Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofoafo Structured version   Visualization version   GIF version

Theorem ofoafo 41247
Description: Addition operator for functions from a set into a power of omega is an onto binary operator. (Contributed by RP, 5-Jan-2025.)
Assertion
Ref Expression
ofoafo ((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → ( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴))):((𝐶m 𝐴) × (𝐶m 𝐴))–onto→(𝐶m 𝐴))

Proof of Theorem ofoafo
Dummy variables 𝑎 𝑓 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝐴𝑉𝐴𝑉)
2 inidm 4158 . . . . . 6 (𝐴𝐴) = 𝐴
32eqcomi 2745 . . . . 5 𝐴 = (𝐴𝐴)
43a1i 11 . . . 4 (𝐴𝑉𝐴 = (𝐴𝐴))
51, 1, 43jca 1128 . . 3 (𝐴𝑉 → (𝐴𝑉𝐴𝑉𝐴 = (𝐴𝐴)))
6 ofoaf 41246 . . 3 (((𝐴𝑉𝐴𝑉𝐴 = (𝐴𝐴)) ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → ( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴))):((𝐶m 𝐴) × (𝐶m 𝐴))⟶(𝐶m 𝐴))
75, 6sylan 581 . 2 ((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → ( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴))):((𝐶m 𝐴) × (𝐶m 𝐴))⟶(𝐶m 𝐴))
8 simpr 486 . . . . 5 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ∈ (𝐶m 𝐴)) → ∈ (𝐶m 𝐴))
9 omelon 9452 . . . . . . . . . . . . . . 15 ω ∈ On
109a1i 11 . . . . . . . . . . . . . 14 ((𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵)) → ω ∈ On)
11 simpl 484 . . . . . . . . . . . . . 14 ((𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵)) → 𝐵 ∈ On)
1210, 11jca 513 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵)) → (ω ∈ On ∧ 𝐵 ∈ On))
13 peano1 7767 . . . . . . . . . . . . 13 ∅ ∈ ω
14 oen0 8448 . . . . . . . . . . . . 13 (((ω ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ ω) → ∅ ∈ (ω ↑o 𝐵))
1512, 13, 14sylancl 587 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵)) → ∅ ∈ (ω ↑o 𝐵))
16 simpr 486 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵)) → 𝐶 = (ω ↑o 𝐵))
1715, 16eleqtrrd 2840 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵)) → ∅ ∈ 𝐶)
18 fconst6g 6693 . . . . . . . . . . 11 (∅ ∈ 𝐶 → (𝐴 × {∅}):𝐴𝐶)
1917, 18syl 17 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵)) → (𝐴 × {∅}):𝐴𝐶)
2019adantl 483 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → (𝐴 × {∅}):𝐴𝐶)
21 oecl 8398 . . . . . . . . . . . . 13 ((ω ∈ On ∧ 𝐵 ∈ On) → (ω ↑o 𝐵) ∈ On)
229, 11, 21sylancr 588 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵)) → (ω ↑o 𝐵) ∈ On)
2316, 22eqeltrd 2837 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵)) → 𝐶 ∈ On)
2423adantl 483 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → 𝐶 ∈ On)
25 simpl 484 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → 𝐴𝑉)
2624, 25elmapd 8660 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → ((𝐴 × {∅}) ∈ (𝐶m 𝐴) ↔ (𝐴 × {∅}):𝐴𝐶))
2720, 26mpbird 257 . . . . . . . 8 ((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → (𝐴 × {∅}) ∈ (𝐶m 𝐴))
2827adantr 482 . . . . . . 7 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ∈ (𝐶m 𝐴)) → (𝐴 × {∅}) ∈ (𝐶m 𝐴))
29 ovres 7470 . . . . . . . . . 10 (( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴)) → (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))(𝐴 × {∅})) = (f +o (𝐴 × {∅})))
3029adantl 483 . . . . . . . . 9 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) → (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))(𝐴 × {∅})) = (f +o (𝐴 × {∅})))
31 elmapi 8668 . . . . . . . . . . . . . 14 ( ∈ (𝐶m 𝐴) → :𝐴𝐶)
3231adantr 482 . . . . . . . . . . . . 13 (( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴)) → :𝐴𝐶)
3332ffnd 6631 . . . . . . . . . . . 12 (( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴)) → Fn 𝐴)
3433adantl 483 . . . . . . . . . . 11 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) → Fn 𝐴)
35 elmapi 8668 . . . . . . . . . . . . . 14 ((𝐴 × {∅}) ∈ (𝐶m 𝐴) → (𝐴 × {∅}):𝐴𝐶)
3635adantl 483 . . . . . . . . . . . . 13 (( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴)) → (𝐴 × {∅}):𝐴𝐶)
3736ffnd 6631 . . . . . . . . . . . 12 (( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴)) → (𝐴 × {∅}) Fn 𝐴)
3837adantl 483 . . . . . . . . . . 11 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) → (𝐴 × {∅}) Fn 𝐴)
3925adantr 482 . . . . . . . . . . 11 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) → 𝐴𝑉)
4034, 38, 39, 39, 2offn 7578 . . . . . . . . . 10 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) → (f +o (𝐴 × {∅})) Fn 𝐴)
41 elmapfn 8684 . . . . . . . . . . . . . 14 ( ∈ (𝐶m 𝐴) → Fn 𝐴)
42 elmapfn 8684 . . . . . . . . . . . . . 14 ((𝐴 × {∅}) ∈ (𝐶m 𝐴) → (𝐴 × {∅}) Fn 𝐴)
4341, 42anim12i 614 . . . . . . . . . . . . 13 (( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴)) → ( Fn 𝐴 ∧ (𝐴 × {∅}) Fn 𝐴))
4443adantl 483 . . . . . . . . . . . 12 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) → ( Fn 𝐴 ∧ (𝐴 × {∅}) Fn 𝐴))
4539anim1i 616 . . . . . . . . . . . 12 ((((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) ∧ 𝑎𝐴) → (𝐴𝑉𝑎𝐴))
46 fnfvof 7582 . . . . . . . . . . . 12 ((( Fn 𝐴 ∧ (𝐴 × {∅}) Fn 𝐴) ∧ (𝐴𝑉𝑎𝐴)) → ((f +o (𝐴 × {∅}))‘𝑎) = ((𝑎) +o ((𝐴 × {∅})‘𝑎)))
4744, 45, 46syl2an2r 683 . . . . . . . . . . 11 ((((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) ∧ 𝑎𝐴) → ((f +o (𝐴 × {∅}))‘𝑎) = ((𝑎) +o ((𝐴 × {∅})‘𝑎)))
48 simpr 486 . . . . . . . . . . . . 13 ((((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) ∧ 𝑎𝐴) → 𝑎𝐴)
49 fvconst2g 7109 . . . . . . . . . . . . 13 ((∅ ∈ ω ∧ 𝑎𝐴) → ((𝐴 × {∅})‘𝑎) = ∅)
5013, 48, 49sylancr 588 . . . . . . . . . . . 12 ((((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) ∧ 𝑎𝐴) → ((𝐴 × {∅})‘𝑎) = ∅)
5150oveq2d 7323 . . . . . . . . . . 11 ((((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) ∧ 𝑎𝐴) → ((𝑎) +o ((𝐴 × {∅})‘𝑎)) = ((𝑎) +o ∅))
5224adantr 482 . . . . . . . . . . . . . . 15 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) → 𝐶 ∈ On)
5352adantr 482 . . . . . . . . . . . . . 14 ((((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) ∧ 𝑎𝐴) → 𝐶 ∈ On)
54 onss 7666 . . . . . . . . . . . . . 14 (𝐶 ∈ On → 𝐶 ⊆ On)
5553, 54syl 17 . . . . . . . . . . . . 13 ((((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) ∧ 𝑎𝐴) → 𝐶 ⊆ On)
5631ad2antrl 726 . . . . . . . . . . . . . 14 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) → :𝐴𝐶)
5756ffvelcdmda 6993 . . . . . . . . . . . . 13 ((((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) ∧ 𝑎𝐴) → (𝑎) ∈ 𝐶)
5855, 57sseldd 3927 . . . . . . . . . . . 12 ((((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) ∧ 𝑎𝐴) → (𝑎) ∈ On)
59 oa0 8377 . . . . . . . . . . . 12 ((𝑎) ∈ On → ((𝑎) +o ∅) = (𝑎))
6058, 59syl 17 . . . . . . . . . . 11 ((((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) ∧ 𝑎𝐴) → ((𝑎) +o ∅) = (𝑎))
6147, 51, 603eqtrd 2780 . . . . . . . . . 10 ((((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) ∧ 𝑎𝐴) → ((f +o (𝐴 × {∅}))‘𝑎) = (𝑎))
6240, 34, 61eqfnfvd 6944 . . . . . . . . 9 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) → (f +o (𝐴 × {∅})) = )
6330, 62eqtr2d 2777 . . . . . . . 8 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) → = (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))(𝐴 × {∅})))
6463expr 458 . . . . . . 7 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ∈ (𝐶m 𝐴)) → ((𝐴 × {∅}) ∈ (𝐶m 𝐴) → = (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))(𝐴 × {∅}))))
6528, 64jcai 518 . . . . . 6 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ∈ (𝐶m 𝐴)) → ((𝐴 × {∅}) ∈ (𝐶m 𝐴) ∧ = (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))(𝐴 × {∅}))))
66 oveq2 7315 . . . . . . 7 (𝑧 = (𝐴 × {∅}) → (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝑧) = (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))(𝐴 × {∅})))
6766rspceeqv 3580 . . . . . 6 (((𝐴 × {∅}) ∈ (𝐶m 𝐴) ∧ = (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))(𝐴 × {∅}))) → ∃𝑧 ∈ (𝐶m 𝐴) = (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝑧))
6865, 67syl 17 . . . . 5 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ∈ (𝐶m 𝐴)) → ∃𝑧 ∈ (𝐶m 𝐴) = (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝑧))
698, 68jca 513 . . . 4 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ∈ (𝐶m 𝐴)) → ( ∈ (𝐶m 𝐴) ∧ ∃𝑧 ∈ (𝐶m 𝐴) = (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝑧)))
70 oveq1 7314 . . . . . . 7 (𝑓 = → (𝑓( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝑧) = (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝑧))
7170eqeq2d 2747 . . . . . 6 (𝑓 = → ( = (𝑓( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝑧) ↔ = (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝑧)))
7271rexbidv 3171 . . . . 5 (𝑓 = → (∃𝑧 ∈ (𝐶m 𝐴) = (𝑓( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝑧) ↔ ∃𝑧 ∈ (𝐶m 𝐴) = (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝑧)))
7372rspcev 3566 . . . 4 (( ∈ (𝐶m 𝐴) ∧ ∃𝑧 ∈ (𝐶m 𝐴) = (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝑧)) → ∃𝑓 ∈ (𝐶m 𝐴)∃𝑧 ∈ (𝐶m 𝐴) = (𝑓( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝑧))
7469, 73syl 17 . . 3 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ∈ (𝐶m 𝐴)) → ∃𝑓 ∈ (𝐶m 𝐴)∃𝑧 ∈ (𝐶m 𝐴) = (𝑓( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝑧))
7574ralrimiva 3139 . 2 ((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → ∀ ∈ (𝐶m 𝐴)∃𝑓 ∈ (𝐶m 𝐴)∃𝑧 ∈ (𝐶m 𝐴) = (𝑓( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝑧))
76 foov 7478 . 2 (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴))):((𝐶m 𝐴) × (𝐶m 𝐴))–onto→(𝐶m 𝐴) ↔ (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴))):((𝐶m 𝐴) × (𝐶m 𝐴))⟶(𝐶m 𝐴) ∧ ∀ ∈ (𝐶m 𝐴)∃𝑓 ∈ (𝐶m 𝐴)∃𝑧 ∈ (𝐶m 𝐴) = (𝑓( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝑧)))
777, 75, 76sylanbrc 584 1 ((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → ( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴))):((𝐶m 𝐴) × (𝐶m 𝐴))–onto→(𝐶m 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087   = wceq 1539  wcel 2104  wral 3061  wrex 3070  cin 3891  wss 3892  c0 4262  {csn 4565   × cxp 5598  cres 5602  Oncon0 6281   Fn wfn 6453  wf 6454  ontowfo 6456  cfv 6458  (class class class)co 7307  f cof 7563  ωcom 7744   +o coa 8325  o coe 8327  m cmap 8646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-inf2 9447
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3331  df-reu 3332  df-rab 3333  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-of 7565  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-2o 8329  df-oadd 8332  df-omul 8333  df-oexp 8334  df-map 8648
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator