Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcofffn Structured version   Visualization version   GIF version

Theorem brcofffn 44004
Description: Conditions allowing the decomposition of a binary relation. (Contributed by RP, 8-Jun-2021.)
Hypotheses
Ref Expression
brcofffn.c (𝜑𝐶 Fn 𝑍)
brcofffn.d (𝜑𝐷:𝑌𝑍)
brcofffn.e (𝜑𝐸:𝑋𝑌)
brcofffn.r (𝜑𝐴(𝐶 ∘ (𝐷𝐸))𝐵)
Assertion
Ref Expression
brcofffn (𝜑 → (𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)𝐷(𝐷‘(𝐸𝐴)) ∧ (𝐷‘(𝐸𝐴))𝐶𝐵))

Proof of Theorem brcofffn
StepHypRef Expression
1 brcofffn.c . . . . 5 (𝜑𝐶 Fn 𝑍)
2 brcofffn.d . . . . 5 (𝜑𝐷:𝑌𝑍)
3 fnfco 6689 . . . . 5 ((𝐶 Fn 𝑍𝐷:𝑌𝑍) → (𝐶𝐷) Fn 𝑌)
41, 2, 3syl2anc 584 . . . 4 (𝜑 → (𝐶𝐷) Fn 𝑌)
5 brcofffn.e . . . 4 (𝜑𝐸:𝑋𝑌)
6 brcofffn.r . . . . 5 (𝜑𝐴(𝐶 ∘ (𝐷𝐸))𝐵)
7 coass 6214 . . . . . 6 ((𝐶𝐷) ∘ 𝐸) = (𝐶 ∘ (𝐷𝐸))
87breqi 5098 . . . . 5 (𝐴((𝐶𝐷) ∘ 𝐸)𝐵𝐴(𝐶 ∘ (𝐷𝐸))𝐵)
96, 8sylibr 234 . . . 4 (𝜑𝐴((𝐶𝐷) ∘ 𝐸)𝐵)
104, 5, 9brcoffn 44003 . . 3 (𝜑 → (𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)(𝐶𝐷)𝐵))
111adantr 480 . . . . 5 ((𝜑 ∧ (𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)(𝐶𝐷)𝐵)) → 𝐶 Fn 𝑍)
122adantr 480 . . . . 5 ((𝜑 ∧ (𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)(𝐶𝐷)𝐵)) → 𝐷:𝑌𝑍)
13 simprr 772 . . . . 5 ((𝜑 ∧ (𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)(𝐶𝐷)𝐵)) → (𝐸𝐴)(𝐶𝐷)𝐵)
1411, 12, 13brcoffn 44003 . . . 4 ((𝜑 ∧ (𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)(𝐶𝐷)𝐵)) → ((𝐸𝐴)𝐷(𝐷‘(𝐸𝐴)) ∧ (𝐷‘(𝐸𝐴))𝐶𝐵))
1514ex 412 . . 3 (𝜑 → ((𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)(𝐶𝐷)𝐵) → ((𝐸𝐴)𝐷(𝐷‘(𝐸𝐴)) ∧ (𝐷‘(𝐸𝐴))𝐶𝐵)))
1610, 15jcai 516 . 2 (𝜑 → ((𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)(𝐶𝐷)𝐵) ∧ ((𝐸𝐴)𝐷(𝐷‘(𝐸𝐴)) ∧ (𝐷‘(𝐸𝐴))𝐶𝐵)))
17 simpll 766 . . 3 (((𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)(𝐶𝐷)𝐵) ∧ ((𝐸𝐴)𝐷(𝐷‘(𝐸𝐴)) ∧ (𝐷‘(𝐸𝐴))𝐶𝐵)) → 𝐴𝐸(𝐸𝐴))
18 simprl 770 . . 3 (((𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)(𝐶𝐷)𝐵) ∧ ((𝐸𝐴)𝐷(𝐷‘(𝐸𝐴)) ∧ (𝐷‘(𝐸𝐴))𝐶𝐵)) → (𝐸𝐴)𝐷(𝐷‘(𝐸𝐴)))
19 simprr 772 . . 3 (((𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)(𝐶𝐷)𝐵) ∧ ((𝐸𝐴)𝐷(𝐷‘(𝐸𝐴)) ∧ (𝐷‘(𝐸𝐴))𝐶𝐵)) → (𝐷‘(𝐸𝐴))𝐶𝐵)
2017, 18, 193jca 1128 . 2 (((𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)(𝐶𝐷)𝐵) ∧ ((𝐸𝐴)𝐷(𝐷‘(𝐸𝐴)) ∧ (𝐷‘(𝐸𝐴))𝐶𝐵)) → (𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)𝐷(𝐷‘(𝐸𝐴)) ∧ (𝐷‘(𝐸𝐴))𝐶𝐵))
2116, 20syl 17 1 (𝜑 → (𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)𝐷(𝐷‘(𝐸𝐴)) ∧ (𝐷‘(𝐸𝐴))𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   class class class wbr 5092  ccom 5623   Fn wfn 6477  wf 6478  cfv 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490
This theorem is referenced by:  brco3f1o  44006  neicvgmex  44090  neicvgel1  44092
  Copyright terms: Public domain W3C validator