![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brcofffn | Structured version Visualization version GIF version |
Description: Conditions allowing the decomposition of a binary relation. (Contributed by RP, 8-Jun-2021.) |
Ref | Expression |
---|---|
brcofffn.c | ⊢ (𝜑 → 𝐶 Fn 𝑍) |
brcofffn.d | ⊢ (𝜑 → 𝐷:𝑌⟶𝑍) |
brcofffn.e | ⊢ (𝜑 → 𝐸:𝑋⟶𝑌) |
brcofffn.r | ⊢ (𝜑 → 𝐴(𝐶 ∘ (𝐷 ∘ 𝐸))𝐵) |
Ref | Expression |
---|---|
brcofffn | ⊢ (𝜑 → (𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brcofffn.c | . . . . 5 ⊢ (𝜑 → 𝐶 Fn 𝑍) | |
2 | brcofffn.d | . . . . 5 ⊢ (𝜑 → 𝐷:𝑌⟶𝑍) | |
3 | fnfco 6746 | . . . . 5 ⊢ ((𝐶 Fn 𝑍 ∧ 𝐷:𝑌⟶𝑍) → (𝐶 ∘ 𝐷) Fn 𝑌) | |
4 | 1, 2, 3 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝐶 ∘ 𝐷) Fn 𝑌) |
5 | brcofffn.e | . . . 4 ⊢ (𝜑 → 𝐸:𝑋⟶𝑌) | |
6 | brcofffn.r | . . . . 5 ⊢ (𝜑 → 𝐴(𝐶 ∘ (𝐷 ∘ 𝐸))𝐵) | |
7 | coass 6254 | . . . . . 6 ⊢ ((𝐶 ∘ 𝐷) ∘ 𝐸) = (𝐶 ∘ (𝐷 ∘ 𝐸)) | |
8 | 7 | breqi 5144 | . . . . 5 ⊢ (𝐴((𝐶 ∘ 𝐷) ∘ 𝐸)𝐵 ↔ 𝐴(𝐶 ∘ (𝐷 ∘ 𝐸))𝐵) |
9 | 6, 8 | sylibr 233 | . . . 4 ⊢ (𝜑 → 𝐴((𝐶 ∘ 𝐷) ∘ 𝐸)𝐵) |
10 | 4, 5, 9 | brcoffn 43236 | . . 3 ⊢ (𝜑 → (𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵)) |
11 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵)) → 𝐶 Fn 𝑍) |
12 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵)) → 𝐷:𝑌⟶𝑍) |
13 | simprr 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵)) → (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵) | |
14 | 11, 12, 13 | brcoffn 43236 | . . . 4 ⊢ ((𝜑 ∧ (𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵)) → ((𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵)) |
15 | 14 | ex 412 | . . 3 ⊢ (𝜑 → ((𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵) → ((𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵))) |
16 | 10, 15 | jcai 516 | . 2 ⊢ (𝜑 → ((𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵) ∧ ((𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵))) |
17 | simpll 764 | . . 3 ⊢ (((𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵) ∧ ((𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵)) → 𝐴𝐸(𝐸‘𝐴)) | |
18 | simprl 768 | . . 3 ⊢ (((𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵) ∧ ((𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵)) → (𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴))) | |
19 | simprr 770 | . . 3 ⊢ (((𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵) ∧ ((𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵)) → (𝐷‘(𝐸‘𝐴))𝐶𝐵) | |
20 | 17, 18, 19 | 3jca 1125 | . 2 ⊢ (((𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵) ∧ ((𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵)) → (𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵)) |
21 | 16, 20 | syl 17 | 1 ⊢ (𝜑 → (𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 class class class wbr 5138 ∘ ccom 5670 Fn wfn 6528 ⟶wf 6529 ‘cfv 6533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-fv 6541 |
This theorem is referenced by: brco3f1o 43239 neicvgmex 43323 neicvgel1 43325 |
Copyright terms: Public domain | W3C validator |