Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naddcnff Structured version   Visualization version   GIF version

Theorem naddcnff 42965
Description: Addition operator for Cantor normal forms is a function into Cantor normal forms. (Contributed by RP, 2-Jan-2025.)
Assertion
Ref Expression
naddcnff ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ( ∘f +o ↾ (𝑆 × 𝑆)):(𝑆 × 𝑆)⟶𝑆)

Proof of Theorem naddcnff
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 483 . . . . . 6 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑆 = dom (ω CNF 𝑋))
21eleq2d 2811 . . . . 5 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑓𝑆𝑓 ∈ dom (ω CNF 𝑋)))
3 eqid 2725 . . . . . 6 dom (ω CNF 𝑋) = dom (ω CNF 𝑋)
4 omelon 9685 . . . . . . 7 ω ∈ On
54a1i 11 . . . . . 6 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ω ∈ On)
6 simpl 481 . . . . . 6 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑋 ∈ On)
73, 5, 6cantnfs 9705 . . . . 5 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑓 ∈ dom (ω CNF 𝑋) ↔ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)))
82, 7bitrd 278 . . . 4 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑓𝑆 ↔ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)))
91eleq2d 2811 . . . . . . . . 9 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑔𝑆𝑔 ∈ dom (ω CNF 𝑋)))
103, 5, 6cantnfs 9705 . . . . . . . . 9 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑔 ∈ dom (ω CNF 𝑋) ↔ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)))
119, 10bitrd 278 . . . . . . . 8 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑔𝑆 ↔ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)))
1211adantr 479 . . . . . . 7 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) → (𝑔𝑆 ↔ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)))
13 simpl 481 . . . . . . . . . . . . . 14 ((𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅) → 𝑓:𝑋⟶ω)
14 simpl 481 . . . . . . . . . . . . . 14 ((𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅) → 𝑔:𝑋⟶ω)
1513, 14anim12i 611 . . . . . . . . . . . . 13 (((𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) → (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω))
166, 15anim12i 611 . . . . . . . . . . . 12 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ ((𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅))) → (𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)))
1716anassrs 466 . . . . . . . . . . 11 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) → (𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)))
18 simprl 769 . . . . . . . . . . . . . . 15 ((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) → 𝑓:𝑋⟶ω)
1918ffnd 6728 . . . . . . . . . . . . . 14 ((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) → 𝑓 Fn 𝑋)
20 simprr 771 . . . . . . . . . . . . . . 15 ((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) → 𝑔:𝑋⟶ω)
2120ffnd 6728 . . . . . . . . . . . . . 14 ((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) → 𝑔 Fn 𝑋)
22 simpl 481 . . . . . . . . . . . . . 14 ((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) → 𝑋 ∈ On)
23 inidm 4219 . . . . . . . . . . . . . 14 (𝑋𝑋) = 𝑋
2419, 21, 22, 22, 23offn 7702 . . . . . . . . . . . . 13 ((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) → (𝑓f +o 𝑔) Fn 𝑋)
25 simpr 483 . . . . . . . . . . . . . . 15 (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ (𝑓f +o 𝑔) Fn 𝑋) → (𝑓f +o 𝑔) Fn 𝑋)
26 simplrl 775 . . . . . . . . . . . . . . . . . . . . 21 (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ 𝑥𝑋) → 𝑓:𝑋⟶ω)
2726ffnd 6728 . . . . . . . . . . . . . . . . . . . 20 (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ 𝑥𝑋) → 𝑓 Fn 𝑋)
28 simplrr 776 . . . . . . . . . . . . . . . . . . . . 21 (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ 𝑥𝑋) → 𝑔:𝑋⟶ω)
2928ffnd 6728 . . . . . . . . . . . . . . . . . . . 20 (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ 𝑥𝑋) → 𝑔 Fn 𝑋)
30 simpll 765 . . . . . . . . . . . . . . . . . . . 20 (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ 𝑥𝑋) → 𝑋 ∈ On)
31 simpr 483 . . . . . . . . . . . . . . . . . . . 20 (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ 𝑥𝑋) → 𝑥𝑋)
32 fnfvof 7706 . . . . . . . . . . . . . . . . . . . 20 (((𝑓 Fn 𝑋𝑔 Fn 𝑋) ∧ (𝑋 ∈ On ∧ 𝑥𝑋)) → ((𝑓f +o 𝑔)‘𝑥) = ((𝑓𝑥) +o (𝑔𝑥)))
3327, 29, 30, 31, 32syl22anc 837 . . . . . . . . . . . . . . . . . . 19 (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ 𝑥𝑋) → ((𝑓f +o 𝑔)‘𝑥) = ((𝑓𝑥) +o (𝑔𝑥)))
3418ffvelcdmda 7097 . . . . . . . . . . . . . . . . . . . 20 (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ 𝑥𝑋) → (𝑓𝑥) ∈ ω)
3520ffvelcdmda 7097 . . . . . . . . . . . . . . . . . . . 20 (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ 𝑥𝑋) → (𝑔𝑥) ∈ ω)
36 nnacl 8640 . . . . . . . . . . . . . . . . . . . 20 (((𝑓𝑥) ∈ ω ∧ (𝑔𝑥) ∈ ω) → ((𝑓𝑥) +o (𝑔𝑥)) ∈ ω)
3734, 35, 36syl2anc 582 . . . . . . . . . . . . . . . . . . 19 (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ 𝑥𝑋) → ((𝑓𝑥) +o (𝑔𝑥)) ∈ ω)
3833, 37eqeltrd 2825 . . . . . . . . . . . . . . . . . 18 (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ 𝑥𝑋) → ((𝑓f +o 𝑔)‘𝑥) ∈ ω)
3938ex 411 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) → (𝑥𝑋 → ((𝑓f +o 𝑔)‘𝑥) ∈ ω))
4039ralrimiv 3134 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) → ∀𝑥𝑋 ((𝑓f +o 𝑔)‘𝑥) ∈ ω)
4140adantr 479 . . . . . . . . . . . . . . 15 (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ (𝑓f +o 𝑔) Fn 𝑋) → ∀𝑥𝑋 ((𝑓f +o 𝑔)‘𝑥) ∈ ω)
42 fnfvrnss 7134 . . . . . . . . . . . . . . 15 (((𝑓f +o 𝑔) Fn 𝑋 ∧ ∀𝑥𝑋 ((𝑓f +o 𝑔)‘𝑥) ∈ ω) → ran (𝑓f +o 𝑔) ⊆ ω)
4325, 41, 42syl2anc 582 . . . . . . . . . . . . . 14 (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ (𝑓f +o 𝑔) Fn 𝑋) → ran (𝑓f +o 𝑔) ⊆ ω)
4443ex 411 . . . . . . . . . . . . 13 ((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) → ((𝑓f +o 𝑔) Fn 𝑋 → ran (𝑓f +o 𝑔) ⊆ ω))
4524, 44jcai 515 . . . . . . . . . . . 12 ((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) → ((𝑓f +o 𝑔) Fn 𝑋 ∧ ran (𝑓f +o 𝑔) ⊆ ω))
46 df-f 6557 . . . . . . . . . . . 12 ((𝑓f +o 𝑔):𝑋⟶ω ↔ ((𝑓f +o 𝑔) Fn 𝑋 ∧ ran (𝑓f +o 𝑔) ⊆ ω))
4745, 46sylibr 233 . . . . . . . . . . 11 ((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) → (𝑓f +o 𝑔):𝑋⟶ω)
4817, 47syl 17 . . . . . . . . . 10 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) → (𝑓f +o 𝑔):𝑋⟶ω)
49 ffun 6730 . . . . . . . . . . . . 13 ((𝑓f +o 𝑔):𝑋⟶ω → Fun (𝑓f +o 𝑔))
5049adantl 480 . . . . . . . . . . . 12 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓f +o 𝑔):𝑋⟶ω) → Fun (𝑓f +o 𝑔))
51 simplrr 776 . . . . . . . . . . . . . . 15 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) → 𝑓 finSupp ∅)
5251adantr 479 . . . . . . . . . . . . . 14 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓f +o 𝑔):𝑋⟶ω) → 𝑓 finSupp ∅)
53 simplrr 776 . . . . . . . . . . . . . 14 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓f +o 𝑔):𝑋⟶ω) → 𝑔 finSupp ∅)
5452, 53fsuppunfi 9427 . . . . . . . . . . . . 13 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓f +o 𝑔):𝑋⟶ω) → ((𝑓 supp ∅) ∪ (𝑔 supp ∅)) ∈ Fin)
55 simp-4l 781 . . . . . . . . . . . . . 14 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓f +o 𝑔):𝑋⟶ω) → 𝑋 ∈ On)
56 peano1 7899 . . . . . . . . . . . . . . 15 ∅ ∈ ω
5756a1i 11 . . . . . . . . . . . . . 14 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓f +o 𝑔):𝑋⟶ω) → ∅ ∈ ω)
58 simplrl 775 . . . . . . . . . . . . . . 15 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) → 𝑓:𝑋⟶ω)
5958adantr 479 . . . . . . . . . . . . . 14 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓f +o 𝑔):𝑋⟶ω) → 𝑓:𝑋⟶ω)
60 simplrl 775 . . . . . . . . . . . . . 14 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓f +o 𝑔):𝑋⟶ω) → 𝑔:𝑋⟶ω)
61 0elon 6429 . . . . . . . . . . . . . . 15 ∅ ∈ On
62 oa0 8545 . . . . . . . . . . . . . . 15 (∅ ∈ On → (∅ +o ∅) = ∅)
6361, 62mp1i 13 . . . . . . . . . . . . . 14 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓f +o 𝑔):𝑋⟶ω) → (∅ +o ∅) = ∅)
6455, 57, 59, 60, 63suppofssd 8217 . . . . . . . . . . . . 13 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓f +o 𝑔):𝑋⟶ω) → ((𝑓f +o 𝑔) supp ∅) ⊆ ((𝑓 supp ∅) ∪ (𝑔 supp ∅)))
6554, 64ssfid 9304 . . . . . . . . . . . 12 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓f +o 𝑔):𝑋⟶ω) → ((𝑓f +o 𝑔) supp ∅) ∈ Fin)
66 ovexd 7458 . . . . . . . . . . . . 13 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓f +o 𝑔):𝑋⟶ω) → (𝑓f +o 𝑔) ∈ V)
67 isfsupp 9405 . . . . . . . . . . . . 13 (((𝑓f +o 𝑔) ∈ V ∧ ∅ ∈ On) → ((𝑓f +o 𝑔) finSupp ∅ ↔ (Fun (𝑓f +o 𝑔) ∧ ((𝑓f +o 𝑔) supp ∅) ∈ Fin)))
6866, 61, 67sylancl 584 . . . . . . . . . . . 12 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓f +o 𝑔):𝑋⟶ω) → ((𝑓f +o 𝑔) finSupp ∅ ↔ (Fun (𝑓f +o 𝑔) ∧ ((𝑓f +o 𝑔) supp ∅) ∈ Fin)))
6950, 65, 68mpbir2and 711 . . . . . . . . . . 11 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓f +o 𝑔):𝑋⟶ω) → (𝑓f +o 𝑔) finSupp ∅)
7069ex 411 . . . . . . . . . 10 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) → ((𝑓f +o 𝑔):𝑋⟶ω → (𝑓f +o 𝑔) finSupp ∅))
7148, 70jcai 515 . . . . . . . . 9 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) → ((𝑓f +o 𝑔):𝑋⟶ω ∧ (𝑓f +o 𝑔) finSupp ∅))
721eleq2d 2811 . . . . . . . . . . 11 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑓f +o 𝑔) ∈ 𝑆 ↔ (𝑓f +o 𝑔) ∈ dom (ω CNF 𝑋)))
733, 5, 6cantnfs 9705 . . . . . . . . . . 11 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑓f +o 𝑔) ∈ dom (ω CNF 𝑋) ↔ ((𝑓f +o 𝑔):𝑋⟶ω ∧ (𝑓f +o 𝑔) finSupp ∅)))
7472, 73bitrd 278 . . . . . . . . . 10 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑓f +o 𝑔) ∈ 𝑆 ↔ ((𝑓f +o 𝑔):𝑋⟶ω ∧ (𝑓f +o 𝑔) finSupp ∅)))
7574ad2antrr 724 . . . . . . . . 9 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) → ((𝑓f +o 𝑔) ∈ 𝑆 ↔ ((𝑓f +o 𝑔):𝑋⟶ω ∧ (𝑓f +o 𝑔) finSupp ∅)))
7671, 75mpbird 256 . . . . . . . 8 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) → (𝑓f +o 𝑔) ∈ 𝑆)
7776ex 411 . . . . . . 7 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) → ((𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅) → (𝑓f +o 𝑔) ∈ 𝑆))
7812, 77sylbid 239 . . . . . 6 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) → (𝑔𝑆 → (𝑓f +o 𝑔) ∈ 𝑆))
7978ralrimiv 3134 . . . . 5 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) → ∀𝑔𝑆 (𝑓f +o 𝑔) ∈ 𝑆)
8079ex 411 . . . 4 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅) → ∀𝑔𝑆 (𝑓f +o 𝑔) ∈ 𝑆))
818, 80sylbid 239 . . 3 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑓𝑆 → ∀𝑔𝑆 (𝑓f +o 𝑔) ∈ 𝑆))
8281ralrimiv 3134 . 2 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ∀𝑓𝑆𝑔𝑆 (𝑓f +o 𝑔) ∈ 𝑆)
83 ofmres 7997 . . 3 ( ∘f +o ↾ (𝑆 × 𝑆)) = (𝑓𝑆, 𝑔𝑆 ↦ (𝑓f +o 𝑔))
8483fmpo 8081 . 2 (∀𝑓𝑆𝑔𝑆 (𝑓f +o 𝑔) ∈ 𝑆 ↔ ( ∘f +o ↾ (𝑆 × 𝑆)):(𝑆 × 𝑆)⟶𝑆)
8582, 84sylib 217 1 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ( ∘f +o ↾ (𝑆 × 𝑆)):(𝑆 × 𝑆)⟶𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wral 3050  Vcvv 3461  cun 3944  wss 3946  c0 4324   class class class wbr 5152   × cxp 5679  dom cdm 5681  ran crn 5682  cres 5683  Oncon0 6375  Fun wfun 6547   Fn wfn 6548  wf 6549  cfv 6553  (class class class)co 7423  f cof 7687  ωcom 7875   supp csupp 8173   +o coa 8492  Fincfn 8973   finSupp cfsupp 9401   CNF ccnf 9700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745  ax-inf2 9680
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5579  df-eprel 5585  df-po 5593  df-so 5594  df-fr 5636  df-we 5638  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-pred 6311  df-ord 6378  df-on 6379  df-lim 6380  df-suc 6381  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-ov 7426  df-oprab 7427  df-mpo 7428  df-of 7689  df-om 7876  df-1st 8002  df-2nd 8003  df-supp 8174  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-seqom 8477  df-1o 8495  df-oadd 8499  df-map 8856  df-en 8974  df-fin 8977  df-fsupp 9402  df-cnf 9701
This theorem is referenced by:  naddcnffn  42966  naddcnffo  42967  naddcnfcl  42968
  Copyright terms: Public domain W3C validator