MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isinitoi Structured version   Visualization version   GIF version

Theorem isinitoi 17941
Description: Implication of a class being an initial object. (Contributed by AV, 6-Apr-2020.)
Hypotheses
Ref Expression
isinitoi.b 𝐵 = (Base‘𝐶)
isinitoi.h 𝐻 = (Hom ‘𝐶)
isinitoi.c (𝜑𝐶 ∈ Cat)
Assertion
Ref Expression
isinitoi ((𝜑𝑂 ∈ (InitO‘𝐶)) → (𝑂𝐵 ∧ ∀𝑏𝐵 ∃! ∈ (𝑂𝐻𝑏)))
Distinct variable groups:   𝐵,𝑏   𝐶,𝑏,   𝑂,𝑏,
Allowed substitution hints:   𝜑(,𝑏)   𝐵()   𝐻(,𝑏)

Proof of Theorem isinitoi
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 isinitoi.c . . . . . 6 (𝜑𝐶 ∈ Cat)
2 isinitoi.b . . . . . 6 𝐵 = (Base‘𝐶)
3 isinitoi.h . . . . . 6 𝐻 = (Hom ‘𝐶)
41, 2, 3initoval 17935 . . . . 5 (𝜑 → (InitO‘𝐶) = {𝑎𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑎𝐻𝑏)})
54eleq2d 2814 . . . 4 (𝜑 → (𝑂 ∈ (InitO‘𝐶) ↔ 𝑂 ∈ {𝑎𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑎𝐻𝑏)}))
6 elrabi 3651 . . . 4 (𝑂 ∈ {𝑎𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑎𝐻𝑏)} → 𝑂𝐵)
75, 6biimtrdi 253 . . 3 (𝜑 → (𝑂 ∈ (InitO‘𝐶) → 𝑂𝐵))
87imp 406 . 2 ((𝜑𝑂 ∈ (InitO‘𝐶)) → 𝑂𝐵)
91adantr 480 . . . . 5 ((𝜑𝑂𝐵) → 𝐶 ∈ Cat)
10 simpr 484 . . . . 5 ((𝜑𝑂𝐵) → 𝑂𝐵)
112, 3, 9, 10isinito 17938 . . . 4 ((𝜑𝑂𝐵) → (𝑂 ∈ (InitO‘𝐶) ↔ ∀𝑏𝐵 ∃! ∈ (𝑂𝐻𝑏)))
1211biimpd 229 . . 3 ((𝜑𝑂𝐵) → (𝑂 ∈ (InitO‘𝐶) → ∀𝑏𝐵 ∃! ∈ (𝑂𝐻𝑏)))
1312impancom 451 . 2 ((𝜑𝑂 ∈ (InitO‘𝐶)) → (𝑂𝐵 → ∀𝑏𝐵 ∃! ∈ (𝑂𝐻𝑏)))
148, 13jcai 516 1 ((𝜑𝑂 ∈ (InitO‘𝐶)) → (𝑂𝐵 ∧ ∀𝑏𝐵 ∃! ∈ (𝑂𝐻𝑏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ∃!weu 2561  wral 3044  {crab 3402  cfv 6499  (class class class)co 7369  Basecbs 17155  Hom chom 17207  Catccat 17605  InitOcinito 17923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-ov 7372  df-inito 17926
This theorem is referenced by:  initoid  17943  initoo  17949  initoeu1  17953  initoeu2  17958  initoo2  49214
  Copyright terms: Public domain W3C validator