Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naddcnffo Structured version   Visualization version   GIF version

Theorem naddcnffo 41255
Description: Addition of Cantor normal forms is a function onto Cantor normal forms. (Contributed by RP, 2-Jan-2025.)
Assertion
Ref Expression
naddcnffo ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ( ∘f +o ↾ (𝑆 × 𝑆)):(𝑆 × 𝑆)–onto𝑆)

Proof of Theorem naddcnffo
Dummy variables 𝑓 𝑔 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 naddcnff 41253 . 2 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ( ∘f +o ↾ (𝑆 × 𝑆)):(𝑆 × 𝑆)⟶𝑆)
2 simpr 486 . . . 4 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝑓𝑆) → 𝑓𝑆)
3 peano1 7767 . . . . . . . . 9 ∅ ∈ ω
4 fconst6g 6693 . . . . . . . . 9 (∅ ∈ ω → (𝑋 × {∅}):𝑋⟶ω)
53, 4mp1i 13 . . . . . . . 8 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑋 × {∅}):𝑋⟶ω)
6 simpl 484 . . . . . . . . 9 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑋 ∈ On)
73a1i 11 . . . . . . . . 9 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ∅ ∈ ω)
86, 7fczfsuppd 9194 . . . . . . . 8 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑋 × {∅}) finSupp ∅)
9 simpr 486 . . . . . . . . . 10 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑆 = dom (ω CNF 𝑋))
109eleq2d 2822 . . . . . . . . 9 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑋 × {∅}) ∈ 𝑆 ↔ (𝑋 × {∅}) ∈ dom (ω CNF 𝑋)))
11 eqid 2736 . . . . . . . . . 10 dom (ω CNF 𝑋) = dom (ω CNF 𝑋)
12 omelon 9452 . . . . . . . . . . 11 ω ∈ On
1312a1i 11 . . . . . . . . . 10 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ω ∈ On)
1411, 13, 6cantnfs 9472 . . . . . . . . 9 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑋 × {∅}) ∈ dom (ω CNF 𝑋) ↔ ((𝑋 × {∅}):𝑋⟶ω ∧ (𝑋 × {∅}) finSupp ∅)))
1510, 14bitrd 279 . . . . . . . 8 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑋 × {∅}) ∈ 𝑆 ↔ ((𝑋 × {∅}):𝑋⟶ω ∧ (𝑋 × {∅}) finSupp ∅)))
165, 8, 15mpbir2and 711 . . . . . . 7 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑋 × {∅}) ∈ 𝑆)
1716adantr 482 . . . . . 6 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝑓𝑆) → (𝑋 × {∅}) ∈ 𝑆)
18 simpl 484 . . . . . . . . . 10 ((𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆) → 𝑓𝑆)
1918adantl 483 . . . . . . . . 9 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) → 𝑓𝑆)
20 simpr 486 . . . . . . . . . 10 ((𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆) → (𝑋 × {∅}) ∈ 𝑆)
2120adantl 483 . . . . . . . . 9 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) → (𝑋 × {∅}) ∈ 𝑆)
2219, 21ovresd 7471 . . . . . . . 8 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) → (𝑓( ∘f +o ↾ (𝑆 × 𝑆))(𝑋 × {∅})) = (𝑓f +o (𝑋 × {∅})))
239eleq2d 2822 . . . . . . . . . . . . . . 15 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑓𝑆𝑓 ∈ dom (ω CNF 𝑋)))
2411, 13, 6cantnfs 9472 . . . . . . . . . . . . . . 15 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑓 ∈ dom (ω CNF 𝑋) ↔ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)))
2523, 24bitrd 279 . . . . . . . . . . . . . 14 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑓𝑆 ↔ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)))
2625biimpd 228 . . . . . . . . . . . . 13 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑓𝑆 → (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅)))
27 simpl 484 . . . . . . . . . . . . 13 ((𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅) → 𝑓:𝑋⟶ω)
2818, 26, 27syl56 36 . . . . . . . . . . . 12 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆) → 𝑓:𝑋⟶ω))
2928imp 408 . . . . . . . . . . 11 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) → 𝑓:𝑋⟶ω)
3029ffnd 6631 . . . . . . . . . 10 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) → 𝑓 Fn 𝑋)
31 fnconstg 6692 . . . . . . . . . . 11 (∅ ∈ ω → (𝑋 × {∅}) Fn 𝑋)
323, 31mp1i 13 . . . . . . . . . 10 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) → (𝑋 × {∅}) Fn 𝑋)
336adantr 482 . . . . . . . . . 10 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) → 𝑋 ∈ On)
34 inidm 4158 . . . . . . . . . 10 (𝑋𝑋) = 𝑋
3530, 32, 33, 33, 34offn 7578 . . . . . . . . 9 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) → (𝑓f +o (𝑋 × {∅})) Fn 𝑋)
3630adantr 482 . . . . . . . . . . 11 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) ∧ 𝑥𝑋) → 𝑓 Fn 𝑋)
373, 31mp1i 13 . . . . . . . . . . 11 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) ∧ 𝑥𝑋) → (𝑋 × {∅}) Fn 𝑋)
38 simplll 773 . . . . . . . . . . 11 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) ∧ 𝑥𝑋) → 𝑋 ∈ On)
39 simpr 486 . . . . . . . . . . 11 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) ∧ 𝑥𝑋) → 𝑥𝑋)
40 fnfvof 7582 . . . . . . . . . . 11 (((𝑓 Fn 𝑋 ∧ (𝑋 × {∅}) Fn 𝑋) ∧ (𝑋 ∈ On ∧ 𝑥𝑋)) → ((𝑓f +o (𝑋 × {∅}))‘𝑥) = ((𝑓𝑥) +o ((𝑋 × {∅})‘𝑥)))
4136, 37, 38, 39, 40syl22anc 837 . . . . . . . . . 10 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) ∧ 𝑥𝑋) → ((𝑓f +o (𝑋 × {∅}))‘𝑥) = ((𝑓𝑥) +o ((𝑋 × {∅})‘𝑥)))
423a1i 11 . . . . . . . . . . . 12 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) ∧ 𝑥𝑋) → ∅ ∈ ω)
43 fvconst2g 7109 . . . . . . . . . . . 12 ((∅ ∈ ω ∧ 𝑥𝑋) → ((𝑋 × {∅})‘𝑥) = ∅)
4442, 39, 43syl2anc 585 . . . . . . . . . . 11 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) ∧ 𝑥𝑋) → ((𝑋 × {∅})‘𝑥) = ∅)
4544oveq2d 7323 . . . . . . . . . 10 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) ∧ 𝑥𝑋) → ((𝑓𝑥) +o ((𝑋 × {∅})‘𝑥)) = ((𝑓𝑥) +o ∅))
4629ffvelcdmda 6993 . . . . . . . . . . 11 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) ∧ 𝑥𝑋) → (𝑓𝑥) ∈ ω)
47 nnon 7750 . . . . . . . . . . 11 ((𝑓𝑥) ∈ ω → (𝑓𝑥) ∈ On)
48 oa0 8377 . . . . . . . . . . 11 ((𝑓𝑥) ∈ On → ((𝑓𝑥) +o ∅) = (𝑓𝑥))
4946, 47, 483syl 18 . . . . . . . . . 10 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) ∧ 𝑥𝑋) → ((𝑓𝑥) +o ∅) = (𝑓𝑥))
5041, 45, 493eqtrd 2780 . . . . . . . . 9 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) ∧ 𝑥𝑋) → ((𝑓f +o (𝑋 × {∅}))‘𝑥) = (𝑓𝑥))
5135, 30, 50eqfnfvd 6944 . . . . . . . 8 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) → (𝑓f +o (𝑋 × {∅})) = 𝑓)
5222, 51eqtr2d 2777 . . . . . . 7 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) → 𝑓 = (𝑓( ∘f +o ↾ (𝑆 × 𝑆))(𝑋 × {∅})))
5352expr 458 . . . . . 6 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝑓𝑆) → ((𝑋 × {∅}) ∈ 𝑆𝑓 = (𝑓( ∘f +o ↾ (𝑆 × 𝑆))(𝑋 × {∅}))))
5417, 53jcai 518 . . . . 5 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝑓𝑆) → ((𝑋 × {∅}) ∈ 𝑆𝑓 = (𝑓( ∘f +o ↾ (𝑆 × 𝑆))(𝑋 × {∅}))))
55 oveq2 7315 . . . . . 6 (𝑧 = (𝑋 × {∅}) → (𝑓( ∘f +o ↾ (𝑆 × 𝑆))𝑧) = (𝑓( ∘f +o ↾ (𝑆 × 𝑆))(𝑋 × {∅})))
5655rspceeqv 3580 . . . . 5 (((𝑋 × {∅}) ∈ 𝑆𝑓 = (𝑓( ∘f +o ↾ (𝑆 × 𝑆))(𝑋 × {∅}))) → ∃𝑧𝑆 𝑓 = (𝑓( ∘f +o ↾ (𝑆 × 𝑆))𝑧))
5754, 56syl 17 . . . 4 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝑓𝑆) → ∃𝑧𝑆 𝑓 = (𝑓( ∘f +o ↾ (𝑆 × 𝑆))𝑧))
58 oveq1 7314 . . . . . . 7 (𝑔 = 𝑓 → (𝑔( ∘f +o ↾ (𝑆 × 𝑆))𝑧) = (𝑓( ∘f +o ↾ (𝑆 × 𝑆))𝑧))
5958eqeq2d 2747 . . . . . 6 (𝑔 = 𝑓 → (𝑓 = (𝑔( ∘f +o ↾ (𝑆 × 𝑆))𝑧) ↔ 𝑓 = (𝑓( ∘f +o ↾ (𝑆 × 𝑆))𝑧)))
6059rexbidv 3171 . . . . 5 (𝑔 = 𝑓 → (∃𝑧𝑆 𝑓 = (𝑔( ∘f +o ↾ (𝑆 × 𝑆))𝑧) ↔ ∃𝑧𝑆 𝑓 = (𝑓( ∘f +o ↾ (𝑆 × 𝑆))𝑧)))
6160rspcev 3566 . . . 4 ((𝑓𝑆 ∧ ∃𝑧𝑆 𝑓 = (𝑓( ∘f +o ↾ (𝑆 × 𝑆))𝑧)) → ∃𝑔𝑆𝑧𝑆 𝑓 = (𝑔( ∘f +o ↾ (𝑆 × 𝑆))𝑧))
622, 57, 61syl2anc 585 . . 3 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝑓𝑆) → ∃𝑔𝑆𝑧𝑆 𝑓 = (𝑔( ∘f +o ↾ (𝑆 × 𝑆))𝑧))
6362ralrimiva 3139 . 2 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ∀𝑓𝑆𝑔𝑆𝑧𝑆 𝑓 = (𝑔( ∘f +o ↾ (𝑆 × 𝑆))𝑧))
64 foov 7478 . 2 (( ∘f +o ↾ (𝑆 × 𝑆)):(𝑆 × 𝑆)–onto𝑆 ↔ (( ∘f +o ↾ (𝑆 × 𝑆)):(𝑆 × 𝑆)⟶𝑆 ∧ ∀𝑓𝑆𝑔𝑆𝑧𝑆 𝑓 = (𝑔( ∘f +o ↾ (𝑆 × 𝑆))𝑧)))
651, 63, 64sylanbrc 584 1 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ( ∘f +o ↾ (𝑆 × 𝑆)):(𝑆 × 𝑆)–onto𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wcel 2104  wral 3061  wrex 3070  c0 4262  {csn 4565   class class class wbr 5081   × cxp 5598  dom cdm 5600  cres 5602  Oncon0 6281   Fn wfn 6453  wf 6454  ontowfo 6456  cfv 6458  (class class class)co 7307  f cof 7563  ωcom 7744   +o coa 8325   finSupp cfsupp 9176   CNF ccnf 9467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-inf2 9447
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3332  df-rab 3333  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-of 7565  df-om 7745  df-1st 7863  df-2nd 7864  df-supp 8009  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-seqom 8310  df-1o 8328  df-oadd 8332  df-map 8648  df-en 8765  df-fin 8768  df-fsupp 9177  df-cnf 9468
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator