MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isinitoi Structured version   Visualization version   GIF version

Theorem isinitoi 17723
Description: Implication of a class being an initial object. (Contributed by AV, 6-Apr-2020.)
Hypotheses
Ref Expression
isinitoi.b 𝐵 = (Base‘𝐶)
isinitoi.h 𝐻 = (Hom ‘𝐶)
isinitoi.c (𝜑𝐶 ∈ Cat)
Assertion
Ref Expression
isinitoi ((𝜑𝑂 ∈ (InitO‘𝐶)) → (𝑂𝐵 ∧ ∀𝑏𝐵 ∃! ∈ (𝑂𝐻𝑏)))
Distinct variable groups:   𝐵,𝑏   𝐶,𝑏,   𝑂,𝑏,
Allowed substitution hints:   𝜑(,𝑏)   𝐵()   𝐻(,𝑏)

Proof of Theorem isinitoi
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 isinitoi.c . . . . . 6 (𝜑𝐶 ∈ Cat)
2 isinitoi.b . . . . . 6 𝐵 = (Base‘𝐶)
3 isinitoi.h . . . . . 6 𝐻 = (Hom ‘𝐶)
41, 2, 3initoval 17717 . . . . 5 (𝜑 → (InitO‘𝐶) = {𝑎𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑎𝐻𝑏)})
54eleq2d 2825 . . . 4 (𝜑 → (𝑂 ∈ (InitO‘𝐶) ↔ 𝑂 ∈ {𝑎𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑎𝐻𝑏)}))
6 elrabi 3619 . . . 4 (𝑂 ∈ {𝑎𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑎𝐻𝑏)} → 𝑂𝐵)
75, 6syl6bi 252 . . 3 (𝜑 → (𝑂 ∈ (InitO‘𝐶) → 𝑂𝐵))
87imp 407 . 2 ((𝜑𝑂 ∈ (InitO‘𝐶)) → 𝑂𝐵)
91adantr 481 . . . . 5 ((𝜑𝑂𝐵) → 𝐶 ∈ Cat)
10 simpr 485 . . . . 5 ((𝜑𝑂𝐵) → 𝑂𝐵)
112, 3, 9, 10isinito 17720 . . . 4 ((𝜑𝑂𝐵) → (𝑂 ∈ (InitO‘𝐶) ↔ ∀𝑏𝐵 ∃! ∈ (𝑂𝐻𝑏)))
1211biimpd 228 . . 3 ((𝜑𝑂𝐵) → (𝑂 ∈ (InitO‘𝐶) → ∀𝑏𝐵 ∃! ∈ (𝑂𝐻𝑏)))
1312impancom 452 . 2 ((𝜑𝑂 ∈ (InitO‘𝐶)) → (𝑂𝐵 → ∀𝑏𝐵 ∃! ∈ (𝑂𝐻𝑏)))
148, 13jcai 517 1 ((𝜑𝑂 ∈ (InitO‘𝐶)) → (𝑂𝐵 ∧ ∀𝑏𝐵 ∃! ∈ (𝑂𝐻𝑏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2107  ∃!weu 2569  wral 3065  {crab 3069  cfv 6437  (class class class)co 7284  Basecbs 16921  Hom chom 16982  Catccat 17382  InitOcinito 17705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-sep 5224  ax-nul 5231  ax-pr 5353
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3435  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4258  df-if 4461  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-br 5076  df-opab 5138  df-mpt 5159  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-iota 6395  df-fun 6439  df-fv 6445  df-ov 7287  df-inito 17708
This theorem is referenced by:  initoid  17725  initoo  17731  initoeu1  17735  initoeu2  17740
  Copyright terms: Public domain W3C validator