![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cpmatelimp | Structured version Visualization version GIF version |
Description: Implication of a set being a constant polynomial matrix. (Contributed by AV, 18-Nov-2019.) |
Ref | Expression |
---|---|
cpmat.s | ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) |
cpmat.p | ⊢ 𝑃 = (Poly1‘𝑅) |
cpmat.c | ⊢ 𝐶 = (𝑁 Mat 𝑃) |
cpmat.b | ⊢ 𝐵 = (Base‘𝐶) |
Ref | Expression |
---|---|
cpmatelimp | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀 ∈ 𝑆 → (𝑀 ∈ 𝐵 ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cpmat.s | . . . . 5 ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) | |
2 | cpmat.p | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
3 | cpmat.c | . . . . 5 ⊢ 𝐶 = (𝑁 Mat 𝑃) | |
4 | cpmat.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
5 | 1, 2, 3, 4 | cpmatpmat 20735 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) → 𝑀 ∈ 𝐵) |
6 | 5 | 3expa 1111 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑀 ∈ 𝑆) → 𝑀 ∈ 𝐵) |
7 | 1, 2, 3, 4 | cpmatel 20736 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑀 ∈ 𝑆 ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅))) |
8 | 7 | 3expa 1111 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑀 ∈ 𝐵) → (𝑀 ∈ 𝑆 ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅))) |
9 | 8 | biimpd 219 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑀 ∈ 𝐵) → (𝑀 ∈ 𝑆 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅))) |
10 | 9 | impancom 439 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑀 ∈ 𝑆) → (𝑀 ∈ 𝐵 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅))) |
11 | 6, 10 | jcai 506 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑀 ∈ 𝑆) → (𝑀 ∈ 𝐵 ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅))) |
12 | 11 | ex 397 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀 ∈ 𝑆 → (𝑀 ∈ 𝐵 ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∀wral 3061 ‘cfv 6031 (class class class)co 6793 Fincfn 8109 ℕcn 11222 Basecbs 16064 0gc0g 16308 Ringcrg 18755 Poly1cpl1 19762 coe1cco1 19763 Mat cmat 20430 ConstPolyMat ccpmat 20728 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-iota 5994 df-fun 6033 df-fv 6039 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-cpmat 20731 |
This theorem is referenced by: cpmatmcllem 20743 m2cpminvid2lem 20779 |
Copyright terms: Public domain | W3C validator |