Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcofffn Structured version   Visualization version   GIF version

Theorem brcofffn 44021
Description: Conditions allowing the decomposition of a binary relation. (Contributed by RP, 8-Jun-2021.)
Hypotheses
Ref Expression
brcofffn.c (𝜑𝐶 Fn 𝑍)
brcofffn.d (𝜑𝐷:𝑌𝑍)
brcofffn.e (𝜑𝐸:𝑋𝑌)
brcofffn.r (𝜑𝐴(𝐶 ∘ (𝐷𝐸))𝐵)
Assertion
Ref Expression
brcofffn (𝜑 → (𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)𝐷(𝐷‘(𝐸𝐴)) ∧ (𝐷‘(𝐸𝐴))𝐶𝐵))

Proof of Theorem brcofffn
StepHypRef Expression
1 brcofffn.c . . . . 5 (𝜑𝐶 Fn 𝑍)
2 brcofffn.d . . . . 5 (𝜑𝐷:𝑌𝑍)
3 fnfco 6774 . . . . 5 ((𝐶 Fn 𝑍𝐷:𝑌𝑍) → (𝐶𝐷) Fn 𝑌)
41, 2, 3syl2anc 584 . . . 4 (𝜑 → (𝐶𝐷) Fn 𝑌)
5 brcofffn.e . . . 4 (𝜑𝐸:𝑋𝑌)
6 brcofffn.r . . . . 5 (𝜑𝐴(𝐶 ∘ (𝐷𝐸))𝐵)
7 coass 6287 . . . . . 6 ((𝐶𝐷) ∘ 𝐸) = (𝐶 ∘ (𝐷𝐸))
87breqi 5154 . . . . 5 (𝐴((𝐶𝐷) ∘ 𝐸)𝐵𝐴(𝐶 ∘ (𝐷𝐸))𝐵)
96, 8sylibr 234 . . . 4 (𝜑𝐴((𝐶𝐷) ∘ 𝐸)𝐵)
104, 5, 9brcoffn 44020 . . 3 (𝜑 → (𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)(𝐶𝐷)𝐵))
111adantr 480 . . . . 5 ((𝜑 ∧ (𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)(𝐶𝐷)𝐵)) → 𝐶 Fn 𝑍)
122adantr 480 . . . . 5 ((𝜑 ∧ (𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)(𝐶𝐷)𝐵)) → 𝐷:𝑌𝑍)
13 simprr 773 . . . . 5 ((𝜑 ∧ (𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)(𝐶𝐷)𝐵)) → (𝐸𝐴)(𝐶𝐷)𝐵)
1411, 12, 13brcoffn 44020 . . . 4 ((𝜑 ∧ (𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)(𝐶𝐷)𝐵)) → ((𝐸𝐴)𝐷(𝐷‘(𝐸𝐴)) ∧ (𝐷‘(𝐸𝐴))𝐶𝐵))
1514ex 412 . . 3 (𝜑 → ((𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)(𝐶𝐷)𝐵) → ((𝐸𝐴)𝐷(𝐷‘(𝐸𝐴)) ∧ (𝐷‘(𝐸𝐴))𝐶𝐵)))
1610, 15jcai 516 . 2 (𝜑 → ((𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)(𝐶𝐷)𝐵) ∧ ((𝐸𝐴)𝐷(𝐷‘(𝐸𝐴)) ∧ (𝐷‘(𝐸𝐴))𝐶𝐵)))
17 simpll 767 . . 3 (((𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)(𝐶𝐷)𝐵) ∧ ((𝐸𝐴)𝐷(𝐷‘(𝐸𝐴)) ∧ (𝐷‘(𝐸𝐴))𝐶𝐵)) → 𝐴𝐸(𝐸𝐴))
18 simprl 771 . . 3 (((𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)(𝐶𝐷)𝐵) ∧ ((𝐸𝐴)𝐷(𝐷‘(𝐸𝐴)) ∧ (𝐷‘(𝐸𝐴))𝐶𝐵)) → (𝐸𝐴)𝐷(𝐷‘(𝐸𝐴)))
19 simprr 773 . . 3 (((𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)(𝐶𝐷)𝐵) ∧ ((𝐸𝐴)𝐷(𝐷‘(𝐸𝐴)) ∧ (𝐷‘(𝐸𝐴))𝐶𝐵)) → (𝐷‘(𝐸𝐴))𝐶𝐵)
2017, 18, 193jca 1127 . 2 (((𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)(𝐶𝐷)𝐵) ∧ ((𝐸𝐴)𝐷(𝐷‘(𝐸𝐴)) ∧ (𝐷‘(𝐸𝐴))𝐶𝐵)) → (𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)𝐷(𝐷‘(𝐸𝐴)) ∧ (𝐷‘(𝐸𝐴))𝐶𝐵))
2116, 20syl 17 1 (𝜑 → (𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)𝐷(𝐷‘(𝐸𝐴)) ∧ (𝐷‘(𝐸𝐴))𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   class class class wbr 5148  ccom 5693   Fn wfn 6558  wf 6559  cfv 6563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571
This theorem is referenced by:  brco3f1o  44023  neicvgmex  44107  neicvgel1  44109
  Copyright terms: Public domain W3C validator