MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isinitoi Structured version   Visualization version   GIF version

Theorem isinitoi 17993
Description: Implication of a class being an initial object. (Contributed by AV, 6-Apr-2020.)
Hypotheses
Ref Expression
isinitoi.b 𝐵 = (Base‘𝐶)
isinitoi.h 𝐻 = (Hom ‘𝐶)
isinitoi.c (𝜑𝐶 ∈ Cat)
Assertion
Ref Expression
isinitoi ((𝜑𝑂 ∈ (InitO‘𝐶)) → (𝑂𝐵 ∧ ∀𝑏𝐵 ∃! ∈ (𝑂𝐻𝑏)))
Distinct variable groups:   𝐵,𝑏   𝐶,𝑏,   𝑂,𝑏,
Allowed substitution hints:   𝜑(,𝑏)   𝐵()   𝐻(,𝑏)

Proof of Theorem isinitoi
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 isinitoi.c . . . . . 6 (𝜑𝐶 ∈ Cat)
2 isinitoi.b . . . . . 6 𝐵 = (Base‘𝐶)
3 isinitoi.h . . . . . 6 𝐻 = (Hom ‘𝐶)
41, 2, 3initoval 17987 . . . . 5 (𝜑 → (InitO‘𝐶) = {𝑎𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑎𝐻𝑏)})
54eleq2d 2814 . . . 4 (𝜑 → (𝑂 ∈ (InitO‘𝐶) ↔ 𝑂 ∈ {𝑎𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑎𝐻𝑏)}))
6 elrabi 3676 . . . 4 (𝑂 ∈ {𝑎𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑎𝐻𝑏)} → 𝑂𝐵)
75, 6biimtrdi 252 . . 3 (𝜑 → (𝑂 ∈ (InitO‘𝐶) → 𝑂𝐵))
87imp 405 . 2 ((𝜑𝑂 ∈ (InitO‘𝐶)) → 𝑂𝐵)
91adantr 479 . . . . 5 ((𝜑𝑂𝐵) → 𝐶 ∈ Cat)
10 simpr 483 . . . . 5 ((𝜑𝑂𝐵) → 𝑂𝐵)
112, 3, 9, 10isinito 17990 . . . 4 ((𝜑𝑂𝐵) → (𝑂 ∈ (InitO‘𝐶) ↔ ∀𝑏𝐵 ∃! ∈ (𝑂𝐻𝑏)))
1211biimpd 228 . . 3 ((𝜑𝑂𝐵) → (𝑂 ∈ (InitO‘𝐶) → ∀𝑏𝐵 ∃! ∈ (𝑂𝐻𝑏)))
1312impancom 450 . 2 ((𝜑𝑂 ∈ (InitO‘𝐶)) → (𝑂𝐵 → ∀𝑏𝐵 ∃! ∈ (𝑂𝐻𝑏)))
148, 13jcai 515 1 ((𝜑𝑂 ∈ (InitO‘𝐶)) → (𝑂𝐵 ∧ ∀𝑏𝐵 ∃! ∈ (𝑂𝐻𝑏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  ∃!weu 2557  wral 3057  {crab 3428  cfv 6551  (class class class)co 7424  Basecbs 17185  Hom chom 17249  Catccat 17649  InitOcinito 17975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pr 5431
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-br 5151  df-opab 5213  df-mpt 5234  df-id 5578  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-iota 6503  df-fun 6553  df-fv 6559  df-ov 7427  df-inito 17978
This theorem is referenced by:  initoid  17995  initoo  18001  initoeu1  18005  initoeu2  18010
  Copyright terms: Public domain W3C validator