Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cpmatelimp | Structured version Visualization version GIF version |
Description: Implication of a set being a constant polynomial matrix. (Contributed by AV, 18-Nov-2019.) |
Ref | Expression |
---|---|
cpmat.s | ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) |
cpmat.p | ⊢ 𝑃 = (Poly1‘𝑅) |
cpmat.c | ⊢ 𝐶 = (𝑁 Mat 𝑃) |
cpmat.b | ⊢ 𝐵 = (Base‘𝐶) |
Ref | Expression |
---|---|
cpmatelimp | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀 ∈ 𝑆 → (𝑀 ∈ 𝐵 ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cpmat.s | . . . . 5 ⊢ 𝑆 = (𝑁 ConstPolyMat 𝑅) | |
2 | cpmat.p | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
3 | cpmat.c | . . . . 5 ⊢ 𝐶 = (𝑁 Mat 𝑃) | |
4 | cpmat.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
5 | 1, 2, 3, 4 | cpmatpmat 21767 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) → 𝑀 ∈ 𝐵) |
6 | 5 | 3expa 1116 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑀 ∈ 𝑆) → 𝑀 ∈ 𝐵) |
7 | 1, 2, 3, 4 | cpmatel 21768 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑀 ∈ 𝑆 ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅))) |
8 | 7 | 3expa 1116 | . . . . 5 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑀 ∈ 𝐵) → (𝑀 ∈ 𝑆 ↔ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅))) |
9 | 8 | biimpd 228 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑀 ∈ 𝐵) → (𝑀 ∈ 𝑆 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅))) |
10 | 9 | impancom 451 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑀 ∈ 𝑆) → (𝑀 ∈ 𝐵 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅))) |
11 | 6, 10 | jcai 516 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑀 ∈ 𝑆) → (𝑀 ∈ 𝐵 ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅))) |
12 | 11 | ex 412 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀 ∈ 𝑆 → (𝑀 ∈ 𝐵 ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g‘𝑅)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ‘cfv 6418 (class class class)co 7255 Fincfn 8691 ℕcn 11903 Basecbs 16840 0gc0g 17067 Ringcrg 19698 Poly1cpl1 21258 coe1cco1 21259 Mat cmat 21464 ConstPolyMat ccpmat 21760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-cpmat 21763 |
This theorem is referenced by: cpmatmcllem 21775 m2cpminvid2lem 21811 |
Copyright terms: Public domain | W3C validator |