Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lighneal Structured version   Visualization version   GIF version

Theorem lighneal 43923
Description: If a power of a prime 𝑃 (i.e. 𝑃𝑀) is of the form 2↑𝑁 − 1, then 𝑁 must be prime and 𝑀 must be 1. Generalization of mersenne 25789 (where 𝑀 = 1 is a prerequisite). Theorem of S. Ligh and L. Neal (1974) "A note on Mersenne mumbers", Mathematics Magazine, 47:4, 231-233. (Contributed by AV, 16-Aug-2021.)
Assertion
Ref Expression
lighneal (((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((2↑𝑁) − 1) = (𝑃𝑀)) → (𝑀 = 1 ∧ 𝑁 ∈ ℙ))

Proof of Theorem lighneal
StepHypRef Expression
1 lighneallem1 43917 . . . . . . 7 ((𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((2↑𝑁) − 1) ≠ (𝑃𝑀))
2 eqneqall 3018 . . . . . . 7 (((2↑𝑁) − 1) = (𝑃𝑀) → (((2↑𝑁) − 1) ≠ (𝑃𝑀) → 𝑀 = 1))
31, 2syl5com 31 . . . . . 6 ((𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1))
433exp 1116 . . . . 5 (𝑃 = 2 → (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1))))
54a1d 25 . . . 4 (𝑃 = 2 → (𝑃 ∈ ℙ → (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))))
6 eldifsn 4692 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
7 lighneallem2 43918 . . . . . . . . . . . 12 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 2 ∥ 𝑁 ∧ ((2↑𝑁) − 1) = (𝑃𝑀)) → 𝑀 = 1)
873exp 1116 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 ∥ 𝑁 → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))
983exp 1116 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → (2 ∥ 𝑁 → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))))
109com3r 87 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑃 ∈ (ℙ ∖ {2}) → (𝑀 ∈ ℕ → (2 ∥ 𝑁 → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))))
1110com24 95 . . . . . . . 8 (𝑁 ∈ ℕ → (2 ∥ 𝑁 → (𝑀 ∈ ℕ → (𝑃 ∈ (ℙ ∖ {2}) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))))
12 lighneallem3 43919 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 2 ∥ 𝑁 ∧ 2 ∥ 𝑀) ∧ ((2↑𝑁) − 1) = (𝑃𝑀)) → 𝑀 = 1)
13123exp 1116 . . . . . . . . . . . . . 14 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((¬ 2 ∥ 𝑁 ∧ 2 ∥ 𝑀) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))
14133exp 1116 . . . . . . . . . . . . 13 (𝑃 ∈ (ℙ ∖ {2}) → (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → ((¬ 2 ∥ 𝑁 ∧ 2 ∥ 𝑀) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))))
1514com24 95 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → ((¬ 2 ∥ 𝑁 ∧ 2 ∥ 𝑀) → (𝑁 ∈ ℕ → (𝑀 ∈ ℕ → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))))
1615com14 96 . . . . . . . . . . 11 (𝑀 ∈ ℕ → ((¬ 2 ∥ 𝑁 ∧ 2 ∥ 𝑀) → (𝑁 ∈ ℕ → (𝑃 ∈ (ℙ ∖ {2}) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))))
1716expcomd 420 . . . . . . . . . 10 (𝑀 ∈ ℕ → (2 ∥ 𝑀 → (¬ 2 ∥ 𝑁 → (𝑁 ∈ ℕ → (𝑃 ∈ (ℙ ∖ {2}) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1))))))
18 lighneallem4 43922 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 2 ∥ 𝑁 ∧ ¬ 2 ∥ 𝑀) ∧ ((2↑𝑁) − 1) = (𝑃𝑀)) → 𝑀 = 1)
19183exp 1116 . . . . . . . . . . . . . 14 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((¬ 2 ∥ 𝑁 ∧ ¬ 2 ∥ 𝑀) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))
20193exp 1116 . . . . . . . . . . . . 13 (𝑃 ∈ (ℙ ∖ {2}) → (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → ((¬ 2 ∥ 𝑁 ∧ ¬ 2 ∥ 𝑀) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))))
2120com24 95 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → ((¬ 2 ∥ 𝑁 ∧ ¬ 2 ∥ 𝑀) → (𝑁 ∈ ℕ → (𝑀 ∈ ℕ → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))))
2221com14 96 . . . . . . . . . . 11 (𝑀 ∈ ℕ → ((¬ 2 ∥ 𝑁 ∧ ¬ 2 ∥ 𝑀) → (𝑁 ∈ ℕ → (𝑃 ∈ (ℙ ∖ {2}) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))))
2322expcomd 420 . . . . . . . . . 10 (𝑀 ∈ ℕ → (¬ 2 ∥ 𝑀 → (¬ 2 ∥ 𝑁 → (𝑁 ∈ ℕ → (𝑃 ∈ (ℙ ∖ {2}) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1))))))
2417, 23pm2.61d 182 . . . . . . . . 9 (𝑀 ∈ ℕ → (¬ 2 ∥ 𝑁 → (𝑁 ∈ ℕ → (𝑃 ∈ (ℙ ∖ {2}) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))))
2524com13 88 . . . . . . . 8 (𝑁 ∈ ℕ → (¬ 2 ∥ 𝑁 → (𝑀 ∈ ℕ → (𝑃 ∈ (ℙ ∖ {2}) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))))
2611, 25pm2.61d 182 . . . . . . 7 (𝑁 ∈ ℕ → (𝑀 ∈ ℕ → (𝑃 ∈ (ℙ ∖ {2}) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1))))
2726com13 88 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1))))
286, 27sylbir 238 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1))))
2928expcom 417 . . . 4 (𝑃 ≠ 2 → (𝑃 ∈ ℙ → (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))))
305, 29pm2.61ine 3090 . . 3 (𝑃 ∈ ℙ → (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1))))
31303imp1 1344 . 2 (((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((2↑𝑁) − 1) = (𝑃𝑀)) → 𝑀 = 1)
32 oveq2 7138 . . . . . 6 (𝑀 = 1 → (𝑃𝑀) = (𝑃↑1))
3332eqeq2d 2832 . . . . 5 (𝑀 = 1 → (((2↑𝑁) − 1) = (𝑃𝑀) ↔ ((2↑𝑁) − 1) = (𝑃↑1)))
3433adantl 485 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑀 = 1) → (((2↑𝑁) − 1) = (𝑃𝑀) ↔ ((2↑𝑁) − 1) = (𝑃↑1)))
35 prmnn 15995 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
3635nncnd 11631 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
37363ad2ant1 1130 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑃 ∈ ℂ)
3837exp1d 13489 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑃↑1) = 𝑃)
3938eqeq2d 2832 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((2↑𝑁) − 1) = (𝑃↑1) ↔ ((2↑𝑁) − 1) = 𝑃))
40 nnz 11982 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
41403ad2ant3 1132 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
42 simpl1 1188 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((2↑𝑁) − 1) = 𝑃) → 𝑃 ∈ ℙ)
43 eleq1 2899 . . . . . . . . . 10 (((2↑𝑁) − 1) = 𝑃 → (((2↑𝑁) − 1) ∈ ℙ ↔ 𝑃 ∈ ℙ))
4443adantl 485 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((2↑𝑁) − 1) = 𝑃) → (((2↑𝑁) − 1) ∈ ℙ ↔ 𝑃 ∈ ℙ))
4542, 44mpbird 260 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((2↑𝑁) − 1) = 𝑃) → ((2↑𝑁) − 1) ∈ ℙ)
46 mersenne 25789 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ((2↑𝑁) − 1) ∈ ℙ) → 𝑁 ∈ ℙ)
4741, 45, 46syl2an2r 684 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((2↑𝑁) − 1) = 𝑃) → 𝑁 ∈ ℙ)
4847ex 416 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((2↑𝑁) − 1) = 𝑃𝑁 ∈ ℙ))
4939, 48sylbid 243 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((2↑𝑁) − 1) = (𝑃↑1) → 𝑁 ∈ ℙ))
5049adantr 484 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑀 = 1) → (((2↑𝑁) − 1) = (𝑃↑1) → 𝑁 ∈ ℙ))
5134, 50sylbid 243 . . 3 (((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑀 = 1) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑁 ∈ ℙ))
5251impancom 455 . 2 (((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((2↑𝑁) − 1) = (𝑃𝑀)) → (𝑀 = 1 → 𝑁 ∈ ℙ))
5331, 52jcai 520 1 (((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((2↑𝑁) − 1) = (𝑃𝑀)) → (𝑀 = 1 ∧ 𝑁 ∈ ℙ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3007  cdif 3907  {csn 4540   class class class wbr 5039  (class class class)co 7130  cc 10512  1c1 10515  cmin 10847  cn 11615  2c2 11670  cz 11959  cexp 13413  cdvds 15586  cprime 15992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-inf2 9080  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-pre-sup 10592  ax-addf 10593  ax-mulf 10594
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-iin 4895  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-of 7384  df-om 7556  df-1st 7664  df-2nd 7665  df-supp 7806  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-2o 8078  df-oadd 8081  df-er 8264  df-map 8383  df-pm 8384  df-ixp 8437  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-fsupp 8810  df-fi 8851  df-sup 8882  df-inf 8883  df-oi 8950  df-dju 9306  df-card 9344  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-div 11275  df-nn 11616  df-2 11678  df-3 11679  df-4 11680  df-5 11681  df-6 11682  df-7 11683  df-8 11684  df-9 11685  df-n0 11876  df-z 11960  df-dec 12077  df-uz 12222  df-q 12327  df-rp 12368  df-xneg 12485  df-xadd 12486  df-xmul 12487  df-ioo 12720  df-ioc 12721  df-ico 12722  df-icc 12723  df-fz 12876  df-fzo 13017  df-fl 13145  df-mod 13221  df-seq 13353  df-exp 13414  df-fac 13618  df-bc 13647  df-hash 13675  df-shft 14405  df-cj 14437  df-re 14438  df-im 14439  df-sqrt 14573  df-abs 14574  df-limsup 14807  df-clim 14824  df-rlim 14825  df-sum 15022  df-ef 15400  df-sin 15402  df-cos 15403  df-pi 15405  df-dvds 15587  df-gcd 15821  df-prm 15993  df-pc 16151  df-struct 16463  df-ndx 16464  df-slot 16465  df-base 16467  df-sets 16468  df-ress 16469  df-plusg 16556  df-mulr 16557  df-starv 16558  df-sca 16559  df-vsca 16560  df-ip 16561  df-tset 16562  df-ple 16563  df-ds 16565  df-unif 16566  df-hom 16567  df-cco 16568  df-rest 16674  df-topn 16675  df-0g 16693  df-gsum 16694  df-topgen 16695  df-pt 16696  df-prds 16699  df-xrs 16753  df-qtop 16758  df-imas 16759  df-xps 16761  df-mre 16835  df-mrc 16836  df-acs 16838  df-mgm 17830  df-sgrp 17879  df-mnd 17890  df-submnd 17935  df-mulg 18203  df-cntz 18425  df-cmn 18886  df-psmet 20512  df-xmet 20513  df-met 20514  df-bl 20515  df-mopn 20516  df-fbas 20517  df-fg 20518  df-cnfld 20521  df-top 21477  df-topon 21494  df-topsp 21516  df-bases 21529  df-cld 21602  df-ntr 21603  df-cls 21604  df-nei 21681  df-lp 21719  df-perf 21720  df-cn 21810  df-cnp 21811  df-haus 21898  df-tx 22145  df-hmeo 22338  df-fil 22429  df-fm 22521  df-flim 22522  df-flf 22523  df-xms 22905  df-ms 22906  df-tms 22907  df-cncf 23461  df-limc 24447  df-dv 24448  df-log 25126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator