Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cpmatelimp | Structured version Visualization version GIF version |
Description: Implication of a set being a constant polynomial matrix. (Contributed by AV, 18-Nov-2019.) |
Ref | Expression |
---|---|
cpmat.s | ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) |
cpmat.p | ⊢ 𝑃 = (Poly1‘𝑅) |
cpmat.c | ⊢ 𝐶 = (𝑁 Mat 𝑃) |
cpmat.b | ⊢ 𝐵 = (Base‘𝐶) |
Ref | Expression |
---|---|
cpmatelimp | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀 ∈ 𝑆 → (𝑀 ∈ 𝐵 ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cpmat.s | . . . . 5 ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) | |
2 | cpmat.p | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
3 | cpmat.c | . . . . 5 ⊢ 𝐶 = (𝑁 Mat 𝑃) | |
4 | cpmat.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
5 | 1, 2, 3, 4 | cpmatpmat 21859 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) → 𝑀 ∈ 𝐵) |
6 | 5 | 3expa 1117 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑀 ∈ 𝑆) → 𝑀 ∈ 𝐵) |
7 | 1, 2, 3, 4 | cpmatel 21860 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑀 ∈ 𝑆 ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅))) |
8 | 7 | 3expa 1117 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑀 ∈ 𝐵) → (𝑀 ∈ 𝑆 ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅))) |
9 | 8 | biimpd 228 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑀 ∈ 𝐵) → (𝑀 ∈ 𝑆 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅))) |
10 | 9 | impancom 452 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑀 ∈ 𝑆) → (𝑀 ∈ 𝐵 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅))) |
11 | 6, 10 | jcai 517 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑀 ∈ 𝑆) → (𝑀 ∈ 𝐵 ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅))) |
12 | 11 | ex 413 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀 ∈ 𝑆 → (𝑀 ∈ 𝐵 ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ‘cfv 6433 (class class class)co 7275 Fincfn 8733 ℕcn 11973 Basecbs 16912 0gc0g 17150 Ringcrg 19783 Poly1cpl1 21348 coe1cco1 21349 Mat cmat 21554 ConstPolyMat ccpmat 21852 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-cpmat 21855 |
This theorem is referenced by: cpmatmcllem 21867 m2cpminvid2lem 21903 |
Copyright terms: Public domain | W3C validator |