Fn 𝑋 ∧ ∀𝑥 ∈ 𝑋 ((𝑓 ∘f +o 𝑔)‘𝑥) ∈ ω) → ran (𝑓 ∘f
+o 𝑔) ⊆
ω) |
43 | 25, 41, 42 | syl2anc 585 |
. . . . . . . . . . . . . 14
⊢ (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ (𝑓 ∘f +o 𝑔) Fn 𝑋) → ran (𝑓 ∘f +o 𝑔) ⊆
ω) |
44 | 43 | ex 414 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) → ((𝑓 ∘f
+o 𝑔) Fn 𝑋 → ran (𝑓 ∘f +o 𝑔) ⊆
ω)) |
45 | 24, 44 | jcai 518 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) → ((𝑓 ∘f
+o 𝑔) Fn 𝑋 ∧ ran (𝑓 ∘f +o 𝑔) ⊆
ω)) |
46 | | df-f 6462 |
. . . . . . . . . . . 12
⊢ ((𝑓 ∘f
+o 𝑔):𝑋⟶ω ↔ ((𝑓 ∘f
+o 𝑔) Fn 𝑋 ∧ ran (𝑓 ∘f +o 𝑔) ⊆
ω)) |
47 | 45, 46 | sylibr 233 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) → (𝑓 ∘f +o 𝑔):𝑋⟶ω) |
48 | 17, 47 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) → (𝑓 ∘f +o 𝑔):𝑋⟶ω) |
49 | | ffun 6633 |
. . . . . . . . . . . . 13
⊢ ((𝑓 ∘f
+o 𝑔):𝑋⟶ω → Fun
(𝑓 ∘f
+o 𝑔)) |
50 | 49 | adantl 483 |
. . . . . . . . . . . 12
⊢
(((((𝑋 ∈ On
∧ 𝑆 = dom (ω CNF
𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓 ∘f +o 𝑔):𝑋⟶ω) → Fun (𝑓 ∘f
+o 𝑔)) |
51 | | simplrr 776 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) → 𝑓 finSupp ∅) |
52 | 51 | adantr 482 |
. . . . . . . . . . . . . 14
⊢
(((((𝑋 ∈ On
∧ 𝑆 = dom (ω CNF
𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓 ∘f +o 𝑔):𝑋⟶ω) → 𝑓 finSupp ∅) |
53 | | simplrr 776 |
. . . . . . . . . . . . . 14
⊢
(((((𝑋 ∈ On
∧ 𝑆 = dom (ω CNF
𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓 ∘f +o 𝑔):𝑋⟶ω) → 𝑔 finSupp ∅) |
54 | 52, 53 | fsuppunfi 9196 |
. . . . . . . . . . . . 13
⊢
(((((𝑋 ∈ On
∧ 𝑆 = dom (ω CNF
𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓 ∘f +o 𝑔):𝑋⟶ω) → ((𝑓 supp ∅) ∪ (𝑔 supp ∅)) ∈ Fin) |
55 | | simp-4l 781 |
. . . . . . . . . . . . . 14
⊢
(((((𝑋 ∈ On
∧ 𝑆 = dom (ω CNF
𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓 ∘f +o 𝑔):𝑋⟶ω) → 𝑋 ∈ On) |
56 | | peano1 7767 |
. . . . . . . . . . . . . . 15
⊢ ∅
∈ ω |
57 | 56 | a1i 11 |
. . . . . . . . . . . . . 14
⊢
(((((𝑋 ∈ On
∧ 𝑆 = dom (ω CNF
𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓 ∘f +o 𝑔):𝑋⟶ω) → ∅ ∈
ω) |
58 | | simplrl 775 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) → 𝑓:𝑋⟶ω) |
59 | 58 | adantr 482 |
. . . . . . . . . . . . . 14
⊢
(((((𝑋 ∈ On
∧ 𝑆 = dom (ω CNF
𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓 ∘f +o 𝑔):𝑋⟶ω) → 𝑓:𝑋⟶ω) |
60 | | simplrl 775 |
. . . . . . . . . . . . . 14
⊢
(((((𝑋 ∈ On
∧ 𝑆 = dom (ω CNF
𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓 ∘f +o 𝑔):𝑋⟶ω) → 𝑔:𝑋⟶ω) |
61 | | 0elon 6334 |
. . . . . . . . . . . . . . 15
⊢ ∅
∈ On |
62 | | oa0 8377 |
. . . . . . . . . . . . . . 15
⊢ (∅
∈ On → (∅ +o ∅) = ∅) |
63 | 61, 62 | mp1i 13 |
. . . . . . . . . . . . . 14
⊢
(((((𝑋 ∈ On
∧ 𝑆 = dom (ω CNF
𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓 ∘f +o 𝑔):𝑋⟶ω) → (∅
+o ∅) = ∅) |
64 | 55, 57, 59, 60, 63 | suppofssd 8050 |
. . . . . . . . . . . . 13
⊢
(((((𝑋 ∈ On
∧ 𝑆 = dom (ω CNF
𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓 ∘f +o 𝑔):𝑋⟶ω) → ((𝑓 ∘f +o 𝑔) supp ∅) ⊆ ((𝑓 supp ∅) ∪ (𝑔 supp
∅))) |
65 | 54, 64 | ssfid 9088 |
. . . . . . . . . . . 12
⊢
(((((𝑋 ∈ On
∧ 𝑆 = dom (ω CNF
𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓 ∘f +o 𝑔):𝑋⟶ω) → ((𝑓 ∘f +o 𝑔) supp ∅) ∈
Fin) |
66 | | ovexd 7342 |
. . . . . . . . . . . . 13
⊢
(((((𝑋 ∈ On
∧ 𝑆 = dom (ω CNF
𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓 ∘f +o 𝑔):𝑋⟶ω) → (𝑓 ∘f +o 𝑔) ∈ V) |
67 | | isfsupp 9180 |
. . . . . . . . . . . . 13
⊢ (((𝑓 ∘f
+o 𝑔) ∈ V
∧ ∅ ∈ On) → ((𝑓 ∘f +o 𝑔) finSupp ∅ ↔ (Fun
(𝑓 ∘f
+o 𝑔) ∧
((𝑓 ∘f
+o 𝑔) supp
∅) ∈ Fin))) |
68 | 66, 61, 67 | sylancl 587 |
. . . . . . . . . . . 12
⊢
(((((𝑋 ∈ On
∧ 𝑆 = dom (ω CNF
𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓 ∘f +o 𝑔):𝑋⟶ω) → ((𝑓 ∘f +o 𝑔) finSupp ∅ ↔ (Fun
(𝑓 ∘f
+o 𝑔) ∧
((𝑓 ∘f
+o 𝑔) supp
∅) ∈ Fin))) |
69 | 50, 65, 68 | mpbir2and 711 |
. . . . . . . . . . 11
⊢
(((((𝑋 ∈ On
∧ 𝑆 = dom (ω CNF
𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓 ∘f +o 𝑔):𝑋⟶ω) → (𝑓 ∘f +o 𝑔) finSupp
∅) |
70 | 69 | ex 414 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) → ((𝑓 ∘f
+o 𝑔):𝑋⟶ω → (𝑓 ∘f
+o 𝑔) finSupp
∅)) |
71 | 48, 70 | jcai 518 |
. . . . . . . . 9
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) → ((𝑓 ∘f
+o 𝑔):𝑋⟶ω ∧ (𝑓 ∘f
+o 𝑔) finSupp
∅)) |
72 | 1 | eleq2d 2822 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑓 ∘f +o 𝑔) ∈ 𝑆 ↔ (𝑓 ∘f +o 𝑔) ∈ dom (ω CNF 𝑋))) |
73 | 3, 5, 6 | cantnfs 9472 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑓 ∘f +o 𝑔) ∈ dom (ω CNF 𝑋) ↔ ((𝑓 ∘f +o 𝑔):𝑋⟶ω ∧ (𝑓 ∘f +o 𝑔) finSupp
∅))) |
74 | 72, 73 | bitrd 279 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑓 ∘f +o 𝑔) ∈ 𝑆 ↔ ((𝑓 ∘f +o 𝑔):𝑋⟶ω ∧ (𝑓 ∘f +o 𝑔) finSupp
∅))) |
75 | 74 | ad2antrr 724 |
. . . . . . . . 9
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) → ((𝑓 ∘f
+o 𝑔) ∈
𝑆 ↔ ((𝑓 ∘f
+o 𝑔):𝑋⟶ω ∧ (𝑓 ∘f
+o 𝑔) finSupp
∅))) |
76 | 71, 75 | mpbird 257 |
. . . . . . . 8
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) → (𝑓 ∘f +o 𝑔) ∈ 𝑆) |
77 | 76 | ex 414 |
. . . . . . 7
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) → ((𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅) → (𝑓 ∘f +o 𝑔) ∈ 𝑆)) |
78 | 12, 77 | sylbid 239 |
. . . . . 6
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) → (𝑔 ∈ 𝑆 → (𝑓 ∘f +o 𝑔) ∈ 𝑆)) |
79 | 78 | ralrimiv 3138 |
. . . . 5
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) → ∀𝑔 ∈ 𝑆 (𝑓 ∘f +o 𝑔) ∈ 𝑆) |
80 | 79 | ex 414 |
. . . 4
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅) → ∀𝑔 ∈ 𝑆 (𝑓 ∘f +o 𝑔) ∈ 𝑆)) |
81 | 8, 80 | sylbid 239 |
. . 3
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑓 ∈ 𝑆 → ∀𝑔 ∈ 𝑆 (𝑓 ∘f +o 𝑔) ∈ 𝑆)) |
82 | 81 | ralrimiv 3138 |
. 2
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ∀𝑓 ∈ 𝑆 ∀𝑔 ∈ 𝑆 (𝑓 ∘f +o 𝑔) ∈ 𝑆) |
83 | | ofmres 7859 |
. . 3
⊢ (
∘f +o ↾ (𝑆 × 𝑆)) = (𝑓 ∈ 𝑆, 𝑔 ∈ 𝑆 ↦ (𝑓 ∘f +o 𝑔)) |
84 | 83 | fmpo 7940 |
. 2
⊢
(∀𝑓 ∈
𝑆 ∀𝑔 ∈ 𝑆 (𝑓 ∘f +o 𝑔) ∈ 𝑆 ↔ ( ∘f +o
↾ (𝑆 × 𝑆)):(𝑆 × 𝑆)⟶𝑆) |
85 | 82, 84 | sylib 217 |
1
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ( ∘f
+o ↾ (𝑆
× 𝑆)):(𝑆 × 𝑆)⟶𝑆) |