Step | Hyp | Ref
| Expression |
1 | | id 22 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉) |
2 | | inidm 4158 |
. . . . . 6
⊢ (𝐴 ∩ 𝐴) = 𝐴 |
3 | 2 | eqcomi 2745 |
. . . . 5
⊢ 𝐴 = (𝐴 ∩ 𝐴) |
4 | 3 | a1i 11 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → 𝐴 = (𝐴 ∩ 𝐴)) |
5 | 1, 1, 4 | 3jca 1128 |
. . 3
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ 𝐴 = (𝐴 ∩ 𝐴))) |
6 | | ofoaf 41246 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ 𝐴 = (𝐴 ∩ 𝐴)) ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → ( ∘f
+o ↾ ((𝐶
↑m 𝐴)
× (𝐶
↑m 𝐴))):((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐴))⟶(𝐶 ↑m 𝐴)) |
7 | 5, 6 | sylan 581 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → ( ∘f
+o ↾ ((𝐶
↑m 𝐴)
× (𝐶
↑m 𝐴))):((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐴))⟶(𝐶 ↑m 𝐴)) |
8 | | simpr 486 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ℎ ∈ (𝐶 ↑m 𝐴)) → ℎ ∈ (𝐶 ↑m 𝐴)) |
9 | | omelon 9452 |
. . . . . . . . . . . . . . 15
⊢ ω
∈ On |
10 | 9 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ On ∧ 𝐶 = (ω ↑o
𝐵)) → ω ∈
On) |
11 | | simpl 484 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ On ∧ 𝐶 = (ω ↑o
𝐵)) → 𝐵 ∈ On) |
12 | 10, 11 | jca 513 |
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ On ∧ 𝐶 = (ω ↑o
𝐵)) → (ω ∈
On ∧ 𝐵 ∈
On)) |
13 | | peano1 7767 |
. . . . . . . . . . . . 13
⊢ ∅
∈ ω |
14 | | oen0 8448 |
. . . . . . . . . . . . 13
⊢
(((ω ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ ω)
→ ∅ ∈ (ω ↑o 𝐵)) |
15 | 12, 13, 14 | sylancl 587 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ On ∧ 𝐶 = (ω ↑o
𝐵)) → ∅ ∈
(ω ↑o 𝐵)) |
16 | | simpr 486 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ On ∧ 𝐶 = (ω ↑o
𝐵)) → 𝐶 = (ω ↑o
𝐵)) |
17 | 15, 16 | eleqtrrd 2840 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ On ∧ 𝐶 = (ω ↑o
𝐵)) → ∅ ∈
𝐶) |
18 | | fconst6g 6693 |
. . . . . . . . . . 11
⊢ (∅
∈ 𝐶 → (𝐴 × {∅}):𝐴⟶𝐶) |
19 | 17, 18 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ On ∧ 𝐶 = (ω ↑o
𝐵)) → (𝐴 × {∅}):𝐴⟶𝐶) |
20 | 19 | adantl 483 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → (𝐴 × {∅}):𝐴⟶𝐶) |
21 | | oecl 8398 |
. . . . . . . . . . . . 13
⊢ ((ω
∈ On ∧ 𝐵 ∈
On) → (ω ↑o 𝐵) ∈ On) |
22 | 9, 11, 21 | sylancr 588 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ On ∧ 𝐶 = (ω ↑o
𝐵)) → (ω
↑o 𝐵)
∈ On) |
23 | 16, 22 | eqeltrd 2837 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ On ∧ 𝐶 = (ω ↑o
𝐵)) → 𝐶 ∈ On) |
24 | 23 | adantl 483 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → 𝐶 ∈ On) |
25 | | simpl 484 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → 𝐴 ∈ 𝑉) |
26 | 24, 25 | elmapd 8660 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → ((𝐴 × {∅}) ∈ (𝐶 ↑m 𝐴) ↔ (𝐴 × {∅}):𝐴⟶𝐶)) |
27 | 20, 26 | mpbird 257 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → (𝐴 × {∅}) ∈ (𝐶 ↑m 𝐴)) |
28 | 27 | adantr 482 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ℎ ∈ (𝐶 ↑m 𝐴)) → (𝐴 × {∅}) ∈ (𝐶 ↑m 𝐴)) |
29 | | ovres 7470 |
. . . . . . . . . 10
⊢ ((ℎ ∈ (𝐶 ↑m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶 ↑m 𝐴)) → (ℎ( ∘f +o ↾
((𝐶 ↑m
𝐴) × (𝐶 ↑m 𝐴)))(𝐴 × {∅})) = (ℎ ∘f +o (𝐴 ×
{∅}))) |
30 | 29 | adantl 483 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ (ℎ ∈ (𝐶 ↑m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶 ↑m 𝐴))) → (ℎ( ∘f +o ↾
((𝐶 ↑m
𝐴) × (𝐶 ↑m 𝐴)))(𝐴 × {∅})) = (ℎ ∘f +o (𝐴 ×
{∅}))) |
31 | | elmapi 8668 |
. . . . . . . . . . . . . 14
⊢ (ℎ ∈ (𝐶 ↑m 𝐴) → ℎ:𝐴⟶𝐶) |
32 | 31 | adantr 482 |
. . . . . . . . . . . . 13
⊢ ((ℎ ∈ (𝐶 ↑m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶 ↑m 𝐴)) → ℎ:𝐴⟶𝐶) |
33 | 32 | ffnd 6631 |
. . . . . . . . . . . 12
⊢ ((ℎ ∈ (𝐶 ↑m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶 ↑m 𝐴)) → ℎ Fn 𝐴) |
34 | 33 | adantl 483 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ (ℎ ∈ (𝐶 ↑m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶 ↑m 𝐴))) → ℎ Fn 𝐴) |
35 | | elmapi 8668 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 × {∅}) ∈
(𝐶 ↑m 𝐴) → (𝐴 × {∅}):𝐴⟶𝐶) |
36 | 35 | adantl 483 |
. . . . . . . . . . . . 13
⊢ ((ℎ ∈ (𝐶 ↑m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶 ↑m 𝐴)) → (𝐴 × {∅}):𝐴⟶𝐶) |
37 | 36 | ffnd 6631 |
. . . . . . . . . . . 12
⊢ ((ℎ ∈ (𝐶 ↑m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶 ↑m 𝐴)) → (𝐴 × {∅}) Fn 𝐴) |
38 | 37 | adantl 483 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ (ℎ ∈ (𝐶 ↑m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶 ↑m 𝐴))) → (𝐴 × {∅}) Fn 𝐴) |
39 | 25 | adantr 482 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ (ℎ ∈ (𝐶 ↑m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶 ↑m 𝐴))) → 𝐴 ∈ 𝑉) |
40 | 34, 38, 39, 39, 2 | offn 7578 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ (ℎ ∈ (𝐶 ↑m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶 ↑m 𝐴))) → (ℎ ∘f +o (𝐴 × {∅})) Fn 𝐴) |
41 | | elmapfn 8684 |
. . . . . . . . . . . . . 14
⊢ (ℎ ∈ (𝐶 ↑m 𝐴) → ℎ Fn 𝐴) |
42 | | elmapfn 8684 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 × {∅}) ∈
(𝐶 ↑m 𝐴) → (𝐴 × {∅}) Fn 𝐴) |
43 | 41, 42 | anim12i 614 |
. . . . . . . . . . . . 13
⊢ ((ℎ ∈ (𝐶 ↑m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶 ↑m 𝐴)) → (ℎ Fn 𝐴 ∧ (𝐴 × {∅}) Fn 𝐴)) |
44 | 43 | adantl 483 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ (ℎ ∈ (𝐶 ↑m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶 ↑m 𝐴))) → (ℎ Fn 𝐴 ∧ (𝐴 × {∅}) Fn 𝐴)) |
45 | 39 | anim1i 616 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ (ℎ ∈ (𝐶 ↑m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶 ↑m 𝐴))) ∧ 𝑎 ∈ 𝐴) → (𝐴 ∈ 𝑉 ∧ 𝑎 ∈ 𝐴)) |
46 | | fnfvof 7582 |
. . . . . . . . . . . 12
⊢ (((ℎ Fn 𝐴 ∧ (𝐴 × {∅}) Fn 𝐴) ∧ (𝐴 ∈ 𝑉 ∧ 𝑎 ∈ 𝐴)) → ((ℎ ∘f +o (𝐴 × {∅}))‘𝑎) = ((ℎ‘𝑎) +o ((𝐴 × {∅})‘𝑎))) |
47 | 44, 45, 46 | syl2an2r 683 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ (ℎ ∈ (𝐶 ↑m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶 ↑m 𝐴))) ∧ 𝑎 ∈ 𝐴) → ((ℎ ∘f +o (𝐴 × {∅}))‘𝑎) = ((ℎ‘𝑎) +o ((𝐴 × {∅})‘𝑎))) |
48 | | simpr 486 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ (ℎ ∈ (𝐶 ↑m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶 ↑m 𝐴))) ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ 𝐴) |
49 | | fvconst2g 7109 |
. . . . . . . . . . . . 13
⊢ ((∅
∈ ω ∧ 𝑎
∈ 𝐴) → ((𝐴 × {∅})‘𝑎) = ∅) |
50 | 13, 48, 49 | sylancr 588 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ (ℎ ∈ (𝐶 ↑m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶 ↑m 𝐴))) ∧ 𝑎 ∈ 𝐴) → ((𝐴 × {∅})‘𝑎) = ∅) |
51 | 50 | oveq2d 7323 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ (ℎ ∈ (𝐶 ↑m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶 ↑m 𝐴))) ∧ 𝑎 ∈ 𝐴) → ((ℎ‘𝑎) +o ((𝐴 × {∅})‘𝑎)) = ((ℎ‘𝑎) +o ∅)) |
52 | 24 | adantr 482 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ (ℎ ∈ (𝐶 ↑m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶 ↑m 𝐴))) → 𝐶 ∈ On) |
53 | 52 | adantr 482 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ (ℎ ∈ (𝐶 ↑m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶 ↑m 𝐴))) ∧ 𝑎 ∈ 𝐴) → 𝐶 ∈ On) |
54 | | onss 7666 |
. . . . . . . . . . . . . 14
⊢ (𝐶 ∈ On → 𝐶 ⊆ On) |
55 | 53, 54 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ (ℎ ∈ (𝐶 ↑m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶 ↑m 𝐴))) ∧ 𝑎 ∈ 𝐴) → 𝐶 ⊆ On) |
56 | 31 | ad2antrl 726 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ (ℎ ∈ (𝐶 ↑m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶 ↑m 𝐴))) → ℎ:𝐴⟶𝐶) |
57 | 56 | ffvelcdmda 6993 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ (ℎ ∈ (𝐶 ↑m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶 ↑m 𝐴))) ∧ 𝑎 ∈ 𝐴) → (ℎ‘𝑎) ∈ 𝐶) |
58 | 55, 57 | sseldd 3927 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ (ℎ ∈ (𝐶 ↑m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶 ↑m 𝐴))) ∧ 𝑎 ∈ 𝐴) → (ℎ‘𝑎) ∈ On) |
59 | | oa0 8377 |
. . . . . . . . . . . 12
⊢ ((ℎ‘𝑎) ∈ On → ((ℎ‘𝑎) +o ∅) = (ℎ‘𝑎)) |
60 | 58, 59 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ (ℎ ∈ (𝐶 ↑m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶 ↑m 𝐴))) ∧ 𝑎 ∈ 𝐴) → ((ℎ‘𝑎) +o ∅) = (ℎ‘𝑎)) |
61 | 47, 51, 60 | 3eqtrd 2780 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ (ℎ ∈ (𝐶 ↑m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶 ↑m 𝐴))) ∧ 𝑎 ∈ 𝐴) → ((ℎ ∘f +o (𝐴 × {∅}))‘𝑎) = (ℎ‘𝑎)) |
62 | 40, 34, 61 | eqfnfvd 6944 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ (ℎ ∈ (𝐶 ↑m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶 ↑m 𝐴))) → (ℎ ∘f +o (𝐴 × {∅})) = ℎ) |
63 | 30, 62 | eqtr2d 2777 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ (ℎ ∈ (𝐶 ↑m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶 ↑m 𝐴))) → ℎ = (ℎ( ∘f +o ↾
((𝐶 ↑m
𝐴) × (𝐶 ↑m 𝐴)))(𝐴 × {∅}))) |
64 | 63 | expr 458 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ℎ ∈ (𝐶 ↑m 𝐴)) → ((𝐴 × {∅}) ∈ (𝐶 ↑m 𝐴) → ℎ = (ℎ( ∘f +o ↾
((𝐶 ↑m
𝐴) × (𝐶 ↑m 𝐴)))(𝐴 × {∅})))) |
65 | 28, 64 | jcai 518 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ℎ ∈ (𝐶 ↑m 𝐴)) → ((𝐴 × {∅}) ∈ (𝐶 ↑m 𝐴) ∧ ℎ = (ℎ( ∘f +o ↾
((𝐶 ↑m
𝐴) × (𝐶 ↑m 𝐴)))(𝐴 × {∅})))) |
66 | | oveq2 7315 |
. . . . . . 7
⊢ (𝑧 = (𝐴 × {∅}) → (ℎ( ∘f
+o ↾ ((𝐶
↑m 𝐴)
× (𝐶
↑m 𝐴)))𝑧) = (ℎ( ∘f +o ↾
((𝐶 ↑m
𝐴) × (𝐶 ↑m 𝐴)))(𝐴 × {∅}))) |
67 | 66 | rspceeqv 3580 |
. . . . . 6
⊢ (((𝐴 × {∅}) ∈
(𝐶 ↑m 𝐴) ∧ ℎ = (ℎ( ∘f +o ↾
((𝐶 ↑m
𝐴) × (𝐶 ↑m 𝐴)))(𝐴 × {∅}))) → ∃𝑧 ∈ (𝐶 ↑m 𝐴)ℎ = (ℎ( ∘f +o ↾
((𝐶 ↑m
𝐴) × (𝐶 ↑m 𝐴)))𝑧)) |
68 | 65, 67 | syl 17 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ℎ ∈ (𝐶 ↑m 𝐴)) → ∃𝑧 ∈ (𝐶 ↑m 𝐴)ℎ = (ℎ( ∘f +o ↾
((𝐶 ↑m
𝐴) × (𝐶 ↑m 𝐴)))𝑧)) |
69 | 8, 68 | jca 513 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ℎ ∈ (𝐶 ↑m 𝐴)) → (ℎ ∈ (𝐶 ↑m 𝐴) ∧ ∃𝑧 ∈ (𝐶 ↑m 𝐴)ℎ = (ℎ( ∘f +o ↾
((𝐶 ↑m
𝐴) × (𝐶 ↑m 𝐴)))𝑧))) |
70 | | oveq1 7314 |
. . . . . . 7
⊢ (𝑓 = ℎ → (𝑓( ∘f +o ↾
((𝐶 ↑m
𝐴) × (𝐶 ↑m 𝐴)))𝑧) = (ℎ( ∘f +o ↾
((𝐶 ↑m
𝐴) × (𝐶 ↑m 𝐴)))𝑧)) |
71 | 70 | eqeq2d 2747 |
. . . . . 6
⊢ (𝑓 = ℎ → (ℎ = (𝑓( ∘f +o ↾
((𝐶 ↑m
𝐴) × (𝐶 ↑m 𝐴)))𝑧) ↔ ℎ = (ℎ( ∘f +o ↾
((𝐶 ↑m
𝐴) × (𝐶 ↑m 𝐴)))𝑧))) |
72 | 71 | rexbidv 3171 |
. . . . 5
⊢ (𝑓 = ℎ → (∃𝑧 ∈ (𝐶 ↑m 𝐴)ℎ = (𝑓( ∘f +o ↾
((𝐶 ↑m
𝐴) × (𝐶 ↑m 𝐴)))𝑧) ↔ ∃𝑧 ∈ (𝐶 ↑m 𝐴)ℎ = (ℎ( ∘f +o ↾
((𝐶 ↑m
𝐴) × (𝐶 ↑m 𝐴)))𝑧))) |
73 | 72 | rspcev 3566 |
. . . 4
⊢ ((ℎ ∈ (𝐶 ↑m 𝐴) ∧ ∃𝑧 ∈ (𝐶 ↑m 𝐴)ℎ = (ℎ( ∘f +o ↾
((𝐶 ↑m
𝐴) × (𝐶 ↑m 𝐴)))𝑧)) → ∃𝑓 ∈ (𝐶 ↑m 𝐴)∃𝑧 ∈ (𝐶 ↑m 𝐴)ℎ = (𝑓( ∘f +o ↾
((𝐶 ↑m
𝐴) × (𝐶 ↑m 𝐴)))𝑧)) |
74 | 69, 73 | syl 17 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ℎ ∈ (𝐶 ↑m 𝐴)) → ∃𝑓 ∈ (𝐶 ↑m 𝐴)∃𝑧 ∈ (𝐶 ↑m 𝐴)ℎ = (𝑓( ∘f +o ↾
((𝐶 ↑m
𝐴) × (𝐶 ↑m 𝐴)))𝑧)) |
75 | 74 | ralrimiva 3139 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → ∀ℎ ∈ (𝐶 ↑m 𝐴)∃𝑓 ∈ (𝐶 ↑m 𝐴)∃𝑧 ∈ (𝐶 ↑m 𝐴)ℎ = (𝑓( ∘f +o ↾
((𝐶 ↑m
𝐴) × (𝐶 ↑m 𝐴)))𝑧)) |
76 | | foov 7478 |
. 2
⊢ ((
∘f +o ↾ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐴))):((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐴))–onto→(𝐶 ↑m 𝐴) ↔ (( ∘f
+o ↾ ((𝐶
↑m 𝐴)
× (𝐶
↑m 𝐴))):((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐴))⟶(𝐶 ↑m 𝐴) ∧ ∀ℎ ∈ (𝐶 ↑m 𝐴)∃𝑓 ∈ (𝐶 ↑m 𝐴)∃𝑧 ∈ (𝐶 ↑m 𝐴)ℎ = (𝑓( ∘f +o ↾
((𝐶 ↑m
𝐴) × (𝐶 ↑m 𝐴)))𝑧))) |
77 | 7, 75, 76 | sylanbrc 584 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → ( ∘f
+o ↾ ((𝐶
↑m 𝐴)
× (𝐶
↑m 𝐴))):((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐴))–onto→(𝐶 ↑m 𝐴)) |