Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofoafo Structured version   Visualization version   GIF version

Theorem ofoafo 43448
Description: Addition operator for functions from a set into a power of omega is an onto binary operator. (Contributed by RP, 5-Jan-2025.)
Assertion
Ref Expression
ofoafo ((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → ( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴))):((𝐶m 𝐴) × (𝐶m 𝐴))–onto→(𝐶m 𝐴))

Proof of Theorem ofoafo
Dummy variables 𝑎 𝑓 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝐴𝑉𝐴𝑉)
2 inidm 4174 . . . . . 6 (𝐴𝐴) = 𝐴
32eqcomi 2740 . . . . 5 𝐴 = (𝐴𝐴)
43a1i 11 . . . 4 (𝐴𝑉𝐴 = (𝐴𝐴))
51, 1, 43jca 1128 . . 3 (𝐴𝑉 → (𝐴𝑉𝐴𝑉𝐴 = (𝐴𝐴)))
6 ofoaf 43447 . . 3 (((𝐴𝑉𝐴𝑉𝐴 = (𝐴𝐴)) ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → ( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴))):((𝐶m 𝐴) × (𝐶m 𝐴))⟶(𝐶m 𝐴))
75, 6sylan 580 . 2 ((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → ( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴))):((𝐶m 𝐴) × (𝐶m 𝐴))⟶(𝐶m 𝐴))
8 simpr 484 . . . . 5 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ∈ (𝐶m 𝐴)) → ∈ (𝐶m 𝐴))
9 omelon 9536 . . . . . . . . . . . . . . 15 ω ∈ On
109a1i 11 . . . . . . . . . . . . . 14 ((𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵)) → ω ∈ On)
11 simpl 482 . . . . . . . . . . . . . 14 ((𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵)) → 𝐵 ∈ On)
1210, 11jca 511 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵)) → (ω ∈ On ∧ 𝐵 ∈ On))
13 peano1 7819 . . . . . . . . . . . . 13 ∅ ∈ ω
14 oen0 8501 . . . . . . . . . . . . 13 (((ω ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ ω) → ∅ ∈ (ω ↑o 𝐵))
1512, 13, 14sylancl 586 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵)) → ∅ ∈ (ω ↑o 𝐵))
16 simpr 484 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵)) → 𝐶 = (ω ↑o 𝐵))
1715, 16eleqtrrd 2834 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵)) → ∅ ∈ 𝐶)
18 fconst6g 6712 . . . . . . . . . . 11 (∅ ∈ 𝐶 → (𝐴 × {∅}):𝐴𝐶)
1917, 18syl 17 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵)) → (𝐴 × {∅}):𝐴𝐶)
2019adantl 481 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → (𝐴 × {∅}):𝐴𝐶)
21 oecl 8452 . . . . . . . . . . . . 13 ((ω ∈ On ∧ 𝐵 ∈ On) → (ω ↑o 𝐵) ∈ On)
229, 11, 21sylancr 587 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵)) → (ω ↑o 𝐵) ∈ On)
2316, 22eqeltrd 2831 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵)) → 𝐶 ∈ On)
2423adantl 481 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → 𝐶 ∈ On)
25 simpl 482 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → 𝐴𝑉)
2624, 25elmapd 8764 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → ((𝐴 × {∅}) ∈ (𝐶m 𝐴) ↔ (𝐴 × {∅}):𝐴𝐶))
2720, 26mpbird 257 . . . . . . . 8 ((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → (𝐴 × {∅}) ∈ (𝐶m 𝐴))
2827adantr 480 . . . . . . 7 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ∈ (𝐶m 𝐴)) → (𝐴 × {∅}) ∈ (𝐶m 𝐴))
29 ovres 7512 . . . . . . . . . 10 (( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴)) → (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))(𝐴 × {∅})) = (f +o (𝐴 × {∅})))
3029adantl 481 . . . . . . . . 9 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) → (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))(𝐴 × {∅})) = (f +o (𝐴 × {∅})))
31 elmapi 8773 . . . . . . . . . . . . . 14 ( ∈ (𝐶m 𝐴) → :𝐴𝐶)
3231adantr 480 . . . . . . . . . . . . 13 (( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴)) → :𝐴𝐶)
3332ffnd 6652 . . . . . . . . . . . 12 (( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴)) → Fn 𝐴)
3433adantl 481 . . . . . . . . . . 11 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) → Fn 𝐴)
35 elmapi 8773 . . . . . . . . . . . . . 14 ((𝐴 × {∅}) ∈ (𝐶m 𝐴) → (𝐴 × {∅}):𝐴𝐶)
3635adantl 481 . . . . . . . . . . . . 13 (( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴)) → (𝐴 × {∅}):𝐴𝐶)
3736ffnd 6652 . . . . . . . . . . . 12 (( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴)) → (𝐴 × {∅}) Fn 𝐴)
3837adantl 481 . . . . . . . . . . 11 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) → (𝐴 × {∅}) Fn 𝐴)
3925adantr 480 . . . . . . . . . . 11 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) → 𝐴𝑉)
4034, 38, 39, 39, 2offn 7623 . . . . . . . . . 10 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) → (f +o (𝐴 × {∅})) Fn 𝐴)
41 elmapfn 8789 . . . . . . . . . . . . . 14 ( ∈ (𝐶m 𝐴) → Fn 𝐴)
42 elmapfn 8789 . . . . . . . . . . . . . 14 ((𝐴 × {∅}) ∈ (𝐶m 𝐴) → (𝐴 × {∅}) Fn 𝐴)
4341, 42anim12i 613 . . . . . . . . . . . . 13 (( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴)) → ( Fn 𝐴 ∧ (𝐴 × {∅}) Fn 𝐴))
4443adantl 481 . . . . . . . . . . . 12 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) → ( Fn 𝐴 ∧ (𝐴 × {∅}) Fn 𝐴))
4539anim1i 615 . . . . . . . . . . . 12 ((((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) ∧ 𝑎𝐴) → (𝐴𝑉𝑎𝐴))
46 fnfvof 7627 . . . . . . . . . . . 12 ((( Fn 𝐴 ∧ (𝐴 × {∅}) Fn 𝐴) ∧ (𝐴𝑉𝑎𝐴)) → ((f +o (𝐴 × {∅}))‘𝑎) = ((𝑎) +o ((𝐴 × {∅})‘𝑎)))
4744, 45, 46syl2an2r 685 . . . . . . . . . . 11 ((((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) ∧ 𝑎𝐴) → ((f +o (𝐴 × {∅}))‘𝑎) = ((𝑎) +o ((𝐴 × {∅})‘𝑎)))
48 simpr 484 . . . . . . . . . . . . 13 ((((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) ∧ 𝑎𝐴) → 𝑎𝐴)
49 fvconst2g 7136 . . . . . . . . . . . . 13 ((∅ ∈ ω ∧ 𝑎𝐴) → ((𝐴 × {∅})‘𝑎) = ∅)
5013, 48, 49sylancr 587 . . . . . . . . . . . 12 ((((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) ∧ 𝑎𝐴) → ((𝐴 × {∅})‘𝑎) = ∅)
5150oveq2d 7362 . . . . . . . . . . 11 ((((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) ∧ 𝑎𝐴) → ((𝑎) +o ((𝐴 × {∅})‘𝑎)) = ((𝑎) +o ∅))
5224adantr 480 . . . . . . . . . . . . . . 15 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) → 𝐶 ∈ On)
5352adantr 480 . . . . . . . . . . . . . 14 ((((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) ∧ 𝑎𝐴) → 𝐶 ∈ On)
54 onss 7718 . . . . . . . . . . . . . 14 (𝐶 ∈ On → 𝐶 ⊆ On)
5553, 54syl 17 . . . . . . . . . . . . 13 ((((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) ∧ 𝑎𝐴) → 𝐶 ⊆ On)
5631ad2antrl 728 . . . . . . . . . . . . . 14 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) → :𝐴𝐶)
5756ffvelcdmda 7017 . . . . . . . . . . . . 13 ((((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) ∧ 𝑎𝐴) → (𝑎) ∈ 𝐶)
5855, 57sseldd 3930 . . . . . . . . . . . 12 ((((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) ∧ 𝑎𝐴) → (𝑎) ∈ On)
59 oa0 8431 . . . . . . . . . . . 12 ((𝑎) ∈ On → ((𝑎) +o ∅) = (𝑎))
6058, 59syl 17 . . . . . . . . . . 11 ((((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) ∧ 𝑎𝐴) → ((𝑎) +o ∅) = (𝑎))
6147, 51, 603eqtrd 2770 . . . . . . . . . 10 ((((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) ∧ 𝑎𝐴) → ((f +o (𝐴 × {∅}))‘𝑎) = (𝑎))
6240, 34, 61eqfnfvd 6967 . . . . . . . . 9 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) → (f +o (𝐴 × {∅})) = )
6330, 62eqtr2d 2767 . . . . . . . 8 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) → = (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))(𝐴 × {∅})))
6463expr 456 . . . . . . 7 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ∈ (𝐶m 𝐴)) → ((𝐴 × {∅}) ∈ (𝐶m 𝐴) → = (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))(𝐴 × {∅}))))
6528, 64jcai 516 . . . . . 6 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ∈ (𝐶m 𝐴)) → ((𝐴 × {∅}) ∈ (𝐶m 𝐴) ∧ = (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))(𝐴 × {∅}))))
66 oveq2 7354 . . . . . . 7 (𝑧 = (𝐴 × {∅}) → (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝑧) = (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))(𝐴 × {∅})))
6766rspceeqv 3595 . . . . . 6 (((𝐴 × {∅}) ∈ (𝐶m 𝐴) ∧ = (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))(𝐴 × {∅}))) → ∃𝑧 ∈ (𝐶m 𝐴) = (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝑧))
6865, 67syl 17 . . . . 5 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ∈ (𝐶m 𝐴)) → ∃𝑧 ∈ (𝐶m 𝐴) = (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝑧))
698, 68jca 511 . . . 4 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ∈ (𝐶m 𝐴)) → ( ∈ (𝐶m 𝐴) ∧ ∃𝑧 ∈ (𝐶m 𝐴) = (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝑧)))
70 oveq1 7353 . . . . . . 7 (𝑓 = → (𝑓( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝑧) = (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝑧))
7170eqeq2d 2742 . . . . . 6 (𝑓 = → ( = (𝑓( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝑧) ↔ = (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝑧)))
7271rexbidv 3156 . . . . 5 (𝑓 = → (∃𝑧 ∈ (𝐶m 𝐴) = (𝑓( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝑧) ↔ ∃𝑧 ∈ (𝐶m 𝐴) = (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝑧)))
7372rspcev 3572 . . . 4 (( ∈ (𝐶m 𝐴) ∧ ∃𝑧 ∈ (𝐶m 𝐴) = (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝑧)) → ∃𝑓 ∈ (𝐶m 𝐴)∃𝑧 ∈ (𝐶m 𝐴) = (𝑓( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝑧))
7469, 73syl 17 . . 3 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ∈ (𝐶m 𝐴)) → ∃𝑓 ∈ (𝐶m 𝐴)∃𝑧 ∈ (𝐶m 𝐴) = (𝑓( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝑧))
7574ralrimiva 3124 . 2 ((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → ∀ ∈ (𝐶m 𝐴)∃𝑓 ∈ (𝐶m 𝐴)∃𝑧 ∈ (𝐶m 𝐴) = (𝑓( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝑧))
76 foov 7520 . 2 (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴))):((𝐶m 𝐴) × (𝐶m 𝐴))–onto→(𝐶m 𝐴) ↔ (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴))):((𝐶m 𝐴) × (𝐶m 𝐴))⟶(𝐶m 𝐴) ∧ ∀ ∈ (𝐶m 𝐴)∃𝑓 ∈ (𝐶m 𝐴)∃𝑧 ∈ (𝐶m 𝐴) = (𝑓( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝑧)))
777, 75, 76sylanbrc 583 1 ((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → ( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴))):((𝐶m 𝐴) × (𝐶m 𝐴))–onto→(𝐶m 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  cin 3896  wss 3897  c0 4280  {csn 4573   × cxp 5612  cres 5616  Oncon0 6306   Fn wfn 6476  wf 6477  ontowfo 6479  cfv 6481  (class class class)co 7346  f cof 7608  ωcom 7796   +o coa 8382  o coe 8384  m cmap 8750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-oexp 8391  df-map 8752
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator