Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isinitoi | Structured version Visualization version GIF version |
Description: Implication of a class being an initial object. (Contributed by AV, 6-Apr-2020.) |
Ref | Expression |
---|---|
isinitoi.b | ⊢ 𝐵 = (Base‘𝐶) |
isinitoi.h | ⊢ 𝐻 = (Hom ‘𝐶) |
isinitoi.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
Ref | Expression |
---|---|
isinitoi | ⊢ ((𝜑 ∧ 𝑂 ∈ (InitO‘𝐶)) → (𝑂 ∈ 𝐵 ∧ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑂𝐻𝑏))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isinitoi.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
2 | isinitoi.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
3 | isinitoi.h | . . . . . 6 ⊢ 𝐻 = (Hom ‘𝐶) | |
4 | 1, 2, 3 | initoval 17717 | . . . . 5 ⊢ (𝜑 → (InitO‘𝐶) = {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑎𝐻𝑏)}) |
5 | 4 | eleq2d 2825 | . . . 4 ⊢ (𝜑 → (𝑂 ∈ (InitO‘𝐶) ↔ 𝑂 ∈ {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑎𝐻𝑏)})) |
6 | elrabi 3619 | . . . 4 ⊢ (𝑂 ∈ {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑎𝐻𝑏)} → 𝑂 ∈ 𝐵) | |
7 | 5, 6 | syl6bi 252 | . . 3 ⊢ (𝜑 → (𝑂 ∈ (InitO‘𝐶) → 𝑂 ∈ 𝐵)) |
8 | 7 | imp 407 | . 2 ⊢ ((𝜑 ∧ 𝑂 ∈ (InitO‘𝐶)) → 𝑂 ∈ 𝐵) |
9 | 1 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑂 ∈ 𝐵) → 𝐶 ∈ Cat) |
10 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝑂 ∈ 𝐵) → 𝑂 ∈ 𝐵) | |
11 | 2, 3, 9, 10 | isinito 17720 | . . . 4 ⊢ ((𝜑 ∧ 𝑂 ∈ 𝐵) → (𝑂 ∈ (InitO‘𝐶) ↔ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑂𝐻𝑏))) |
12 | 11 | biimpd 228 | . . 3 ⊢ ((𝜑 ∧ 𝑂 ∈ 𝐵) → (𝑂 ∈ (InitO‘𝐶) → ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑂𝐻𝑏))) |
13 | 12 | impancom 452 | . 2 ⊢ ((𝜑 ∧ 𝑂 ∈ (InitO‘𝐶)) → (𝑂 ∈ 𝐵 → ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑂𝐻𝑏))) |
14 | 8, 13 | jcai 517 | 1 ⊢ ((𝜑 ∧ 𝑂 ∈ (InitO‘𝐶)) → (𝑂 ∈ 𝐵 ∧ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑂𝐻𝑏))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2107 ∃!weu 2569 ∀wral 3065 {crab 3069 ‘cfv 6437 (class class class)co 7284 Basecbs 16921 Hom chom 16982 Catccat 17382 InitOcinito 17705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pr 5353 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-iota 6395 df-fun 6439 df-fv 6445 df-ov 7287 df-inito 17708 |
This theorem is referenced by: initoid 17725 initoo 17731 initoeu1 17735 initoeu2 17740 |
Copyright terms: Public domain | W3C validator |