Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcofffn Structured version   Visualization version   GIF version

Theorem brcofffn 38830
Description: Conditions allowing the decomposition of a binary relation. (Contributed by RP, 8-Jun-2021.)
Hypotheses
Ref Expression
brcofffn.c (𝜑𝐶 Fn 𝑍)
brcofffn.d (𝜑𝐷:𝑌𝑍)
brcofffn.e (𝜑𝐸:𝑋𝑌)
brcofffn.r (𝜑𝐴(𝐶 ∘ (𝐷𝐸))𝐵)
Assertion
Ref Expression
brcofffn (𝜑 → (𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)𝐷(𝐷‘(𝐸𝐴)) ∧ (𝐷‘(𝐸𝐴))𝐶𝐵))

Proof of Theorem brcofffn
StepHypRef Expression
1 brcofffn.c . . . . 5 (𝜑𝐶 Fn 𝑍)
2 brcofffn.d . . . . 5 (𝜑𝐷:𝑌𝑍)
3 fnfco 6287 . . . . 5 ((𝐶 Fn 𝑍𝐷:𝑌𝑍) → (𝐶𝐷) Fn 𝑌)
41, 2, 3syl2anc 575 . . . 4 (𝜑 → (𝐶𝐷) Fn 𝑌)
5 brcofffn.e . . . 4 (𝜑𝐸:𝑋𝑌)
6 brcofffn.r . . . . 5 (𝜑𝐴(𝐶 ∘ (𝐷𝐸))𝐵)
7 coass 5875 . . . . . 6 ((𝐶𝐷) ∘ 𝐸) = (𝐶 ∘ (𝐷𝐸))
87breqi 4857 . . . . 5 (𝐴((𝐶𝐷) ∘ 𝐸)𝐵𝐴(𝐶 ∘ (𝐷𝐸))𝐵)
96, 8sylibr 225 . . . 4 (𝜑𝐴((𝐶𝐷) ∘ 𝐸)𝐵)
104, 5, 9brcoffn 38829 . . 3 (𝜑 → (𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)(𝐶𝐷)𝐵))
111adantr 468 . . . . 5 ((𝜑 ∧ (𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)(𝐶𝐷)𝐵)) → 𝐶 Fn 𝑍)
122adantr 468 . . . . 5 ((𝜑 ∧ (𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)(𝐶𝐷)𝐵)) → 𝐷:𝑌𝑍)
13 simprr 780 . . . . 5 ((𝜑 ∧ (𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)(𝐶𝐷)𝐵)) → (𝐸𝐴)(𝐶𝐷)𝐵)
1411, 12, 13brcoffn 38829 . . . 4 ((𝜑 ∧ (𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)(𝐶𝐷)𝐵)) → ((𝐸𝐴)𝐷(𝐷‘(𝐸𝐴)) ∧ (𝐷‘(𝐸𝐴))𝐶𝐵))
1514ex 399 . . 3 (𝜑 → ((𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)(𝐶𝐷)𝐵) → ((𝐸𝐴)𝐷(𝐷‘(𝐸𝐴)) ∧ (𝐷‘(𝐸𝐴))𝐶𝐵)))
1610, 15jcai 508 . 2 (𝜑 → ((𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)(𝐶𝐷)𝐵) ∧ ((𝐸𝐴)𝐷(𝐷‘(𝐸𝐴)) ∧ (𝐷‘(𝐸𝐴))𝐶𝐵)))
17 simpll 774 . . 3 (((𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)(𝐶𝐷)𝐵) ∧ ((𝐸𝐴)𝐷(𝐷‘(𝐸𝐴)) ∧ (𝐷‘(𝐸𝐴))𝐶𝐵)) → 𝐴𝐸(𝐸𝐴))
18 simprl 778 . . 3 (((𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)(𝐶𝐷)𝐵) ∧ ((𝐸𝐴)𝐷(𝐷‘(𝐸𝐴)) ∧ (𝐷‘(𝐸𝐴))𝐶𝐵)) → (𝐸𝐴)𝐷(𝐷‘(𝐸𝐴)))
19 simprr 780 . . 3 (((𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)(𝐶𝐷)𝐵) ∧ ((𝐸𝐴)𝐷(𝐷‘(𝐸𝐴)) ∧ (𝐷‘(𝐸𝐴))𝐶𝐵)) → (𝐷‘(𝐸𝐴))𝐶𝐵)
2017, 18, 193jca 1151 . 2 (((𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)(𝐶𝐷)𝐵) ∧ ((𝐸𝐴)𝐷(𝐷‘(𝐸𝐴)) ∧ (𝐷‘(𝐸𝐴))𝐶𝐵)) → (𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)𝐷(𝐷‘(𝐸𝐴)) ∧ (𝐷‘(𝐸𝐴))𝐶𝐵))
2116, 20syl 17 1 (𝜑 → (𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)𝐷(𝐷‘(𝐸𝐴)) ∧ (𝐷‘(𝐸𝐴))𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1100   class class class wbr 4851  ccom 5322   Fn wfn 6099  wf 6100  cfv 6104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2791  ax-sep 4982  ax-nul 4990  ax-pow 5042  ax-pr 5103
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2638  df-clab 2800  df-cleq 2806  df-clel 2809  df-nfc 2944  df-ne 2986  df-ral 3108  df-rex 3109  df-rab 3112  df-v 3400  df-sbc 3641  df-dif 3779  df-un 3781  df-in 3783  df-ss 3790  df-nul 4124  df-if 4287  df-sn 4378  df-pr 4380  df-op 4384  df-uni 4638  df-br 4852  df-opab 4914  df-id 5226  df-xp 5324  df-rel 5325  df-cnv 5326  df-co 5327  df-dm 5328  df-rn 5329  df-res 5330  df-ima 5331  df-iota 6067  df-fun 6106  df-fn 6107  df-f 6108  df-fv 6112
This theorem is referenced by:  brco3f1o  38832  neicvgmex  38916  neicvgel1  38918
  Copyright terms: Public domain W3C validator