![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brcofffn | Structured version Visualization version GIF version |
Description: Conditions allowing the decomposition of a binary relation. (Contributed by RP, 8-Jun-2021.) |
Ref | Expression |
---|---|
brcofffn.c | ⊢ (𝜑 → 𝐶 Fn 𝑍) |
brcofffn.d | ⊢ (𝜑 → 𝐷:𝑌⟶𝑍) |
brcofffn.e | ⊢ (𝜑 → 𝐸:𝑋⟶𝑌) |
brcofffn.r | ⊢ (𝜑 → 𝐴(𝐶 ∘ (𝐷 ∘ 𝐸))𝐵) |
Ref | Expression |
---|---|
brcofffn | ⊢ (𝜑 → (𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brcofffn.c | . . . . 5 ⊢ (𝜑 → 𝐶 Fn 𝑍) | |
2 | brcofffn.d | . . . . 5 ⊢ (𝜑 → 𝐷:𝑌⟶𝑍) | |
3 | fnfco 6774 | . . . . 5 ⊢ ((𝐶 Fn 𝑍 ∧ 𝐷:𝑌⟶𝑍) → (𝐶 ∘ 𝐷) Fn 𝑌) | |
4 | 1, 2, 3 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐶 ∘ 𝐷) Fn 𝑌) |
5 | brcofffn.e | . . . 4 ⊢ (𝜑 → 𝐸:𝑋⟶𝑌) | |
6 | brcofffn.r | . . . . 5 ⊢ (𝜑 → 𝐴(𝐶 ∘ (𝐷 ∘ 𝐸))𝐵) | |
7 | coass 6287 | . . . . . 6 ⊢ ((𝐶 ∘ 𝐷) ∘ 𝐸) = (𝐶 ∘ (𝐷 ∘ 𝐸)) | |
8 | 7 | breqi 5154 | . . . . 5 ⊢ (𝐴((𝐶 ∘ 𝐷) ∘ 𝐸)𝐵 ↔ 𝐴(𝐶 ∘ (𝐷 ∘ 𝐸))𝐵) |
9 | 6, 8 | sylibr 234 | . . . 4 ⊢ (𝜑 → 𝐴((𝐶 ∘ 𝐷) ∘ 𝐸)𝐵) |
10 | 4, 5, 9 | brcoffn 44020 | . . 3 ⊢ (𝜑 → (𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵)) |
11 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵)) → 𝐶 Fn 𝑍) |
12 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵)) → 𝐷:𝑌⟶𝑍) |
13 | simprr 773 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵)) → (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵) | |
14 | 11, 12, 13 | brcoffn 44020 | . . . 4 ⊢ ((𝜑 ∧ (𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵)) → ((𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵)) |
15 | 14 | ex 412 | . . 3 ⊢ (𝜑 → ((𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵) → ((𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵))) |
16 | 10, 15 | jcai 516 | . 2 ⊢ (𝜑 → ((𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵) ∧ ((𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵))) |
17 | simpll 767 | . . 3 ⊢ (((𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵) ∧ ((𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵)) → 𝐴𝐸(𝐸‘𝐴)) | |
18 | simprl 771 | . . 3 ⊢ (((𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵) ∧ ((𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵)) → (𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴))) | |
19 | simprr 773 | . . 3 ⊢ (((𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵) ∧ ((𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵)) → (𝐷‘(𝐸‘𝐴))𝐶𝐵) | |
20 | 17, 18, 19 | 3jca 1127 | . 2 ⊢ (((𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵) ∧ ((𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵)) → (𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵)) |
21 | 16, 20 | syl 17 | 1 ⊢ (𝜑 → (𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 class class class wbr 5148 ∘ ccom 5693 Fn wfn 6558 ⟶wf 6559 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 |
This theorem is referenced by: brco3f1o 44023 neicvgmex 44107 neicvgel1 44109 |
Copyright terms: Public domain | W3C validator |