![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iszeroi | Structured version Visualization version GIF version |
Description: Implication of a class being a zero object. (Contributed by AV, 18-Apr-2020.) |
Ref | Expression |
---|---|
iszeroi | ⊢ ((𝐶 ∈ Cat ∧ 𝑂 ∈ (ZeroO‘𝐶)) → (𝑂 ∈ (Base‘𝐶) ∧ (𝑂 ∈ (InitO‘𝐶) ∧ 𝑂 ∈ (TermO‘𝐶)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . . 6 ⊢ (𝐶 ∈ Cat → 𝐶 ∈ Cat) | |
2 | eqid 2740 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
3 | eqid 2740 | . . . . . 6 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
4 | 1, 2, 3 | zerooval 18062 | . . . . 5 ⊢ (𝐶 ∈ Cat → (ZeroO‘𝐶) = ((InitO‘𝐶) ∩ (TermO‘𝐶))) |
5 | 4 | eleq2d 2830 | . . . 4 ⊢ (𝐶 ∈ Cat → (𝑂 ∈ (ZeroO‘𝐶) ↔ 𝑂 ∈ ((InitO‘𝐶) ∩ (TermO‘𝐶)))) |
6 | elin 3992 | . . . . 5 ⊢ (𝑂 ∈ ((InitO‘𝐶) ∩ (TermO‘𝐶)) ↔ (𝑂 ∈ (InitO‘𝐶) ∧ 𝑂 ∈ (TermO‘𝐶))) | |
7 | initoo 18074 | . . . . . 6 ⊢ (𝐶 ∈ Cat → (𝑂 ∈ (InitO‘𝐶) → 𝑂 ∈ (Base‘𝐶))) | |
8 | 7 | adantrd 491 | . . . . 5 ⊢ (𝐶 ∈ Cat → ((𝑂 ∈ (InitO‘𝐶) ∧ 𝑂 ∈ (TermO‘𝐶)) → 𝑂 ∈ (Base‘𝐶))) |
9 | 6, 8 | biimtrid 242 | . . . 4 ⊢ (𝐶 ∈ Cat → (𝑂 ∈ ((InitO‘𝐶) ∩ (TermO‘𝐶)) → 𝑂 ∈ (Base‘𝐶))) |
10 | 5, 9 | sylbid 240 | . . 3 ⊢ (𝐶 ∈ Cat → (𝑂 ∈ (ZeroO‘𝐶) → 𝑂 ∈ (Base‘𝐶))) |
11 | 10 | imp 406 | . 2 ⊢ ((𝐶 ∈ Cat ∧ 𝑂 ∈ (ZeroO‘𝐶)) → 𝑂 ∈ (Base‘𝐶)) |
12 | simpl 482 | . . . . 5 ⊢ ((𝐶 ∈ Cat ∧ 𝑂 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat) | |
13 | simpr 484 | . . . . 5 ⊢ ((𝐶 ∈ Cat ∧ 𝑂 ∈ (Base‘𝐶)) → 𝑂 ∈ (Base‘𝐶)) | |
14 | 2, 3, 12, 13 | iszeroo 18065 | . . . 4 ⊢ ((𝐶 ∈ Cat ∧ 𝑂 ∈ (Base‘𝐶)) → (𝑂 ∈ (ZeroO‘𝐶) ↔ (𝑂 ∈ (InitO‘𝐶) ∧ 𝑂 ∈ (TermO‘𝐶)))) |
15 | 14 | biimpd 229 | . . 3 ⊢ ((𝐶 ∈ Cat ∧ 𝑂 ∈ (Base‘𝐶)) → (𝑂 ∈ (ZeroO‘𝐶) → (𝑂 ∈ (InitO‘𝐶) ∧ 𝑂 ∈ (TermO‘𝐶)))) |
16 | 15 | impancom 451 | . 2 ⊢ ((𝐶 ∈ Cat ∧ 𝑂 ∈ (ZeroO‘𝐶)) → (𝑂 ∈ (Base‘𝐶) → (𝑂 ∈ (InitO‘𝐶) ∧ 𝑂 ∈ (TermO‘𝐶)))) |
17 | 11, 16 | jcai 516 | 1 ⊢ ((𝐶 ∈ Cat ∧ 𝑂 ∈ (ZeroO‘𝐶)) → (𝑂 ∈ (Base‘𝐶) ∧ (𝑂 ∈ (InitO‘𝐶) ∧ 𝑂 ∈ (TermO‘𝐶)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∩ cin 3975 ‘cfv 6573 Basecbs 17258 Hom chom 17322 Catccat 17722 InitOcinito 18048 TermOctermo 18049 ZeroOczeroo 18050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-inito 18051 df-zeroo 18053 |
This theorem is referenced by: nzerooringczr 21514 |
Copyright terms: Public domain | W3C validator |