![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isinitoi | Structured version Visualization version GIF version |
Description: Implication of a class being an initial object. (Contributed by AV, 6-Apr-2020.) |
Ref | Expression |
---|---|
isinitoi.b | ⊢ 𝐵 = (Base‘𝐶) |
isinitoi.h | ⊢ 𝐻 = (Hom ‘𝐶) |
isinitoi.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
Ref | Expression |
---|---|
isinitoi | ⊢ ((𝜑 ∧ 𝑂 ∈ (InitO‘𝐶)) → (𝑂 ∈ 𝐵 ∧ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑂𝐻𝑏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isinitoi.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
2 | isinitoi.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
3 | isinitoi.h | . . . . . 6 ⊢ 𝐻 = (Hom ‘𝐶) | |
4 | 1, 2, 3 | initoval 17987 | . . . . 5 ⊢ (𝜑 → (InitO‘𝐶) = {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑎𝐻𝑏)}) |
5 | 4 | eleq2d 2814 | . . . 4 ⊢ (𝜑 → (𝑂 ∈ (InitO‘𝐶) ↔ 𝑂 ∈ {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑎𝐻𝑏)})) |
6 | elrabi 3676 | . . . 4 ⊢ (𝑂 ∈ {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑎𝐻𝑏)} → 𝑂 ∈ 𝐵) | |
7 | 5, 6 | biimtrdi 252 | . . 3 ⊢ (𝜑 → (𝑂 ∈ (InitO‘𝐶) → 𝑂 ∈ 𝐵)) |
8 | 7 | imp 405 | . 2 ⊢ ((𝜑 ∧ 𝑂 ∈ (InitO‘𝐶)) → 𝑂 ∈ 𝐵) |
9 | 1 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑂 ∈ 𝐵) → 𝐶 ∈ Cat) |
10 | simpr 483 | . . . . 5 ⊢ ((𝜑 ∧ 𝑂 ∈ 𝐵) → 𝑂 ∈ 𝐵) | |
11 | 2, 3, 9, 10 | isinito 17990 | . . . 4 ⊢ ((𝜑 ∧ 𝑂 ∈ 𝐵) → (𝑂 ∈ (InitO‘𝐶) ↔ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑂𝐻𝑏))) |
12 | 11 | biimpd 228 | . . 3 ⊢ ((𝜑 ∧ 𝑂 ∈ 𝐵) → (𝑂 ∈ (InitO‘𝐶) → ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑂𝐻𝑏))) |
13 | 12 | impancom 450 | . 2 ⊢ ((𝜑 ∧ 𝑂 ∈ (InitO‘𝐶)) → (𝑂 ∈ 𝐵 → ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑂𝐻𝑏))) |
14 | 8, 13 | jcai 515 | 1 ⊢ ((𝜑 ∧ 𝑂 ∈ (InitO‘𝐶)) → (𝑂 ∈ 𝐵 ∧ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑂𝐻𝑏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∃!weu 2557 ∀wral 3057 {crab 3428 ‘cfv 6551 (class class class)co 7424 Basecbs 17185 Hom chom 17249 Catccat 17649 InitOcinito 17975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pr 5431 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-iota 6503 df-fun 6553 df-fv 6559 df-ov 7427 df-inito 17978 |
This theorem is referenced by: initoid 17995 initoo 18001 initoeu1 18005 initoeu2 18010 |
Copyright terms: Public domain | W3C validator |