| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > istermoi | Structured version Visualization version GIF version | ||
| Description: Implication of a class being a terminal object. (Contributed by AV, 18-Apr-2020.) |
| Ref | Expression |
|---|---|
| isinitoi.b | ⊢ 𝐵 = (Base‘𝐶) |
| isinitoi.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| isinitoi.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| Ref | Expression |
|---|---|
| istermoi | ⊢ ((𝜑 ∧ 𝑂 ∈ (TermO‘𝐶)) → (𝑂 ∈ 𝐵 ∧ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑏𝐻𝑂))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isinitoi.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 2 | isinitoi.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
| 3 | isinitoi.h | . . . . . 6 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 4 | 1, 2, 3 | termoval 18007 | . . . . 5 ⊢ (𝜑 → (TermO‘𝐶) = {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑏𝐻𝑎)}) |
| 5 | 4 | eleq2d 2820 | . . . 4 ⊢ (𝜑 → (𝑂 ∈ (TermO‘𝐶) ↔ 𝑂 ∈ {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑏𝐻𝑎)})) |
| 6 | elrabi 3666 | . . . 4 ⊢ (𝑂 ∈ {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑏𝐻𝑎)} → 𝑂 ∈ 𝐵) | |
| 7 | 5, 6 | biimtrdi 253 | . . 3 ⊢ (𝜑 → (𝑂 ∈ (TermO‘𝐶) → 𝑂 ∈ 𝐵)) |
| 8 | 7 | imp 406 | . 2 ⊢ ((𝜑 ∧ 𝑂 ∈ (TermO‘𝐶)) → 𝑂 ∈ 𝐵) |
| 9 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑂 ∈ 𝐵) → 𝐶 ∈ Cat) |
| 10 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑂 ∈ 𝐵) → 𝑂 ∈ 𝐵) | |
| 11 | 2, 3, 9, 10 | istermo 18010 | . . . 4 ⊢ ((𝜑 ∧ 𝑂 ∈ 𝐵) → (𝑂 ∈ (TermO‘𝐶) ↔ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑏𝐻𝑂))) |
| 12 | 11 | biimpd 229 | . . 3 ⊢ ((𝜑 ∧ 𝑂 ∈ 𝐵) → (𝑂 ∈ (TermO‘𝐶) → ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑏𝐻𝑂))) |
| 13 | 12 | impancom 451 | . 2 ⊢ ((𝜑 ∧ 𝑂 ∈ (TermO‘𝐶)) → (𝑂 ∈ 𝐵 → ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑏𝐻𝑂))) |
| 14 | 8, 13 | jcai 516 | 1 ⊢ ((𝜑 ∧ 𝑂 ∈ (TermO‘𝐶)) → (𝑂 ∈ 𝐵 ∧ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑏𝐻𝑂))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃!weu 2567 ∀wral 3051 {crab 3415 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 Hom chom 17282 Catccat 17676 TermOctermo 17995 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-termo 17998 |
| This theorem is referenced by: termoid 18015 termoo 18021 termoeu1 18031 termoo2 49150 |
| Copyright terms: Public domain | W3C validator |