Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naddcnffo Structured version   Visualization version   GIF version

Theorem naddcnffo 43337
Description: Addition of Cantor normal forms is a function onto Cantor normal forms. (Contributed by RP, 2-Jan-2025.)
Assertion
Ref Expression
naddcnffo ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ( ∘f +o ↾ (𝑆 × 𝑆)):(𝑆 × 𝑆)–onto𝑆)

Proof of Theorem naddcnffo
Dummy variables 𝑓 𝑔 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 naddcnff 43335 . 2 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ( ∘f +o ↾ (𝑆 × 𝑆)):(𝑆 × 𝑆)⟶𝑆)
2 simpr 484 . . . 4 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝑓𝑆) → 𝑓𝑆)
3 peano1 7822 . . . . . . . . 9 ∅ ∈ ω
4 fconst6g 6713 . . . . . . . . 9 (∅ ∈ ω → (𝑋 × {∅}):𝑋⟶ω)
53, 4mp1i 13 . . . . . . . 8 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑋 × {∅}):𝑋⟶ω)
6 simpl 482 . . . . . . . . 9 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑋 ∈ On)
73a1i 11 . . . . . . . . 9 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ∅ ∈ ω)
86, 7fczfsuppd 9276 . . . . . . . 8 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑋 × {∅}) finSupp ∅)
9 simpr 484 . . . . . . . . . 10 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑆 = dom (ω CNF 𝑋))
109eleq2d 2814 . . . . . . . . 9 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑋 × {∅}) ∈ 𝑆 ↔ (𝑋 × {∅}) ∈ dom (ω CNF 𝑋)))
11 eqid 2729 . . . . . . . . . 10 dom (ω CNF 𝑋) = dom (ω CNF 𝑋)
12 omelon 9542 . . . . . . . . . . 11 ω ∈ On
1312a1i 11 . . . . . . . . . 10 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ω ∈ On)
1411, 13, 6cantnfs 9562 . . . . . . . . 9 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑋 × {∅}) ∈ dom (ω CNF 𝑋) ↔ ((𝑋 × {∅}):𝑋⟶ω ∧ (𝑋 × {∅}) finSupp ∅)))
1510, 14bitrd 279 . . . . . . . 8 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑋 × {∅}) ∈ 𝑆 ↔ ((𝑋 × {∅}):𝑋⟶ω ∧ (𝑋 × {∅}) finSupp ∅)))
165, 8, 15mpbir2and 713 . . . . . . 7 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑋 × {∅}) ∈ 𝑆)
1716adantr 480 . . . . . 6 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝑓𝑆) → (𝑋 × {∅}) ∈ 𝑆)
18 simpl 482 . . . . . . . . . 10 ((𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆) → 𝑓𝑆)
1918adantl 481 . . . . . . . . 9 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) → 𝑓𝑆)
20 simpr 484 . . . . . . . . . 10 ((𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆) → (𝑋 × {∅}) ∈ 𝑆)
2120adantl 481 . . . . . . . . 9 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) → (𝑋 × {∅}) ∈ 𝑆)
2219, 21ovresd 7516 . . . . . . . 8 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) → (𝑓( ∘f +o ↾ (𝑆 × 𝑆))(𝑋 × {∅})) = (𝑓f +o (𝑋 × {∅})))
239eleq2d 2814 . . . . . . . . . . . . . . 15 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑓𝑆𝑓 ∈ dom (ω CNF 𝑋)))
2411, 13, 6cantnfs 9562 . . . . . . . . . . . . . . 15 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑓 ∈ dom (ω CNF 𝑋) ↔ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)))
2523, 24bitrd 279 . . . . . . . . . . . . . 14 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑓𝑆 ↔ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)))
2625biimpd 229 . . . . . . . . . . . . 13 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑓𝑆 → (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)))
27 simpl 482 . . . . . . . . . . . . 13 ((𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅) → 𝑓:𝑋⟶ω)
2818, 26, 27syl56 36 . . . . . . . . . . . 12 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆) → 𝑓:𝑋⟶ω))
2928imp 406 . . . . . . . . . . 11 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) → 𝑓:𝑋⟶ω)
3029ffnd 6653 . . . . . . . . . 10 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) → 𝑓 Fn 𝑋)
31 fnconstg 6712 . . . . . . . . . . 11 (∅ ∈ ω → (𝑋 × {∅}) Fn 𝑋)
323, 31mp1i 13 . . . . . . . . . 10 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) → (𝑋 × {∅}) Fn 𝑋)
336adantr 480 . . . . . . . . . 10 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) → 𝑋 ∈ On)
34 inidm 4178 . . . . . . . . . 10 (𝑋𝑋) = 𝑋
3530, 32, 33, 33, 34offn 7626 . . . . . . . . 9 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) → (𝑓f +o (𝑋 × {∅})) Fn 𝑋)
3630adantr 480 . . . . . . . . . . 11 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) ∧ 𝑥𝑋) → 𝑓 Fn 𝑋)
373, 31mp1i 13 . . . . . . . . . . 11 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) ∧ 𝑥𝑋) → (𝑋 × {∅}) Fn 𝑋)
38 simplll 774 . . . . . . . . . . 11 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) ∧ 𝑥𝑋) → 𝑋 ∈ On)
39 simpr 484 . . . . . . . . . . 11 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) ∧ 𝑥𝑋) → 𝑥𝑋)
40 fnfvof 7630 . . . . . . . . . . 11 (((𝑓 Fn 𝑋 ∧ (𝑋 × {∅}) Fn 𝑋) ∧ (𝑋 ∈ On ∧ 𝑥𝑋)) → ((𝑓f +o (𝑋 × {∅}))‘𝑥) = ((𝑓𝑥) +o ((𝑋 × {∅})‘𝑥)))
4136, 37, 38, 39, 40syl22anc 838 . . . . . . . . . 10 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) ∧ 𝑥𝑋) → ((𝑓f +o (𝑋 × {∅}))‘𝑥) = ((𝑓𝑥) +o ((𝑋 × {∅})‘𝑥)))
423a1i 11 . . . . . . . . . . . 12 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) ∧ 𝑥𝑋) → ∅ ∈ ω)
43 fvconst2g 7138 . . . . . . . . . . . 12 ((∅ ∈ ω ∧ 𝑥𝑋) → ((𝑋 × {∅})‘𝑥) = ∅)
4442, 39, 43syl2anc 584 . . . . . . . . . . 11 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) ∧ 𝑥𝑋) → ((𝑋 × {∅})‘𝑥) = ∅)
4544oveq2d 7365 . . . . . . . . . 10 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) ∧ 𝑥𝑋) → ((𝑓𝑥) +o ((𝑋 × {∅})‘𝑥)) = ((𝑓𝑥) +o ∅))
4629ffvelcdmda 7018 . . . . . . . . . . 11 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) ∧ 𝑥𝑋) → (𝑓𝑥) ∈ ω)
47 nnon 7805 . . . . . . . . . . 11 ((𝑓𝑥) ∈ ω → (𝑓𝑥) ∈ On)
48 oa0 8434 . . . . . . . . . . 11 ((𝑓𝑥) ∈ On → ((𝑓𝑥) +o ∅) = (𝑓𝑥))
4946, 47, 483syl 18 . . . . . . . . . 10 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) ∧ 𝑥𝑋) → ((𝑓𝑥) +o ∅) = (𝑓𝑥))
5041, 45, 493eqtrd 2768 . . . . . . . . 9 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) ∧ 𝑥𝑋) → ((𝑓f +o (𝑋 × {∅}))‘𝑥) = (𝑓𝑥))
5135, 30, 50eqfnfvd 6968 . . . . . . . 8 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) → (𝑓f +o (𝑋 × {∅})) = 𝑓)
5222, 51eqtr2d 2765 . . . . . . 7 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) → 𝑓 = (𝑓( ∘f +o ↾ (𝑆 × 𝑆))(𝑋 × {∅})))
5352expr 456 . . . . . 6 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝑓𝑆) → ((𝑋 × {∅}) ∈ 𝑆𝑓 = (𝑓( ∘f +o ↾ (𝑆 × 𝑆))(𝑋 × {∅}))))
5417, 53jcai 516 . . . . 5 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝑓𝑆) → ((𝑋 × {∅}) ∈ 𝑆𝑓 = (𝑓( ∘f +o ↾ (𝑆 × 𝑆))(𝑋 × {∅}))))
55 oveq2 7357 . . . . . 6 (𝑧 = (𝑋 × {∅}) → (𝑓( ∘f +o ↾ (𝑆 × 𝑆))𝑧) = (𝑓( ∘f +o ↾ (𝑆 × 𝑆))(𝑋 × {∅})))
5655rspceeqv 3600 . . . . 5 (((𝑋 × {∅}) ∈ 𝑆𝑓 = (𝑓( ∘f +o ↾ (𝑆 × 𝑆))(𝑋 × {∅}))) → ∃𝑧𝑆 𝑓 = (𝑓( ∘f +o ↾ (𝑆 × 𝑆))𝑧))
5754, 56syl 17 . . . 4 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝑓𝑆) → ∃𝑧𝑆 𝑓 = (𝑓( ∘f +o ↾ (𝑆 × 𝑆))𝑧))
58 oveq1 7356 . . . . . . 7 (𝑔 = 𝑓 → (𝑔( ∘f +o ↾ (𝑆 × 𝑆))𝑧) = (𝑓( ∘f +o ↾ (𝑆 × 𝑆))𝑧))
5958eqeq2d 2740 . . . . . 6 (𝑔 = 𝑓 → (𝑓 = (𝑔( ∘f +o ↾ (𝑆 × 𝑆))𝑧) ↔ 𝑓 = (𝑓( ∘f +o ↾ (𝑆 × 𝑆))𝑧)))
6059rexbidv 3153 . . . . 5 (𝑔 = 𝑓 → (∃𝑧𝑆 𝑓 = (𝑔( ∘f +o ↾ (𝑆 × 𝑆))𝑧) ↔ ∃𝑧𝑆 𝑓 = (𝑓( ∘f +o ↾ (𝑆 × 𝑆))𝑧)))
6160rspcev 3577 . . . 4 ((𝑓𝑆 ∧ ∃𝑧𝑆 𝑓 = (𝑓( ∘f +o ↾ (𝑆 × 𝑆))𝑧)) → ∃𝑔𝑆𝑧𝑆 𝑓 = (𝑔( ∘f +o ↾ (𝑆 × 𝑆))𝑧))
622, 57, 61syl2anc 584 . . 3 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝑓𝑆) → ∃𝑔𝑆𝑧𝑆 𝑓 = (𝑔( ∘f +o ↾ (𝑆 × 𝑆))𝑧))
6362ralrimiva 3121 . 2 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ∀𝑓𝑆𝑔𝑆𝑧𝑆 𝑓 = (𝑔( ∘f +o ↾ (𝑆 × 𝑆))𝑧))
64 foov 7523 . 2 (( ∘f +o ↾ (𝑆 × 𝑆)):(𝑆 × 𝑆)–onto𝑆 ↔ (( ∘f +o ↾ (𝑆 × 𝑆)):(𝑆 × 𝑆)⟶𝑆 ∧ ∀𝑓𝑆𝑔𝑆𝑧𝑆 𝑓 = (𝑔( ∘f +o ↾ (𝑆 × 𝑆))𝑧)))
651, 63, 64sylanbrc 583 1 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ( ∘f +o ↾ (𝑆 × 𝑆)):(𝑆 × 𝑆)–onto𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  c0 4284  {csn 4577   class class class wbr 5092   × cxp 5617  dom cdm 5619  cres 5621  Oncon0 6307   Fn wfn 6477  wf 6478  ontowfo 6480  cfv 6482  (class class class)co 7349  f cof 7611  ωcom 7799   +o coa 8385   finSupp cfsupp 9251   CNF ccnf 9557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-seqom 8370  df-1o 8388  df-oadd 8392  df-map 8755  df-en 8873  df-fin 8876  df-fsupp 9252  df-cnf 9558
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator