MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iszeroi Structured version   Visualization version   GIF version

Theorem iszeroi 17705
Description: Implication of a class being a zero object. (Contributed by AV, 18-Apr-2020.)
Assertion
Ref Expression
iszeroi ((𝐶 ∈ Cat ∧ 𝑂 ∈ (ZeroO‘𝐶)) → (𝑂 ∈ (Base‘𝐶) ∧ (𝑂 ∈ (InitO‘𝐶) ∧ 𝑂 ∈ (TermO‘𝐶))))

Proof of Theorem iszeroi
StepHypRef Expression
1 id 22 . . . . . 6 (𝐶 ∈ Cat → 𝐶 ∈ Cat)
2 eqid 2739 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
3 eqid 2739 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
41, 2, 3zerooval 17691 . . . . 5 (𝐶 ∈ Cat → (ZeroO‘𝐶) = ((InitO‘𝐶) ∩ (TermO‘𝐶)))
54eleq2d 2825 . . . 4 (𝐶 ∈ Cat → (𝑂 ∈ (ZeroO‘𝐶) ↔ 𝑂 ∈ ((InitO‘𝐶) ∩ (TermO‘𝐶))))
6 elin 3907 . . . . 5 (𝑂 ∈ ((InitO‘𝐶) ∩ (TermO‘𝐶)) ↔ (𝑂 ∈ (InitO‘𝐶) ∧ 𝑂 ∈ (TermO‘𝐶)))
7 initoo 17703 . . . . . 6 (𝐶 ∈ Cat → (𝑂 ∈ (InitO‘𝐶) → 𝑂 ∈ (Base‘𝐶)))
87adantrd 491 . . . . 5 (𝐶 ∈ Cat → ((𝑂 ∈ (InitO‘𝐶) ∧ 𝑂 ∈ (TermO‘𝐶)) → 𝑂 ∈ (Base‘𝐶)))
96, 8syl5bi 241 . . . 4 (𝐶 ∈ Cat → (𝑂 ∈ ((InitO‘𝐶) ∩ (TermO‘𝐶)) → 𝑂 ∈ (Base‘𝐶)))
105, 9sylbid 239 . . 3 (𝐶 ∈ Cat → (𝑂 ∈ (ZeroO‘𝐶) → 𝑂 ∈ (Base‘𝐶)))
1110imp 406 . 2 ((𝐶 ∈ Cat ∧ 𝑂 ∈ (ZeroO‘𝐶)) → 𝑂 ∈ (Base‘𝐶))
12 simpl 482 . . . . 5 ((𝐶 ∈ Cat ∧ 𝑂 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat)
13 simpr 484 . . . . 5 ((𝐶 ∈ Cat ∧ 𝑂 ∈ (Base‘𝐶)) → 𝑂 ∈ (Base‘𝐶))
142, 3, 12, 13iszeroo 17694 . . . 4 ((𝐶 ∈ Cat ∧ 𝑂 ∈ (Base‘𝐶)) → (𝑂 ∈ (ZeroO‘𝐶) ↔ (𝑂 ∈ (InitO‘𝐶) ∧ 𝑂 ∈ (TermO‘𝐶))))
1514biimpd 228 . . 3 ((𝐶 ∈ Cat ∧ 𝑂 ∈ (Base‘𝐶)) → (𝑂 ∈ (ZeroO‘𝐶) → (𝑂 ∈ (InitO‘𝐶) ∧ 𝑂 ∈ (TermO‘𝐶))))
1615impancom 451 . 2 ((𝐶 ∈ Cat ∧ 𝑂 ∈ (ZeroO‘𝐶)) → (𝑂 ∈ (Base‘𝐶) → (𝑂 ∈ (InitO‘𝐶) ∧ 𝑂 ∈ (TermO‘𝐶))))
1711, 16jcai 516 1 ((𝐶 ∈ Cat ∧ 𝑂 ∈ (ZeroO‘𝐶)) → (𝑂 ∈ (Base‘𝐶) ∧ (𝑂 ∈ (InitO‘𝐶) ∧ 𝑂 ∈ (TermO‘𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  cin 3890  cfv 6430  Basecbs 16893  Hom chom 16954  Catccat 17354  InitOcinito 17677  TermOctermo 17678  ZeroOczeroo 17679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-iota 6388  df-fun 6432  df-fv 6438  df-ov 7271  df-inito 17680  df-zeroo 17682
This theorem is referenced by:  nzerooringczr  45582
  Copyright terms: Public domain W3C validator