Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofoafo Structured version   Visualization version   GIF version

Theorem ofoafo 43347
Description: Addition operator for functions from a set into a power of omega is an onto binary operator. (Contributed by RP, 5-Jan-2025.)
Assertion
Ref Expression
ofoafo ((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → ( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴))):((𝐶m 𝐴) × (𝐶m 𝐴))–onto→(𝐶m 𝐴))

Proof of Theorem ofoafo
Dummy variables 𝑎 𝑓 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝐴𝑉𝐴𝑉)
2 inidm 4207 . . . . . 6 (𝐴𝐴) = 𝐴
32eqcomi 2745 . . . . 5 𝐴 = (𝐴𝐴)
43a1i 11 . . . 4 (𝐴𝑉𝐴 = (𝐴𝐴))
51, 1, 43jca 1128 . . 3 (𝐴𝑉 → (𝐴𝑉𝐴𝑉𝐴 = (𝐴𝐴)))
6 ofoaf 43346 . . 3 (((𝐴𝑉𝐴𝑉𝐴 = (𝐴𝐴)) ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → ( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴))):((𝐶m 𝐴) × (𝐶m 𝐴))⟶(𝐶m 𝐴))
75, 6sylan 580 . 2 ((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → ( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴))):((𝐶m 𝐴) × (𝐶m 𝐴))⟶(𝐶m 𝐴))
8 simpr 484 . . . . 5 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ∈ (𝐶m 𝐴)) → ∈ (𝐶m 𝐴))
9 omelon 9665 . . . . . . . . . . . . . . 15 ω ∈ On
109a1i 11 . . . . . . . . . . . . . 14 ((𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵)) → ω ∈ On)
11 simpl 482 . . . . . . . . . . . . . 14 ((𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵)) → 𝐵 ∈ On)
1210, 11jca 511 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵)) → (ω ∈ On ∧ 𝐵 ∈ On))
13 peano1 7889 . . . . . . . . . . . . 13 ∅ ∈ ω
14 oen0 8603 . . . . . . . . . . . . 13 (((ω ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ ω) → ∅ ∈ (ω ↑o 𝐵))
1512, 13, 14sylancl 586 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵)) → ∅ ∈ (ω ↑o 𝐵))
16 simpr 484 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵)) → 𝐶 = (ω ↑o 𝐵))
1715, 16eleqtrrd 2838 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵)) → ∅ ∈ 𝐶)
18 fconst6g 6772 . . . . . . . . . . 11 (∅ ∈ 𝐶 → (𝐴 × {∅}):𝐴𝐶)
1917, 18syl 17 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵)) → (𝐴 × {∅}):𝐴𝐶)
2019adantl 481 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → (𝐴 × {∅}):𝐴𝐶)
21 oecl 8554 . . . . . . . . . . . . 13 ((ω ∈ On ∧ 𝐵 ∈ On) → (ω ↑o 𝐵) ∈ On)
229, 11, 21sylancr 587 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵)) → (ω ↑o 𝐵) ∈ On)
2316, 22eqeltrd 2835 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵)) → 𝐶 ∈ On)
2423adantl 481 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → 𝐶 ∈ On)
25 simpl 482 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → 𝐴𝑉)
2624, 25elmapd 8859 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → ((𝐴 × {∅}) ∈ (𝐶m 𝐴) ↔ (𝐴 × {∅}):𝐴𝐶))
2720, 26mpbird 257 . . . . . . . 8 ((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → (𝐴 × {∅}) ∈ (𝐶m 𝐴))
2827adantr 480 . . . . . . 7 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ∈ (𝐶m 𝐴)) → (𝐴 × {∅}) ∈ (𝐶m 𝐴))
29 ovres 7578 . . . . . . . . . 10 (( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴)) → (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))(𝐴 × {∅})) = (f +o (𝐴 × {∅})))
3029adantl 481 . . . . . . . . 9 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) → (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))(𝐴 × {∅})) = (f +o (𝐴 × {∅})))
31 elmapi 8868 . . . . . . . . . . . . . 14 ( ∈ (𝐶m 𝐴) → :𝐴𝐶)
3231adantr 480 . . . . . . . . . . . . 13 (( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴)) → :𝐴𝐶)
3332ffnd 6712 . . . . . . . . . . . 12 (( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴)) → Fn 𝐴)
3433adantl 481 . . . . . . . . . . 11 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) → Fn 𝐴)
35 elmapi 8868 . . . . . . . . . . . . . 14 ((𝐴 × {∅}) ∈ (𝐶m 𝐴) → (𝐴 × {∅}):𝐴𝐶)
3635adantl 481 . . . . . . . . . . . . 13 (( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴)) → (𝐴 × {∅}):𝐴𝐶)
3736ffnd 6712 . . . . . . . . . . . 12 (( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴)) → (𝐴 × {∅}) Fn 𝐴)
3837adantl 481 . . . . . . . . . . 11 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) → (𝐴 × {∅}) Fn 𝐴)
3925adantr 480 . . . . . . . . . . 11 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) → 𝐴𝑉)
4034, 38, 39, 39, 2offn 7689 . . . . . . . . . 10 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) → (f +o (𝐴 × {∅})) Fn 𝐴)
41 elmapfn 8884 . . . . . . . . . . . . . 14 ( ∈ (𝐶m 𝐴) → Fn 𝐴)
42 elmapfn 8884 . . . . . . . . . . . . . 14 ((𝐴 × {∅}) ∈ (𝐶m 𝐴) → (𝐴 × {∅}) Fn 𝐴)
4341, 42anim12i 613 . . . . . . . . . . . . 13 (( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴)) → ( Fn 𝐴 ∧ (𝐴 × {∅}) Fn 𝐴))
4443adantl 481 . . . . . . . . . . . 12 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) → ( Fn 𝐴 ∧ (𝐴 × {∅}) Fn 𝐴))
4539anim1i 615 . . . . . . . . . . . 12 ((((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) ∧ 𝑎𝐴) → (𝐴𝑉𝑎𝐴))
46 fnfvof 7693 . . . . . . . . . . . 12 ((( Fn 𝐴 ∧ (𝐴 × {∅}) Fn 𝐴) ∧ (𝐴𝑉𝑎𝐴)) → ((f +o (𝐴 × {∅}))‘𝑎) = ((𝑎) +o ((𝐴 × {∅})‘𝑎)))
4744, 45, 46syl2an2r 685 . . . . . . . . . . 11 ((((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) ∧ 𝑎𝐴) → ((f +o (𝐴 × {∅}))‘𝑎) = ((𝑎) +o ((𝐴 × {∅})‘𝑎)))
48 simpr 484 . . . . . . . . . . . . 13 ((((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) ∧ 𝑎𝐴) → 𝑎𝐴)
49 fvconst2g 7199 . . . . . . . . . . . . 13 ((∅ ∈ ω ∧ 𝑎𝐴) → ((𝐴 × {∅})‘𝑎) = ∅)
5013, 48, 49sylancr 587 . . . . . . . . . . . 12 ((((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) ∧ 𝑎𝐴) → ((𝐴 × {∅})‘𝑎) = ∅)
5150oveq2d 7426 . . . . . . . . . . 11 ((((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) ∧ 𝑎𝐴) → ((𝑎) +o ((𝐴 × {∅})‘𝑎)) = ((𝑎) +o ∅))
5224adantr 480 . . . . . . . . . . . . . . 15 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) → 𝐶 ∈ On)
5352adantr 480 . . . . . . . . . . . . . 14 ((((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) ∧ 𝑎𝐴) → 𝐶 ∈ On)
54 onss 7784 . . . . . . . . . . . . . 14 (𝐶 ∈ On → 𝐶 ⊆ On)
5553, 54syl 17 . . . . . . . . . . . . 13 ((((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) ∧ 𝑎𝐴) → 𝐶 ⊆ On)
5631ad2antrl 728 . . . . . . . . . . . . . 14 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) → :𝐴𝐶)
5756ffvelcdmda 7079 . . . . . . . . . . . . 13 ((((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) ∧ 𝑎𝐴) → (𝑎) ∈ 𝐶)
5855, 57sseldd 3964 . . . . . . . . . . . 12 ((((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) ∧ 𝑎𝐴) → (𝑎) ∈ On)
59 oa0 8533 . . . . . . . . . . . 12 ((𝑎) ∈ On → ((𝑎) +o ∅) = (𝑎))
6058, 59syl 17 . . . . . . . . . . 11 ((((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) ∧ 𝑎𝐴) → ((𝑎) +o ∅) = (𝑎))
6147, 51, 603eqtrd 2775 . . . . . . . . . 10 ((((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) ∧ 𝑎𝐴) → ((f +o (𝐴 × {∅}))‘𝑎) = (𝑎))
6240, 34, 61eqfnfvd 7029 . . . . . . . . 9 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) → (f +o (𝐴 × {∅})) = )
6330, 62eqtr2d 2772 . . . . . . . 8 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ( ∈ (𝐶m 𝐴) ∧ (𝐴 × {∅}) ∈ (𝐶m 𝐴))) → = (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))(𝐴 × {∅})))
6463expr 456 . . . . . . 7 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ∈ (𝐶m 𝐴)) → ((𝐴 × {∅}) ∈ (𝐶m 𝐴) → = (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))(𝐴 × {∅}))))
6528, 64jcai 516 . . . . . 6 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ∈ (𝐶m 𝐴)) → ((𝐴 × {∅}) ∈ (𝐶m 𝐴) ∧ = (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))(𝐴 × {∅}))))
66 oveq2 7418 . . . . . . 7 (𝑧 = (𝐴 × {∅}) → (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝑧) = (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))(𝐴 × {∅})))
6766rspceeqv 3629 . . . . . 6 (((𝐴 × {∅}) ∈ (𝐶m 𝐴) ∧ = (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))(𝐴 × {∅}))) → ∃𝑧 ∈ (𝐶m 𝐴) = (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝑧))
6865, 67syl 17 . . . . 5 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ∈ (𝐶m 𝐴)) → ∃𝑧 ∈ (𝐶m 𝐴) = (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝑧))
698, 68jca 511 . . . 4 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ∈ (𝐶m 𝐴)) → ( ∈ (𝐶m 𝐴) ∧ ∃𝑧 ∈ (𝐶m 𝐴) = (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝑧)))
70 oveq1 7417 . . . . . . 7 (𝑓 = → (𝑓( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝑧) = (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝑧))
7170eqeq2d 2747 . . . . . 6 (𝑓 = → ( = (𝑓( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝑧) ↔ = (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝑧)))
7271rexbidv 3165 . . . . 5 (𝑓 = → (∃𝑧 ∈ (𝐶m 𝐴) = (𝑓( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝑧) ↔ ∃𝑧 ∈ (𝐶m 𝐴) = (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝑧)))
7372rspcev 3606 . . . 4 (( ∈ (𝐶m 𝐴) ∧ ∃𝑧 ∈ (𝐶m 𝐴) = (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝑧)) → ∃𝑓 ∈ (𝐶m 𝐴)∃𝑧 ∈ (𝐶m 𝐴) = (𝑓( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝑧))
7469, 73syl 17 . . 3 (((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ ∈ (𝐶m 𝐴)) → ∃𝑓 ∈ (𝐶m 𝐴)∃𝑧 ∈ (𝐶m 𝐴) = (𝑓( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝑧))
7574ralrimiva 3133 . 2 ((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → ∀ ∈ (𝐶m 𝐴)∃𝑓 ∈ (𝐶m 𝐴)∃𝑧 ∈ (𝐶m 𝐴) = (𝑓( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝑧))
76 foov 7586 . 2 (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴))):((𝐶m 𝐴) × (𝐶m 𝐴))–onto→(𝐶m 𝐴) ↔ (( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴))):((𝐶m 𝐴) × (𝐶m 𝐴))⟶(𝐶m 𝐴) ∧ ∀ ∈ (𝐶m 𝐴)∃𝑓 ∈ (𝐶m 𝐴)∃𝑧 ∈ (𝐶m 𝐴) = (𝑓( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴)))𝑧)))
777, 75, 76sylanbrc 583 1 ((𝐴𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → ( ∘f +o ↾ ((𝐶m 𝐴) × (𝐶m 𝐴))):((𝐶m 𝐴) × (𝐶m 𝐴))–onto→(𝐶m 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  wrex 3061  cin 3930  wss 3931  c0 4313  {csn 4606   × cxp 5657  cres 5661  Oncon0 6357   Fn wfn 6531  wf 6532  ontowfo 6534  cfv 6536  (class class class)co 7410  f cof 7674  ωcom 7866   +o coa 8482  o coe 8484  m cmap 8845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-omul 8490  df-oexp 8491  df-map 8847
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator