| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brcofffn | Structured version Visualization version GIF version | ||
| Description: Conditions allowing the decomposition of a binary relation. (Contributed by RP, 8-Jun-2021.) |
| Ref | Expression |
|---|---|
| brcofffn.c | ⊢ (𝜑 → 𝐶 Fn 𝑍) |
| brcofffn.d | ⊢ (𝜑 → 𝐷:𝑌⟶𝑍) |
| brcofffn.e | ⊢ (𝜑 → 𝐸:𝑋⟶𝑌) |
| brcofffn.r | ⊢ (𝜑 → 𝐴(𝐶 ∘ (𝐷 ∘ 𝐸))𝐵) |
| Ref | Expression |
|---|---|
| brcofffn | ⊢ (𝜑 → (𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brcofffn.c | . . . . 5 ⊢ (𝜑 → 𝐶 Fn 𝑍) | |
| 2 | brcofffn.d | . . . . 5 ⊢ (𝜑 → 𝐷:𝑌⟶𝑍) | |
| 3 | fnfco 6727 | . . . . 5 ⊢ ((𝐶 Fn 𝑍 ∧ 𝐷:𝑌⟶𝑍) → (𝐶 ∘ 𝐷) Fn 𝑌) | |
| 4 | 1, 2, 3 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐶 ∘ 𝐷) Fn 𝑌) |
| 5 | brcofffn.e | . . . 4 ⊢ (𝜑 → 𝐸:𝑋⟶𝑌) | |
| 6 | brcofffn.r | . . . . 5 ⊢ (𝜑 → 𝐴(𝐶 ∘ (𝐷 ∘ 𝐸))𝐵) | |
| 7 | coass 6240 | . . . . . 6 ⊢ ((𝐶 ∘ 𝐷) ∘ 𝐸) = (𝐶 ∘ (𝐷 ∘ 𝐸)) | |
| 8 | 7 | breqi 5115 | . . . . 5 ⊢ (𝐴((𝐶 ∘ 𝐷) ∘ 𝐸)𝐵 ↔ 𝐴(𝐶 ∘ (𝐷 ∘ 𝐸))𝐵) |
| 9 | 6, 8 | sylibr 234 | . . . 4 ⊢ (𝜑 → 𝐴((𝐶 ∘ 𝐷) ∘ 𝐸)𝐵) |
| 10 | 4, 5, 9 | brcoffn 44012 | . . 3 ⊢ (𝜑 → (𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵)) |
| 11 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵)) → 𝐶 Fn 𝑍) |
| 12 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵)) → 𝐷:𝑌⟶𝑍) |
| 13 | simprr 772 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵)) → (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵) | |
| 14 | 11, 12, 13 | brcoffn 44012 | . . . 4 ⊢ ((𝜑 ∧ (𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵)) → ((𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵)) |
| 15 | 14 | ex 412 | . . 3 ⊢ (𝜑 → ((𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵) → ((𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵))) |
| 16 | 10, 15 | jcai 516 | . 2 ⊢ (𝜑 → ((𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵) ∧ ((𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵))) |
| 17 | simpll 766 | . . 3 ⊢ (((𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵) ∧ ((𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵)) → 𝐴𝐸(𝐸‘𝐴)) | |
| 18 | simprl 770 | . . 3 ⊢ (((𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵) ∧ ((𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵)) → (𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴))) | |
| 19 | simprr 772 | . . 3 ⊢ (((𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵) ∧ ((𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵)) → (𝐷‘(𝐸‘𝐴))𝐶𝐵) | |
| 20 | 17, 18, 19 | 3jca 1128 | . 2 ⊢ (((𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵) ∧ ((𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵)) → (𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵)) |
| 21 | 16, 20 | syl 17 | 1 ⊢ (𝜑 → (𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 class class class wbr 5109 ∘ ccom 5644 Fn wfn 6508 ⟶wf 6509 ‘cfv 6513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-fv 6521 |
| This theorem is referenced by: brco3f1o 44015 neicvgmex 44099 neicvgel1 44101 |
| Copyright terms: Public domain | W3C validator |