![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isinitoi | Structured version Visualization version GIF version |
Description: Implication of a class being an initial object. (Contributed by AV, 6-Apr-2020.) |
Ref | Expression |
---|---|
isinitoi.b | β’ π΅ = (BaseβπΆ) |
isinitoi.h | β’ π» = (Hom βπΆ) |
isinitoi.c | β’ (π β πΆ β Cat) |
Ref | Expression |
---|---|
isinitoi | β’ ((π β§ π β (InitOβπΆ)) β (π β π΅ β§ βπ β π΅ β!β β β (ππ»π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isinitoi.c | . . . . . 6 β’ (π β πΆ β Cat) | |
2 | isinitoi.b | . . . . . 6 β’ π΅ = (BaseβπΆ) | |
3 | isinitoi.h | . . . . . 6 β’ π» = (Hom βπΆ) | |
4 | 1, 2, 3 | initoval 17942 | . . . . 5 β’ (π β (InitOβπΆ) = {π β π΅ β£ βπ β π΅ β!β β β (ππ»π)}) |
5 | 4 | eleq2d 2811 | . . . 4 β’ (π β (π β (InitOβπΆ) β π β {π β π΅ β£ βπ β π΅ β!β β β (ππ»π)})) |
6 | elrabi 3669 | . . . 4 β’ (π β {π β π΅ β£ βπ β π΅ β!β β β (ππ»π)} β π β π΅) | |
7 | 5, 6 | syl6bi 253 | . . 3 β’ (π β (π β (InitOβπΆ) β π β π΅)) |
8 | 7 | imp 406 | . 2 β’ ((π β§ π β (InitOβπΆ)) β π β π΅) |
9 | 1 | adantr 480 | . . . . 5 β’ ((π β§ π β π΅) β πΆ β Cat) |
10 | simpr 484 | . . . . 5 β’ ((π β§ π β π΅) β π β π΅) | |
11 | 2, 3, 9, 10 | isinito 17945 | . . . 4 β’ ((π β§ π β π΅) β (π β (InitOβπΆ) β βπ β π΅ β!β β β (ππ»π))) |
12 | 11 | biimpd 228 | . . 3 β’ ((π β§ π β π΅) β (π β (InitOβπΆ) β βπ β π΅ β!β β β (ππ»π))) |
13 | 12 | impancom 451 | . 2 β’ ((π β§ π β (InitOβπΆ)) β (π β π΅ β βπ β π΅ β!β β β (ππ»π))) |
14 | 8, 13 | jcai 516 | 1 β’ ((π β§ π β (InitOβπΆ)) β (π β π΅ β§ βπ β π΅ β!β β β (ππ»π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 β!weu 2554 βwral 3053 {crab 3424 βcfv 6533 (class class class)co 7401 Basecbs 17140 Hom chom 17204 Catccat 17604 InitOcinito 17930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-iota 6485 df-fun 6535 df-fv 6541 df-ov 7404 df-inito 17933 |
This theorem is referenced by: initoid 17950 initoo 17956 initoeu1 17960 initoeu2 17965 |
Copyright terms: Public domain | W3C validator |