| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iszeroi | Structured version Visualization version GIF version | ||
| Description: Implication of a class being a zero object. (Contributed by AV, 18-Apr-2020.) |
| Ref | Expression |
|---|---|
| iszeroi | ⊢ ((𝐶 ∈ Cat ∧ 𝑂 ∈ (ZeroO‘𝐶)) → (𝑂 ∈ (Base‘𝐶) ∧ (𝑂 ∈ (InitO‘𝐶) ∧ 𝑂 ∈ (TermO‘𝐶)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . . . 6 ⊢ (𝐶 ∈ Cat → 𝐶 ∈ Cat) | |
| 2 | eqid 2733 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 3 | eqid 2733 | . . . . . 6 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 4 | 1, 2, 3 | zerooval 17904 | . . . . 5 ⊢ (𝐶 ∈ Cat → (ZeroO‘𝐶) = ((InitO‘𝐶) ∩ (TermO‘𝐶))) |
| 5 | 4 | eleq2d 2819 | . . . 4 ⊢ (𝐶 ∈ Cat → (𝑂 ∈ (ZeroO‘𝐶) ↔ 𝑂 ∈ ((InitO‘𝐶) ∩ (TermO‘𝐶)))) |
| 6 | elin 3914 | . . . . 5 ⊢ (𝑂 ∈ ((InitO‘𝐶) ∩ (TermO‘𝐶)) ↔ (𝑂 ∈ (InitO‘𝐶) ∧ 𝑂 ∈ (TermO‘𝐶))) | |
| 7 | initoo 17916 | . . . . . 6 ⊢ (𝐶 ∈ Cat → (𝑂 ∈ (InitO‘𝐶) → 𝑂 ∈ (Base‘𝐶))) | |
| 8 | 7 | adantrd 491 | . . . . 5 ⊢ (𝐶 ∈ Cat → ((𝑂 ∈ (InitO‘𝐶) ∧ 𝑂 ∈ (TermO‘𝐶)) → 𝑂 ∈ (Base‘𝐶))) |
| 9 | 6, 8 | biimtrid 242 | . . . 4 ⊢ (𝐶 ∈ Cat → (𝑂 ∈ ((InitO‘𝐶) ∩ (TermO‘𝐶)) → 𝑂 ∈ (Base‘𝐶))) |
| 10 | 5, 9 | sylbid 240 | . . 3 ⊢ (𝐶 ∈ Cat → (𝑂 ∈ (ZeroO‘𝐶) → 𝑂 ∈ (Base‘𝐶))) |
| 11 | 10 | imp 406 | . 2 ⊢ ((𝐶 ∈ Cat ∧ 𝑂 ∈ (ZeroO‘𝐶)) → 𝑂 ∈ (Base‘𝐶)) |
| 12 | simpl 482 | . . . . 5 ⊢ ((𝐶 ∈ Cat ∧ 𝑂 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat) | |
| 13 | simpr 484 | . . . . 5 ⊢ ((𝐶 ∈ Cat ∧ 𝑂 ∈ (Base‘𝐶)) → 𝑂 ∈ (Base‘𝐶)) | |
| 14 | 2, 3, 12, 13 | iszeroo 17907 | . . . 4 ⊢ ((𝐶 ∈ Cat ∧ 𝑂 ∈ (Base‘𝐶)) → (𝑂 ∈ (ZeroO‘𝐶) ↔ (𝑂 ∈ (InitO‘𝐶) ∧ 𝑂 ∈ (TermO‘𝐶)))) |
| 15 | 14 | biimpd 229 | . . 3 ⊢ ((𝐶 ∈ Cat ∧ 𝑂 ∈ (Base‘𝐶)) → (𝑂 ∈ (ZeroO‘𝐶) → (𝑂 ∈ (InitO‘𝐶) ∧ 𝑂 ∈ (TermO‘𝐶)))) |
| 16 | 15 | impancom 451 | . 2 ⊢ ((𝐶 ∈ Cat ∧ 𝑂 ∈ (ZeroO‘𝐶)) → (𝑂 ∈ (Base‘𝐶) → (𝑂 ∈ (InitO‘𝐶) ∧ 𝑂 ∈ (TermO‘𝐶)))) |
| 17 | 11, 16 | jcai 516 | 1 ⊢ ((𝐶 ∈ Cat ∧ 𝑂 ∈ (ZeroO‘𝐶)) → (𝑂 ∈ (Base‘𝐶) ∧ (𝑂 ∈ (InitO‘𝐶) ∧ 𝑂 ∈ (TermO‘𝐶)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 ∩ cin 3897 ‘cfv 6486 Basecbs 17122 Hom chom 17174 Catccat 17572 InitOcinito 17890 TermOctermo 17891 ZeroOczeroo 17892 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7355 df-inito 17893 df-zeroo 17895 |
| This theorem is referenced by: nzerooringczr 21419 zeroo2 49359 |
| Copyright terms: Public domain | W3C validator |