Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcofffn Structured version   Visualization version   GIF version

Theorem brcofffn 43993
Description: Conditions allowing the decomposition of a binary relation. (Contributed by RP, 8-Jun-2021.)
Hypotheses
Ref Expression
brcofffn.c (𝜑𝐶 Fn 𝑍)
brcofffn.d (𝜑𝐷:𝑌𝑍)
brcofffn.e (𝜑𝐸:𝑋𝑌)
brcofffn.r (𝜑𝐴(𝐶 ∘ (𝐷𝐸))𝐵)
Assertion
Ref Expression
brcofffn (𝜑 → (𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)𝐷(𝐷‘(𝐸𝐴)) ∧ (𝐷‘(𝐸𝐴))𝐶𝐵))

Proof of Theorem brcofffn
StepHypRef Expression
1 brcofffn.c . . . . 5 (𝜑𝐶 Fn 𝑍)
2 brcofffn.d . . . . 5 (𝜑𝐷:𝑌𝑍)
3 fnfco 6786 . . . . 5 ((𝐶 Fn 𝑍𝐷:𝑌𝑍) → (𝐶𝐷) Fn 𝑌)
41, 2, 3syl2anc 583 . . . 4 (𝜑 → (𝐶𝐷) Fn 𝑌)
5 brcofffn.e . . . 4 (𝜑𝐸:𝑋𝑌)
6 brcofffn.r . . . . 5 (𝜑𝐴(𝐶 ∘ (𝐷𝐸))𝐵)
7 coass 6296 . . . . . 6 ((𝐶𝐷) ∘ 𝐸) = (𝐶 ∘ (𝐷𝐸))
87breqi 5172 . . . . 5 (𝐴((𝐶𝐷) ∘ 𝐸)𝐵𝐴(𝐶 ∘ (𝐷𝐸))𝐵)
96, 8sylibr 234 . . . 4 (𝜑𝐴((𝐶𝐷) ∘ 𝐸)𝐵)
104, 5, 9brcoffn 43992 . . 3 (𝜑 → (𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)(𝐶𝐷)𝐵))
111adantr 480 . . . . 5 ((𝜑 ∧ (𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)(𝐶𝐷)𝐵)) → 𝐶 Fn 𝑍)
122adantr 480 . . . . 5 ((𝜑 ∧ (𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)(𝐶𝐷)𝐵)) → 𝐷:𝑌𝑍)
13 simprr 772 . . . . 5 ((𝜑 ∧ (𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)(𝐶𝐷)𝐵)) → (𝐸𝐴)(𝐶𝐷)𝐵)
1411, 12, 13brcoffn 43992 . . . 4 ((𝜑 ∧ (𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)(𝐶𝐷)𝐵)) → ((𝐸𝐴)𝐷(𝐷‘(𝐸𝐴)) ∧ (𝐷‘(𝐸𝐴))𝐶𝐵))
1514ex 412 . . 3 (𝜑 → ((𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)(𝐶𝐷)𝐵) → ((𝐸𝐴)𝐷(𝐷‘(𝐸𝐴)) ∧ (𝐷‘(𝐸𝐴))𝐶𝐵)))
1610, 15jcai 516 . 2 (𝜑 → ((𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)(𝐶𝐷)𝐵) ∧ ((𝐸𝐴)𝐷(𝐷‘(𝐸𝐴)) ∧ (𝐷‘(𝐸𝐴))𝐶𝐵)))
17 simpll 766 . . 3 (((𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)(𝐶𝐷)𝐵) ∧ ((𝐸𝐴)𝐷(𝐷‘(𝐸𝐴)) ∧ (𝐷‘(𝐸𝐴))𝐶𝐵)) → 𝐴𝐸(𝐸𝐴))
18 simprl 770 . . 3 (((𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)(𝐶𝐷)𝐵) ∧ ((𝐸𝐴)𝐷(𝐷‘(𝐸𝐴)) ∧ (𝐷‘(𝐸𝐴))𝐶𝐵)) → (𝐸𝐴)𝐷(𝐷‘(𝐸𝐴)))
19 simprr 772 . . 3 (((𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)(𝐶𝐷)𝐵) ∧ ((𝐸𝐴)𝐷(𝐷‘(𝐸𝐴)) ∧ (𝐷‘(𝐸𝐴))𝐶𝐵)) → (𝐷‘(𝐸𝐴))𝐶𝐵)
2017, 18, 193jca 1128 . 2 (((𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)(𝐶𝐷)𝐵) ∧ ((𝐸𝐴)𝐷(𝐷‘(𝐸𝐴)) ∧ (𝐷‘(𝐸𝐴))𝐶𝐵)) → (𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)𝐷(𝐷‘(𝐸𝐴)) ∧ (𝐷‘(𝐸𝐴))𝐶𝐵))
2116, 20syl 17 1 (𝜑 → (𝐴𝐸(𝐸𝐴) ∧ (𝐸𝐴)𝐷(𝐷‘(𝐸𝐴)) ∧ (𝐷‘(𝐸𝐴))𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   class class class wbr 5166  ccom 5704   Fn wfn 6568  wf 6569  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581
This theorem is referenced by:  brco3f1o  43995  neicvgmex  44079  neicvgel1  44081
  Copyright terms: Public domain W3C validator