MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpmatelimp Structured version   Visualization version   GIF version

Theorem cpmatelimp 20734
Description: Implication of a set being a constant polynomial matrix. (Contributed by AV, 18-Nov-2019.)
Hypotheses
Ref Expression
cpmat.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
cpmat.p 𝑃 = (Poly1𝑅)
cpmat.c 𝐶 = (𝑁 Mat 𝑃)
cpmat.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
cpmatelimp ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀𝑆 → (𝑀𝐵 ∧ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅))))
Distinct variable groups:   𝑖,𝑁,𝑗,𝑘   𝑅,𝑖,𝑗,𝑘   𝑖,𝑀,𝑗,𝑘
Allowed substitution hints:   𝐵(𝑖,𝑗,𝑘)   𝐶(𝑖,𝑗,𝑘)   𝑃(𝑖,𝑗,𝑘)   𝑆(𝑖,𝑗,𝑘)

Proof of Theorem cpmatelimp
StepHypRef Expression
1 cpmat.s . . . . 5 𝑆 = (𝑁 ConstPolyMat 𝑅)
2 cpmat.p . . . . 5 𝑃 = (Poly1𝑅)
3 cpmat.c . . . . 5 𝐶 = (𝑁 Mat 𝑃)
4 cpmat.b . . . . 5 𝐵 = (Base‘𝐶)
51, 2, 3, 4cpmatpmat 20732 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → 𝑀𝐵)
653expa 1140 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑀𝑆) → 𝑀𝐵)
71, 2, 3, 4cpmatel 20733 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑀𝑆 ↔ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅)))
873expa 1140 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑀𝐵) → (𝑀𝑆 ↔ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅)))
98biimpd 220 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑀𝐵) → (𝑀𝑆 → ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅)))
109impancom 441 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑀𝑆) → (𝑀𝐵 → ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅)))
116, 10jcai 508 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑀𝑆) → (𝑀𝐵 ∧ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅)))
1211ex 399 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀𝑆 → (𝑀𝐵 ∧ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1637  wcel 2157  wral 3103  cfv 6104  (class class class)co 6877  Fincfn 8195  cn 11308  Basecbs 16071  0gc0g 16308  Ringcrg 18752  Poly1cpl1 19758  coe1cco1 19759   Mat cmat 20427   ConstPolyMat ccpmat 20725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2791  ax-sep 4982  ax-nul 4990  ax-pr 5103
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2638  df-clab 2800  df-cleq 2806  df-clel 2809  df-nfc 2944  df-ral 3108  df-rex 3109  df-rab 3112  df-v 3400  df-sbc 3641  df-dif 3779  df-un 3781  df-in 3783  df-ss 3790  df-nul 4124  df-if 4287  df-sn 4378  df-pr 4380  df-op 4384  df-uni 4638  df-br 4852  df-opab 4914  df-id 5226  df-xp 5324  df-rel 5325  df-cnv 5326  df-co 5327  df-dm 5328  df-iota 6067  df-fun 6106  df-fv 6112  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-cpmat 20728
This theorem is referenced by:  cpmatmcllem  20740  m2cpminvid2lem  20776
  Copyright terms: Public domain W3C validator