Step | Hyp | Ref
| Expression |
1 | | naddcnff 41253 |
. 2
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ( ∘f
+o ↾ (𝑆
× 𝑆)):(𝑆 × 𝑆)⟶𝑆) |
2 | | simpr 486 |
. . . 4
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝑓 ∈ 𝑆) → 𝑓 ∈ 𝑆) |
3 | | peano1 7767 |
. . . . . . . . 9
⊢ ∅
∈ ω |
4 | | fconst6g 6693 |
. . . . . . . . 9
⊢ (∅
∈ ω → (𝑋
× {∅}):𝑋⟶ω) |
5 | 3, 4 | mp1i 13 |
. . . . . . . 8
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑋 × {∅}):𝑋⟶ω) |
6 | | simpl 484 |
. . . . . . . . 9
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑋 ∈ On) |
7 | 3 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ∅ ∈
ω) |
8 | 6, 7 | fczfsuppd 9194 |
. . . . . . . 8
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑋 × {∅}) finSupp
∅) |
9 | | simpr 486 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑆 = dom (ω CNF 𝑋)) |
10 | 9 | eleq2d 2822 |
. . . . . . . . 9
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑋 × {∅}) ∈ 𝑆 ↔ (𝑋 × {∅}) ∈ dom (ω CNF
𝑋))) |
11 | | eqid 2736 |
. . . . . . . . . 10
⊢ dom
(ω CNF 𝑋) = dom
(ω CNF 𝑋) |
12 | | omelon 9452 |
. . . . . . . . . . 11
⊢ ω
∈ On |
13 | 12 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ω ∈
On) |
14 | 11, 13, 6 | cantnfs 9472 |
. . . . . . . . 9
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑋 × {∅}) ∈ dom (ω CNF
𝑋) ↔ ((𝑋 × {∅}):𝑋⟶ω ∧ (𝑋 × {∅}) finSupp
∅))) |
15 | 10, 14 | bitrd 279 |
. . . . . . . 8
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑋 × {∅}) ∈ 𝑆 ↔ ((𝑋 × {∅}):𝑋⟶ω ∧ (𝑋 × {∅}) finSupp
∅))) |
16 | 5, 8, 15 | mpbir2and 711 |
. . . . . . 7
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑋 × {∅}) ∈ 𝑆) |
17 | 16 | adantr 482 |
. . . . . 6
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝑓 ∈ 𝑆) → (𝑋 × {∅}) ∈ 𝑆) |
18 | | simpl 484 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ 𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆) → 𝑓 ∈ 𝑆) |
19 | 18 | adantl 483 |
. . . . . . . . 9
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓 ∈ 𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) → 𝑓 ∈ 𝑆) |
20 | | simpr 486 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ 𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆) → (𝑋 × {∅}) ∈ 𝑆) |
21 | 20 | adantl 483 |
. . . . . . . . 9
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓 ∈ 𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) → (𝑋 × {∅}) ∈ 𝑆) |
22 | 19, 21 | ovresd 7471 |
. . . . . . . 8
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓 ∈ 𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) → (𝑓( ∘f +o ↾
(𝑆 × 𝑆))(𝑋 × {∅})) = (𝑓 ∘f +o (𝑋 ×
{∅}))) |
23 | 9 | eleq2d 2822 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑓 ∈ 𝑆 ↔ 𝑓 ∈ dom (ω CNF 𝑋))) |
24 | 11, 13, 6 | cantnfs 9472 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑓 ∈ dom (ω CNF 𝑋) ↔ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅))) |
25 | 23, 24 | bitrd 279 |
. . . . . . . . . . . . . 14
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑓 ∈ 𝑆 ↔ (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅))) |
26 | 25 | biimpd 228 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝑓 ∈ 𝑆 → (𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅))) |
27 | | simpl 484 |
. . . . . . . . . . . . 13
⊢ ((𝑓:𝑋⟶ω ∧ 𝑓 finSupp ∅) → 𝑓:𝑋⟶ω) |
28 | 18, 26, 27 | syl56 36 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ((𝑓 ∈ 𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆) → 𝑓:𝑋⟶ω)) |
29 | 28 | imp 408 |
. . . . . . . . . . 11
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓 ∈ 𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) → 𝑓:𝑋⟶ω) |
30 | 29 | ffnd 6631 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓 ∈ 𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) → 𝑓 Fn 𝑋) |
31 | | fnconstg 6692 |
. . . . . . . . . . 11
⊢ (∅
∈ ω → (𝑋
× {∅}) Fn 𝑋) |
32 | 3, 31 | mp1i 13 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓 ∈ 𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) → (𝑋 × {∅}) Fn 𝑋) |
33 | 6 | adantr 482 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓 ∈ 𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) → 𝑋 ∈ On) |
34 | | inidm 4158 |
. . . . . . . . . 10
⊢ (𝑋 ∩ 𝑋) = 𝑋 |
35 | 30, 32, 33, 33, 34 | offn 7578 |
. . . . . . . . 9
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓 ∈ 𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) → (𝑓 ∘f +o (𝑋 × {∅})) Fn 𝑋) |
36 | 30 | adantr 482 |
. . . . . . . . . . 11
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓 ∈ 𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → 𝑓 Fn 𝑋) |
37 | 3, 31 | mp1i 13 |
. . . . . . . . . . 11
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓 ∈ 𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → (𝑋 × {∅}) Fn 𝑋) |
38 | | simplll 773 |
. . . . . . . . . . 11
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓 ∈ 𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → 𝑋 ∈ On) |
39 | | simpr 486 |
. . . . . . . . . . 11
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓 ∈ 𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
40 | | fnfvof 7582 |
. . . . . . . . . . 11
⊢ (((𝑓 Fn 𝑋 ∧ (𝑋 × {∅}) Fn 𝑋) ∧ (𝑋 ∈ On ∧ 𝑥 ∈ 𝑋)) → ((𝑓 ∘f +o (𝑋 × {∅}))‘𝑥) = ((𝑓‘𝑥) +o ((𝑋 × {∅})‘𝑥))) |
41 | 36, 37, 38, 39, 40 | syl22anc 837 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓 ∈ 𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → ((𝑓 ∘f +o (𝑋 × {∅}))‘𝑥) = ((𝑓‘𝑥) +o ((𝑋 × {∅})‘𝑥))) |
42 | 3 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓 ∈ 𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → ∅ ∈
ω) |
43 | | fvconst2g 7109 |
. . . . . . . . . . . 12
⊢ ((∅
∈ ω ∧ 𝑥
∈ 𝑋) → ((𝑋 × {∅})‘𝑥) = ∅) |
44 | 42, 39, 43 | syl2anc 585 |
. . . . . . . . . . 11
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓 ∈ 𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → ((𝑋 × {∅})‘𝑥) = ∅) |
45 | 44 | oveq2d 7323 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓 ∈ 𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → ((𝑓‘𝑥) +o ((𝑋 × {∅})‘𝑥)) = ((𝑓‘𝑥) +o ∅)) |
46 | 29 | ffvelcdmda 6993 |
. . . . . . . . . . 11
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓 ∈ 𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → (𝑓‘𝑥) ∈ ω) |
47 | | nnon 7750 |
. . . . . . . . . . 11
⊢ ((𝑓‘𝑥) ∈ ω → (𝑓‘𝑥) ∈ On) |
48 | | oa0 8377 |
. . . . . . . . . . 11
⊢ ((𝑓‘𝑥) ∈ On → ((𝑓‘𝑥) +o ∅) = (𝑓‘𝑥)) |
49 | 46, 47, 48 | 3syl 18 |
. . . . . . . . . 10
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓 ∈ 𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → ((𝑓‘𝑥) +o ∅) = (𝑓‘𝑥)) |
50 | 41, 45, 49 | 3eqtrd 2780 |
. . . . . . . . 9
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓 ∈ 𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → ((𝑓 ∘f +o (𝑋 × {∅}))‘𝑥) = (𝑓‘𝑥)) |
51 | 35, 30, 50 | eqfnfvd 6944 |
. . . . . . . 8
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓 ∈ 𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) → (𝑓 ∘f +o (𝑋 × {∅})) = 𝑓) |
52 | 22, 51 | eqtr2d 2777 |
. . . . . . 7
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝑓 ∈ 𝑆 ∧ (𝑋 × {∅}) ∈ 𝑆)) → 𝑓 = (𝑓( ∘f +o ↾
(𝑆 × 𝑆))(𝑋 × {∅}))) |
53 | 52 | expr 458 |
. . . . . 6
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝑓 ∈ 𝑆) → ((𝑋 × {∅}) ∈ 𝑆 → 𝑓 = (𝑓( ∘f +o ↾
(𝑆 × 𝑆))(𝑋 × {∅})))) |
54 | 17, 53 | jcai 518 |
. . . . 5
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝑓 ∈ 𝑆) → ((𝑋 × {∅}) ∈ 𝑆 ∧ 𝑓 = (𝑓( ∘f +o ↾
(𝑆 × 𝑆))(𝑋 × {∅})))) |
55 | | oveq2 7315 |
. . . . . 6
⊢ (𝑧 = (𝑋 × {∅}) → (𝑓( ∘f
+o ↾ (𝑆
× 𝑆))𝑧) = (𝑓( ∘f +o ↾
(𝑆 × 𝑆))(𝑋 × {∅}))) |
56 | 55 | rspceeqv 3580 |
. . . . 5
⊢ (((𝑋 × {∅}) ∈ 𝑆 ∧ 𝑓 = (𝑓( ∘f +o ↾
(𝑆 × 𝑆))(𝑋 × {∅}))) → ∃𝑧 ∈ 𝑆 𝑓 = (𝑓( ∘f +o ↾
(𝑆 × 𝑆))𝑧)) |
57 | 54, 56 | syl 17 |
. . . 4
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝑓 ∈ 𝑆) → ∃𝑧 ∈ 𝑆 𝑓 = (𝑓( ∘f +o ↾
(𝑆 × 𝑆))𝑧)) |
58 | | oveq1 7314 |
. . . . . . 7
⊢ (𝑔 = 𝑓 → (𝑔( ∘f +o ↾
(𝑆 × 𝑆))𝑧) = (𝑓( ∘f +o ↾
(𝑆 × 𝑆))𝑧)) |
59 | 58 | eqeq2d 2747 |
. . . . . 6
⊢ (𝑔 = 𝑓 → (𝑓 = (𝑔( ∘f +o ↾
(𝑆 × 𝑆))𝑧) ↔ 𝑓 = (𝑓( ∘f +o ↾
(𝑆 × 𝑆))𝑧))) |
60 | 59 | rexbidv 3171 |
. . . . 5
⊢ (𝑔 = 𝑓 → (∃𝑧 ∈ 𝑆 𝑓 = (𝑔( ∘f +o ↾
(𝑆 × 𝑆))𝑧) ↔ ∃𝑧 ∈ 𝑆 𝑓 = (𝑓( ∘f +o ↾
(𝑆 × 𝑆))𝑧))) |
61 | 60 | rspcev 3566 |
. . . 4
⊢ ((𝑓 ∈ 𝑆 ∧ ∃𝑧 ∈ 𝑆 𝑓 = (𝑓( ∘f +o ↾
(𝑆 × 𝑆))𝑧)) → ∃𝑔 ∈ 𝑆 ∃𝑧 ∈ 𝑆 𝑓 = (𝑔( ∘f +o ↾
(𝑆 × 𝑆))𝑧)) |
62 | 2, 57, 61 | syl2anc 585 |
. . 3
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝑓 ∈ 𝑆) → ∃𝑔 ∈ 𝑆 ∃𝑧 ∈ 𝑆 𝑓 = (𝑔( ∘f +o ↾
(𝑆 × 𝑆))𝑧)) |
63 | 62 | ralrimiva 3139 |
. 2
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ∀𝑓 ∈ 𝑆 ∃𝑔 ∈ 𝑆 ∃𝑧 ∈ 𝑆 𝑓 = (𝑔( ∘f +o ↾
(𝑆 × 𝑆))𝑧)) |
64 | | foov 7478 |
. 2
⊢ ((
∘f +o ↾ (𝑆 × 𝑆)):(𝑆 × 𝑆)–onto→𝑆 ↔ (( ∘f +o
↾ (𝑆 × 𝑆)):(𝑆 × 𝑆)⟶𝑆 ∧ ∀𝑓 ∈ 𝑆 ∃𝑔 ∈ 𝑆 ∃𝑧 ∈ 𝑆 𝑓 = (𝑔( ∘f +o ↾
(𝑆 × 𝑆))𝑧))) |
65 | 1, 63, 64 | sylanbrc 584 |
1
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ( ∘f
+o ↾ (𝑆
× 𝑆)):(𝑆 × 𝑆)–onto→𝑆) |