Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naddcnff Structured version   Visualization version   GIF version

Theorem naddcnff 43324
Description: Addition operator for Cantor normal forms is a function into Cantor normal forms. (Contributed by RP, 2-Jan-2025.)
Assertion
Ref Expression
naddcnff ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ( ∘f +o ↾ (𝑆 × 𝑆)):(𝑆 × 𝑆)⟶𝑆)

Proof of Theorem naddcnff
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . 6 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑆 = dom (ω CNF 𝑋))
21eleq2d 2814 . . . . 5 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑓𝑆𝑓 ∈ dom (ω CNF 𝑋)))
3 eqid 2729 . . . . . 6 dom (ω CNF 𝑋) = dom (ω CNF 𝑋)
4 omelon 9575 . . . . . . 7 ω ∈ On
54a1i 11 . . . . . 6 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ω ∈ On)
6 simpl 482 . . . . . 6 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑋 ∈ On)
73, 5, 6cantnfs 9595 . . . . 5 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑓 ∈ dom (ω CNF 𝑋) ↔ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)))
82, 7bitrd 279 . . . 4 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑓𝑆 ↔ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)))
91eleq2d 2814 . . . . . . . . 9 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑔𝑆𝑔 ∈ dom (ω CNF 𝑋)))
103, 5, 6cantnfs 9595 . . . . . . . . 9 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑔 ∈ dom (ω CNF 𝑋) ↔ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)))
119, 10bitrd 279 . . . . . . . 8 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑔𝑆 ↔ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)))
1211adantr 480 . . . . . . 7 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) → (𝑔𝑆 ↔ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)))
13 simpl 482 . . . . . . . . . . . . . 14 ((𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅) → 𝑓:𝑋⟶ω)
14 simpl 482 . . . . . . . . . . . . . 14 ((𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅) → 𝑔:𝑋⟶ω)
1513, 14anim12i 613 . . . . . . . . . . . . 13 (((𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) → (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω))
166, 15anim12i 613 . . . . . . . . . . . 12 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ ((𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅))) → (𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)))
1716anassrs 467 . . . . . . . . . . 11 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) → (𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)))
18 simprl 770 . . . . . . . . . . . . . . 15 ((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) → 𝑓:𝑋⟶ω)
1918ffnd 6671 . . . . . . . . . . . . . 14 ((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) → 𝑓 Fn 𝑋)
20 simprr 772 . . . . . . . . . . . . . . 15 ((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) → 𝑔:𝑋⟶ω)
2120ffnd 6671 . . . . . . . . . . . . . 14 ((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) → 𝑔 Fn 𝑋)
22 simpl 482 . . . . . . . . . . . . . 14 ((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) → 𝑋 ∈ On)
23 inidm 4186 . . . . . . . . . . . . . 14 (𝑋𝑋) = 𝑋
2419, 21, 22, 22, 23offn 7646 . . . . . . . . . . . . 13 ((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) → (𝑓f +o 𝑔) Fn 𝑋)
25 simpr 484 . . . . . . . . . . . . . . 15 (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ (𝑓f +o 𝑔) Fn 𝑋) → (𝑓f +o 𝑔) Fn 𝑋)
26 simplrl 776 . . . . . . . . . . . . . . . . . . . . 21 (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ 𝑥𝑋) → 𝑓:𝑋⟶ω)
2726ffnd 6671 . . . . . . . . . . . . . . . . . . . 20 (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ 𝑥𝑋) → 𝑓 Fn 𝑋)
28 simplrr 777 . . . . . . . . . . . . . . . . . . . . 21 (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ 𝑥𝑋) → 𝑔:𝑋⟶ω)
2928ffnd 6671 . . . . . . . . . . . . . . . . . . . 20 (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ 𝑥𝑋) → 𝑔 Fn 𝑋)
30 simpll 766 . . . . . . . . . . . . . . . . . . . 20 (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ 𝑥𝑋) → 𝑋 ∈ On)
31 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ 𝑥𝑋) → 𝑥𝑋)
32 fnfvof 7650 . . . . . . . . . . . . . . . . . . . 20 (((𝑓 Fn 𝑋𝑔 Fn 𝑋) ∧ (𝑋 ∈ On ∧ 𝑥𝑋)) → ((𝑓f +o 𝑔)‘𝑥) = ((𝑓𝑥) +o (𝑔𝑥)))
3327, 29, 30, 31, 32syl22anc 838 . . . . . . . . . . . . . . . . . . 19 (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ 𝑥𝑋) → ((𝑓f +o 𝑔)‘𝑥) = ((𝑓𝑥) +o (𝑔𝑥)))
3418ffvelcdmda 7038 . . . . . . . . . . . . . . . . . . . 20 (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ 𝑥𝑋) → (𝑓𝑥) ∈ ω)
3520ffvelcdmda 7038 . . . . . . . . . . . . . . . . . . . 20 (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ 𝑥𝑋) → (𝑔𝑥) ∈ ω)
36 nnacl 8552 . . . . . . . . . . . . . . . . . . . 20 (((𝑓𝑥) ∈ ω ∧ (𝑔𝑥) ∈ ω) → ((𝑓𝑥) +o (𝑔𝑥)) ∈ ω)
3734, 35, 36syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ 𝑥𝑋) → ((𝑓𝑥) +o (𝑔𝑥)) ∈ ω)
3833, 37eqeltrd 2828 . . . . . . . . . . . . . . . . . 18 (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ 𝑥𝑋) → ((𝑓f +o 𝑔)‘𝑥) ∈ ω)
3938ex 412 . . . . . . . . . . . . . . . . 17 ((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) → (𝑥𝑋 → ((𝑓f +o 𝑔)‘𝑥) ∈ ω))
4039ralrimiv 3124 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) → ∀𝑥𝑋 ((𝑓f +o 𝑔)‘𝑥) ∈ ω)
4140adantr 480 . . . . . . . . . . . . . . 15 (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ (𝑓f +o 𝑔) Fn 𝑋) → ∀𝑥𝑋 ((𝑓f +o 𝑔)‘𝑥) ∈ ω)
42 fnfvrnss 7075 . . . . . . . . . . . . . . 15 (((𝑓f +o 𝑔) Fn 𝑋 ∧ ∀𝑥𝑋 ((𝑓f +o 𝑔)‘𝑥) ∈ ω) → ran (𝑓f +o 𝑔) ⊆ ω)
4325, 41, 42syl2anc 584 . . . . . . . . . . . . . 14 (((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) ∧ (𝑓f +o 𝑔) Fn 𝑋) → ran (𝑓f +o 𝑔) ⊆ ω)
4443ex 412 . . . . . . . . . . . . 13 ((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) → ((𝑓f +o 𝑔) Fn 𝑋 → ran (𝑓f +o 𝑔) ⊆ ω))
4524, 44jcai 516 . . . . . . . . . . . 12 ((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) → ((𝑓f +o 𝑔) Fn 𝑋 ∧ ran (𝑓f +o 𝑔) ⊆ ω))
46 df-f 6503 . . . . . . . . . . . 12 ((𝑓f +o 𝑔):𝑋⟶ω ↔ ((𝑓f +o 𝑔) Fn 𝑋 ∧ ran (𝑓f +o 𝑔) ⊆ ω))
4745, 46sylibr 234 . . . . . . . . . . 11 ((𝑋 ∈ On ∧ (𝑓:𝑋⟶ω ∧ 𝑔:𝑋⟶ω)) → (𝑓f +o 𝑔):𝑋⟶ω)
4817, 47syl 17 . . . . . . . . . 10 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) → (𝑓f +o 𝑔):𝑋⟶ω)
49 ffun 6673 . . . . . . . . . . . . 13 ((𝑓f +o 𝑔):𝑋⟶ω → Fun (𝑓f +o 𝑔))
5049adantl 481 . . . . . . . . . . . 12 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓f +o 𝑔):𝑋⟶ω) → Fun (𝑓f +o 𝑔))
51 simplrr 777 . . . . . . . . . . . . . . 15 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) → 𝑓 finSupp ∅)
5251adantr 480 . . . . . . . . . . . . . 14 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓f +o 𝑔):𝑋⟶ω) → 𝑓 finSupp ∅)
53 simplrr 777 . . . . . . . . . . . . . 14 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓f +o 𝑔):𝑋⟶ω) → 𝑔 finSupp ∅)
5452, 53fsuppunfi 9315 . . . . . . . . . . . . 13 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓f +o 𝑔):𝑋⟶ω) → ((𝑓 supp ∅) ∪ (𝑔 supp ∅)) ∈ Fin)
55 simp-4l 782 . . . . . . . . . . . . . 14 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓f +o 𝑔):𝑋⟶ω) → 𝑋 ∈ On)
56 peano1 7845 . . . . . . . . . . . . . . 15 ∅ ∈ ω
5756a1i 11 . . . . . . . . . . . . . 14 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓f +o 𝑔):𝑋⟶ω) → ∅ ∈ ω)
58 simplrl 776 . . . . . . . . . . . . . . 15 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) → 𝑓:𝑋⟶ω)
5958adantr 480 . . . . . . . . . . . . . 14 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓f +o 𝑔):𝑋⟶ω) → 𝑓:𝑋⟶ω)
60 simplrl 776 . . . . . . . . . . . . . 14 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓f +o 𝑔):𝑋⟶ω) → 𝑔:𝑋⟶ω)
61 0elon 6375 . . . . . . . . . . . . . . 15 ∅ ∈ On
62 oa0 8457 . . . . . . . . . . . . . . 15 (∅ ∈ On → (∅ +o ∅) = ∅)
6361, 62mp1i 13 . . . . . . . . . . . . . 14 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓f +o 𝑔):𝑋⟶ω) → (∅ +o ∅) = ∅)
6455, 57, 59, 60, 63suppofssd 8159 . . . . . . . . . . . . 13 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓f +o 𝑔):𝑋⟶ω) → ((𝑓f +o 𝑔) supp ∅) ⊆ ((𝑓 supp ∅) ∪ (𝑔 supp ∅)))
6554, 64ssfid 9188 . . . . . . . . . . . 12 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓f +o 𝑔):𝑋⟶ω) → ((𝑓f +o 𝑔) supp ∅) ∈ Fin)
66 ovexd 7404 . . . . . . . . . . . . 13 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓f +o 𝑔):𝑋⟶ω) → (𝑓f +o 𝑔) ∈ V)
67 isfsupp 9292 . . . . . . . . . . . . 13 (((𝑓f +o 𝑔) ∈ V ∧ ∅ ∈ On) → ((𝑓f +o 𝑔) finSupp ∅ ↔ (Fun (𝑓f +o 𝑔) ∧ ((𝑓f +o 𝑔) supp ∅) ∈ Fin)))
6866, 61, 67sylancl 586 . . . . . . . . . . . 12 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓f +o 𝑔):𝑋⟶ω) → ((𝑓f +o 𝑔) finSupp ∅ ↔ (Fun (𝑓f +o 𝑔) ∧ ((𝑓f +o 𝑔) supp ∅) ∈ Fin)))
6950, 65, 68mpbir2and 713 . . . . . . . . . . 11 (((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) ∧ (𝑓f +o 𝑔):𝑋⟶ω) → (𝑓f +o 𝑔) finSupp ∅)
7069ex 412 . . . . . . . . . 10 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) → ((𝑓f +o 𝑔):𝑋⟶ω → (𝑓f +o 𝑔) finSupp ∅))
7148, 70jcai 516 . . . . . . . . 9 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) → ((𝑓f +o 𝑔):𝑋⟶ω ∧ (𝑓f +o 𝑔) finSupp ∅))
721eleq2d 2814 . . . . . . . . . . 11 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑓f +o 𝑔) ∈ 𝑆 ↔ (𝑓f +o 𝑔) ∈ dom (ω CNF 𝑋)))
733, 5, 6cantnfs 9595 . . . . . . . . . . 11 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑓f +o 𝑔) ∈ dom (ω CNF 𝑋) ↔ ((𝑓f +o 𝑔):𝑋⟶ω ∧ (𝑓f +o 𝑔) finSupp ∅)))
7472, 73bitrd 279 . . . . . . . . . 10 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑓f +o 𝑔) ∈ 𝑆 ↔ ((𝑓f +o 𝑔):𝑋⟶ω ∧ (𝑓f +o 𝑔) finSupp ∅)))
7574ad2antrr 726 . . . . . . . . 9 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) → ((𝑓f +o 𝑔) ∈ 𝑆 ↔ ((𝑓f +o 𝑔):𝑋⟶ω ∧ (𝑓f +o 𝑔) finSupp ∅)))
7671, 75mpbird 257 . . . . . . . 8 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) ∧ (𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅)) → (𝑓f +o 𝑔) ∈ 𝑆)
7776ex 412 . . . . . . 7 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) → ((𝑔:𝑋⟶ω ∧ 𝑔 finSupp ∅) → (𝑓f +o 𝑔) ∈ 𝑆))
7812, 77sylbid 240 . . . . . 6 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) → (𝑔𝑆 → (𝑓f +o 𝑔) ∈ 𝑆))
7978ralrimiv 3124 . . . . 5 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)) → ∀𝑔𝑆 (𝑓f +o 𝑔) ∈ 𝑆)
8079ex 412 . . . 4 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅) → ∀𝑔𝑆 (𝑓f +o 𝑔) ∈ 𝑆))
818, 80sylbid 240 . . 3 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑓𝑆 → ∀𝑔𝑆 (𝑓f +o 𝑔) ∈ 𝑆))
8281ralrimiv 3124 . 2 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ∀𝑓𝑆𝑔𝑆 (𝑓f +o 𝑔) ∈ 𝑆)
83 ofmres 7942 . . 3 ( ∘f +o ↾ (𝑆 × 𝑆)) = (𝑓𝑆, 𝑔𝑆 ↦ (𝑓f +o 𝑔))
8483fmpo 8026 . 2 (∀𝑓𝑆𝑔𝑆 (𝑓f +o 𝑔) ∈ 𝑆 ↔ ( ∘f +o ↾ (𝑆 × 𝑆)):(𝑆 × 𝑆)⟶𝑆)
8582, 84sylib 218 1 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ( ∘f +o ↾ (𝑆 × 𝑆)):(𝑆 × 𝑆)⟶𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3444  cun 3909  wss 3911  c0 4292   class class class wbr 5102   × cxp 5629  dom cdm 5631  ran crn 5632  cres 5633  Oncon0 6320  Fun wfun 6493   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  f cof 7631  ωcom 7822   supp csupp 8116   +o coa 8408  Fincfn 8895   finSupp cfsupp 9288   CNF ccnf 9590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-seqom 8393  df-1o 8411  df-oadd 8415  df-map 8778  df-en 8896  df-fin 8899  df-fsupp 9289  df-cnf 9591
This theorem is referenced by:  naddcnffn  43325  naddcnffo  43326  naddcnfcl  43327
  Copyright terms: Public domain W3C validator