| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isinitoi | Structured version Visualization version GIF version | ||
| Description: Implication of a class being an initial object. (Contributed by AV, 6-Apr-2020.) |
| Ref | Expression |
|---|---|
| isinitoi.b | ⊢ 𝐵 = (Base‘𝐶) |
| isinitoi.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| isinitoi.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| Ref | Expression |
|---|---|
| isinitoi | ⊢ ((𝜑 ∧ 𝑂 ∈ (InitO‘𝐶)) → (𝑂 ∈ 𝐵 ∧ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑂𝐻𝑏))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isinitoi.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 2 | isinitoi.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | isinitoi.h | . . . . . 6 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 4 | 1, 2, 3 | initoval 18011 | . . . . 5 ⊢ (𝜑 → (InitO‘𝐶) = {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑎𝐻𝑏)}) |
| 5 | 4 | eleq2d 2821 | . . . 4 ⊢ (𝜑 → (𝑂 ∈ (InitO‘𝐶) ↔ 𝑂 ∈ {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑎𝐻𝑏)})) |
| 6 | elrabi 3671 | . . . 4 ⊢ (𝑂 ∈ {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑎𝐻𝑏)} → 𝑂 ∈ 𝐵) | |
| 7 | 5, 6 | biimtrdi 253 | . . 3 ⊢ (𝜑 → (𝑂 ∈ (InitO‘𝐶) → 𝑂 ∈ 𝐵)) |
| 8 | 7 | imp 406 | . 2 ⊢ ((𝜑 ∧ 𝑂 ∈ (InitO‘𝐶)) → 𝑂 ∈ 𝐵) |
| 9 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑂 ∈ 𝐵) → 𝐶 ∈ Cat) |
| 10 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑂 ∈ 𝐵) → 𝑂 ∈ 𝐵) | |
| 11 | 2, 3, 9, 10 | isinito 18014 | . . . 4 ⊢ ((𝜑 ∧ 𝑂 ∈ 𝐵) → (𝑂 ∈ (InitO‘𝐶) ↔ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑂𝐻𝑏))) |
| 12 | 11 | biimpd 229 | . . 3 ⊢ ((𝜑 ∧ 𝑂 ∈ 𝐵) → (𝑂 ∈ (InitO‘𝐶) → ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑂𝐻𝑏))) |
| 13 | 12 | impancom 451 | . 2 ⊢ ((𝜑 ∧ 𝑂 ∈ (InitO‘𝐶)) → (𝑂 ∈ 𝐵 → ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑂𝐻𝑏))) |
| 14 | 8, 13 | jcai 516 | 1 ⊢ ((𝜑 ∧ 𝑂 ∈ (InitO‘𝐶)) → (𝑂 ∈ 𝐵 ∧ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑂𝐻𝑏))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃!weu 2568 ∀wral 3052 {crab 3420 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 Hom chom 17287 Catccat 17681 InitOcinito 17999 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-inito 18002 |
| This theorem is referenced by: initoid 18019 initoo 18025 initoeu1 18029 initoeu2 18034 initoo2 49116 |
| Copyright terms: Public domain | W3C validator |