MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istermoi Structured version   Visualization version   GIF version

Theorem istermoi 18013
Description: Implication of a class being a terminal object. (Contributed by AV, 18-Apr-2020.)
Hypotheses
Ref Expression
isinitoi.b 𝐵 = (Base‘𝐶)
isinitoi.h 𝐻 = (Hom ‘𝐶)
isinitoi.c (𝜑𝐶 ∈ Cat)
Assertion
Ref Expression
istermoi ((𝜑𝑂 ∈ (TermO‘𝐶)) → (𝑂𝐵 ∧ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝑂)))
Distinct variable groups:   𝐵,𝑏   𝐶,𝑏,   𝑂,𝑏,
Allowed substitution hints:   𝜑(,𝑏)   𝐵()   𝐻(,𝑏)

Proof of Theorem istermoi
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 isinitoi.c . . . . . 6 (𝜑𝐶 ∈ Cat)
2 isinitoi.b . . . . . 6 𝐵 = (Base‘𝐶)
3 isinitoi.h . . . . . 6 𝐻 = (Hom ‘𝐶)
41, 2, 3termoval 18007 . . . . 5 (𝜑 → (TermO‘𝐶) = {𝑎𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝑎)})
54eleq2d 2820 . . . 4 (𝜑 → (𝑂 ∈ (TermO‘𝐶) ↔ 𝑂 ∈ {𝑎𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝑎)}))
6 elrabi 3666 . . . 4 (𝑂 ∈ {𝑎𝐵 ∣ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝑎)} → 𝑂𝐵)
75, 6biimtrdi 253 . . 3 (𝜑 → (𝑂 ∈ (TermO‘𝐶) → 𝑂𝐵))
87imp 406 . 2 ((𝜑𝑂 ∈ (TermO‘𝐶)) → 𝑂𝐵)
91adantr 480 . . . . 5 ((𝜑𝑂𝐵) → 𝐶 ∈ Cat)
10 simpr 484 . . . . 5 ((𝜑𝑂𝐵) → 𝑂𝐵)
112, 3, 9, 10istermo 18010 . . . 4 ((𝜑𝑂𝐵) → (𝑂 ∈ (TermO‘𝐶) ↔ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝑂)))
1211biimpd 229 . . 3 ((𝜑𝑂𝐵) → (𝑂 ∈ (TermO‘𝐶) → ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝑂)))
1312impancom 451 . 2 ((𝜑𝑂 ∈ (TermO‘𝐶)) → (𝑂𝐵 → ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝑂)))
148, 13jcai 516 1 ((𝜑𝑂 ∈ (TermO‘𝐶)) → (𝑂𝐵 ∧ ∀𝑏𝐵 ∃! ∈ (𝑏𝐻𝑂)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  ∃!weu 2567  wral 3051  {crab 3415  cfv 6531  (class class class)co 7405  Basecbs 17228  Hom chom 17282  Catccat 17676  TermOctermo 17995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-termo 17998
This theorem is referenced by:  termoid  18015  termoo  18021  termoeu1  18031  termoo2  49150
  Copyright terms: Public domain W3C validator