| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cpmatelimp | Structured version Visualization version GIF version | ||
| Description: Implication of a set being a constant polynomial matrix. (Contributed by AV, 18-Nov-2019.) |
| Ref | Expression |
|---|---|
| cpmat.s | ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) |
| cpmat.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| cpmat.c | ⊢ 𝐶 = (𝑁 Mat 𝑃) |
| cpmat.b | ⊢ 𝐵 = (Base‘𝐶) |
| Ref | Expression |
|---|---|
| cpmatelimp | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀 ∈ 𝑆 → (𝑀 ∈ 𝐵 ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cpmat.s | . . . . 5 ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) | |
| 2 | cpmat.p | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 3 | cpmat.c | . . . . 5 ⊢ 𝐶 = (𝑁 Mat 𝑃) | |
| 4 | cpmat.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
| 5 | 1, 2, 3, 4 | cpmatpmat 22648 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) → 𝑀 ∈ 𝐵) |
| 6 | 5 | 3expa 1118 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑀 ∈ 𝑆) → 𝑀 ∈ 𝐵) |
| 7 | 1, 2, 3, 4 | cpmatel 22649 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑀 ∈ 𝑆 ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅))) |
| 8 | 7 | 3expa 1118 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑀 ∈ 𝐵) → (𝑀 ∈ 𝑆 ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅))) |
| 9 | 8 | biimpd 229 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑀 ∈ 𝐵) → (𝑀 ∈ 𝑆 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅))) |
| 10 | 9 | impancom 451 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑀 ∈ 𝑆) → (𝑀 ∈ 𝐵 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅))) |
| 11 | 6, 10 | jcai 516 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑀 ∈ 𝑆) → (𝑀 ∈ 𝐵 ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅))) |
| 12 | 11 | ex 412 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀 ∈ 𝑆 → (𝑀 ∈ 𝐵 ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ‘cfv 6531 (class class class)co 7405 Fincfn 8959 ℕcn 12240 Basecbs 17228 0gc0g 17453 Ringcrg 20193 Poly1cpl1 22112 coe1cco1 22113 Mat cmat 22345 ConstPolyMat ccpmat 22641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-cpmat 22644 |
| This theorem is referenced by: cpmatmcllem 22656 m2cpminvid2lem 22692 |
| Copyright terms: Public domain | W3C validator |