Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > istermoi | Structured version Visualization version GIF version |
Description: Implication of a class being a terminal object. (Contributed by AV, 18-Apr-2020.) |
Ref | Expression |
---|---|
isinitoi.b | ⊢ 𝐵 = (Base‘𝐶) |
isinitoi.h | ⊢ 𝐻 = (Hom ‘𝐶) |
isinitoi.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
Ref | Expression |
---|---|
istermoi | ⊢ ((𝜑 ∧ 𝑂 ∈ (TermO‘𝐶)) → (𝑂 ∈ 𝐵 ∧ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑏𝐻𝑂))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isinitoi.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
2 | isinitoi.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
3 | isinitoi.h | . . . . . 6 ⊢ 𝐻 = (Hom ‘𝐶) | |
4 | 1, 2, 3 | termoval 17709 | . . . . 5 ⊢ (𝜑 → (TermO‘𝐶) = {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑏𝐻𝑎)}) |
5 | 4 | eleq2d 2824 | . . . 4 ⊢ (𝜑 → (𝑂 ∈ (TermO‘𝐶) ↔ 𝑂 ∈ {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑏𝐻𝑎)})) |
6 | elrabi 3618 | . . . 4 ⊢ (𝑂 ∈ {𝑎 ∈ 𝐵 ∣ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑏𝐻𝑎)} → 𝑂 ∈ 𝐵) | |
7 | 5, 6 | syl6bi 252 | . . 3 ⊢ (𝜑 → (𝑂 ∈ (TermO‘𝐶) → 𝑂 ∈ 𝐵)) |
8 | 7 | imp 407 | . 2 ⊢ ((𝜑 ∧ 𝑂 ∈ (TermO‘𝐶)) → 𝑂 ∈ 𝐵) |
9 | 1 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑂 ∈ 𝐵) → 𝐶 ∈ Cat) |
10 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝑂 ∈ 𝐵) → 𝑂 ∈ 𝐵) | |
11 | 2, 3, 9, 10 | istermo 17712 | . . . 4 ⊢ ((𝜑 ∧ 𝑂 ∈ 𝐵) → (𝑂 ∈ (TermO‘𝐶) ↔ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑏𝐻𝑂))) |
12 | 11 | biimpd 228 | . . 3 ⊢ ((𝜑 ∧ 𝑂 ∈ 𝐵) → (𝑂 ∈ (TermO‘𝐶) → ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑏𝐻𝑂))) |
13 | 12 | impancom 452 | . 2 ⊢ ((𝜑 ∧ 𝑂 ∈ (TermO‘𝐶)) → (𝑂 ∈ 𝐵 → ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑏𝐻𝑂))) |
14 | 8, 13 | jcai 517 | 1 ⊢ ((𝜑 ∧ 𝑂 ∈ (TermO‘𝐶)) → (𝑂 ∈ 𝐵 ∧ ∀𝑏 ∈ 𝐵 ∃!ℎ ℎ ∈ (𝑏𝐻𝑂))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃!weu 2568 ∀wral 3064 {crab 3068 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 Hom chom 16973 Catccat 17373 TermOctermo 17697 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-termo 17700 |
This theorem is referenced by: termoid 17717 termoo 17723 termoeu1 17733 |
Copyright terms: Public domain | W3C validator |