Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lighneal Structured version   Visualization version   GIF version

Theorem lighneal 46579
Description: If a power of a prime 𝑃 (i.e. 𝑃𝑀) is of the form 2↑𝑁 − 1, then 𝑁 must be prime and 𝑀 must be 1. Generalization of mersenne 26963 (where 𝑀 = 1 is a prerequisite). Theorem of S. Ligh and L. Neal (1974) "A note on Mersenne mumbers", Mathematics Magazine, 47:4, 231-233. (Contributed by AV, 16-Aug-2021.)
Assertion
Ref Expression
lighneal (((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((2↑𝑁) − 1) = (𝑃𝑀)) → (𝑀 = 1 ∧ 𝑁 ∈ ℙ))

Proof of Theorem lighneal
StepHypRef Expression
1 lighneallem1 46573 . . . . . . 7 ((𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((2↑𝑁) − 1) ≠ (𝑃𝑀))
2 eqneqall 2950 . . . . . . 7 (((2↑𝑁) − 1) = (𝑃𝑀) → (((2↑𝑁) − 1) ≠ (𝑃𝑀) → 𝑀 = 1))
31, 2syl5com 31 . . . . . 6 ((𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1))
433exp 1118 . . . . 5 (𝑃 = 2 → (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1))))
54a1d 25 . . . 4 (𝑃 = 2 → (𝑃 ∈ ℙ → (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))))
6 eldifsn 4791 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
7 lighneallem2 46574 . . . . . . . . . . . 12 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 2 ∥ 𝑁 ∧ ((2↑𝑁) − 1) = (𝑃𝑀)) → 𝑀 = 1)
873exp 1118 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 ∥ 𝑁 → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))
983exp 1118 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → (2 ∥ 𝑁 → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))))
109com3r 87 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑃 ∈ (ℙ ∖ {2}) → (𝑀 ∈ ℕ → (2 ∥ 𝑁 → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))))
1110com24 95 . . . . . . . 8 (𝑁 ∈ ℕ → (2 ∥ 𝑁 → (𝑀 ∈ ℕ → (𝑃 ∈ (ℙ ∖ {2}) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))))
12 lighneallem3 46575 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 2 ∥ 𝑁 ∧ 2 ∥ 𝑀) ∧ ((2↑𝑁) − 1) = (𝑃𝑀)) → 𝑀 = 1)
13123exp 1118 . . . . . . . . . . . . . 14 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((¬ 2 ∥ 𝑁 ∧ 2 ∥ 𝑀) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))
14133exp 1118 . . . . . . . . . . . . 13 (𝑃 ∈ (ℙ ∖ {2}) → (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → ((¬ 2 ∥ 𝑁 ∧ 2 ∥ 𝑀) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))))
1514com24 95 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → ((¬ 2 ∥ 𝑁 ∧ 2 ∥ 𝑀) → (𝑁 ∈ ℕ → (𝑀 ∈ ℕ → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))))
1615com14 96 . . . . . . . . . . 11 (𝑀 ∈ ℕ → ((¬ 2 ∥ 𝑁 ∧ 2 ∥ 𝑀) → (𝑁 ∈ ℕ → (𝑃 ∈ (ℙ ∖ {2}) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))))
1716expcomd 416 . . . . . . . . . 10 (𝑀 ∈ ℕ → (2 ∥ 𝑀 → (¬ 2 ∥ 𝑁 → (𝑁 ∈ ℕ → (𝑃 ∈ (ℙ ∖ {2}) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1))))))
18 lighneallem4 46578 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 2 ∥ 𝑁 ∧ ¬ 2 ∥ 𝑀) ∧ ((2↑𝑁) − 1) = (𝑃𝑀)) → 𝑀 = 1)
19183exp 1118 . . . . . . . . . . . . . 14 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((¬ 2 ∥ 𝑁 ∧ ¬ 2 ∥ 𝑀) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))
20193exp 1118 . . . . . . . . . . . . 13 (𝑃 ∈ (ℙ ∖ {2}) → (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → ((¬ 2 ∥ 𝑁 ∧ ¬ 2 ∥ 𝑀) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))))
2120com24 95 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → ((¬ 2 ∥ 𝑁 ∧ ¬ 2 ∥ 𝑀) → (𝑁 ∈ ℕ → (𝑀 ∈ ℕ → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))))
2221com14 96 . . . . . . . . . . 11 (𝑀 ∈ ℕ → ((¬ 2 ∥ 𝑁 ∧ ¬ 2 ∥ 𝑀) → (𝑁 ∈ ℕ → (𝑃 ∈ (ℙ ∖ {2}) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))))
2322expcomd 416 . . . . . . . . . 10 (𝑀 ∈ ℕ → (¬ 2 ∥ 𝑀 → (¬ 2 ∥ 𝑁 → (𝑁 ∈ ℕ → (𝑃 ∈ (ℙ ∖ {2}) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1))))))
2417, 23pm2.61d 179 . . . . . . . . 9 (𝑀 ∈ ℕ → (¬ 2 ∥ 𝑁 → (𝑁 ∈ ℕ → (𝑃 ∈ (ℙ ∖ {2}) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))))
2524com13 88 . . . . . . . 8 (𝑁 ∈ ℕ → (¬ 2 ∥ 𝑁 → (𝑀 ∈ ℕ → (𝑃 ∈ (ℙ ∖ {2}) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))))
2611, 25pm2.61d 179 . . . . . . 7 (𝑁 ∈ ℕ → (𝑀 ∈ ℕ → (𝑃 ∈ (ℙ ∖ {2}) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1))))
2726com13 88 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1))))
286, 27sylbir 234 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1))))
2928expcom 413 . . . 4 (𝑃 ≠ 2 → (𝑃 ∈ ℙ → (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))))
305, 29pm2.61ine 3024 . . 3 (𝑃 ∈ ℙ → (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1))))
31303imp1 1346 . 2 (((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((2↑𝑁) − 1) = (𝑃𝑀)) → 𝑀 = 1)
32 oveq2 7420 . . . . . 6 (𝑀 = 1 → (𝑃𝑀) = (𝑃↑1))
3332eqeq2d 2742 . . . . 5 (𝑀 = 1 → (((2↑𝑁) − 1) = (𝑃𝑀) ↔ ((2↑𝑁) − 1) = (𝑃↑1)))
3433adantl 481 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑀 = 1) → (((2↑𝑁) − 1) = (𝑃𝑀) ↔ ((2↑𝑁) − 1) = (𝑃↑1)))
35 prmnn 16616 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
3635nncnd 12233 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
37363ad2ant1 1132 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑃 ∈ ℂ)
3837exp1d 14111 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑃↑1) = 𝑃)
3938eqeq2d 2742 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((2↑𝑁) − 1) = (𝑃↑1) ↔ ((2↑𝑁) − 1) = 𝑃))
40 nnz 12584 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
41403ad2ant3 1134 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
42 simpl1 1190 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((2↑𝑁) − 1) = 𝑃) → 𝑃 ∈ ℙ)
43 eleq1 2820 . . . . . . . . . 10 (((2↑𝑁) − 1) = 𝑃 → (((2↑𝑁) − 1) ∈ ℙ ↔ 𝑃 ∈ ℙ))
4443adantl 481 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((2↑𝑁) − 1) = 𝑃) → (((2↑𝑁) − 1) ∈ ℙ ↔ 𝑃 ∈ ℙ))
4542, 44mpbird 256 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((2↑𝑁) − 1) = 𝑃) → ((2↑𝑁) − 1) ∈ ℙ)
46 mersenne 26963 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ((2↑𝑁) − 1) ∈ ℙ) → 𝑁 ∈ ℙ)
4741, 45, 46syl2an2r 682 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((2↑𝑁) − 1) = 𝑃) → 𝑁 ∈ ℙ)
4847ex 412 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((2↑𝑁) − 1) = 𝑃𝑁 ∈ ℙ))
4939, 48sylbid 239 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((2↑𝑁) − 1) = (𝑃↑1) → 𝑁 ∈ ℙ))
5049adantr 480 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑀 = 1) → (((2↑𝑁) − 1) = (𝑃↑1) → 𝑁 ∈ ℙ))
5134, 50sylbid 239 . . 3 (((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑀 = 1) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑁 ∈ ℙ))
5251impancom 451 . 2 (((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((2↑𝑁) − 1) = (𝑃𝑀)) → (𝑀 = 1 → 𝑁 ∈ ℙ))
5331, 52jcai 516 1 (((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((2↑𝑁) − 1) = (𝑃𝑀)) → (𝑀 = 1 ∧ 𝑁 ∈ ℙ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  wne 2939  cdif 3946  {csn 4629   class class class wbr 5149  (class class class)co 7412  cc 11111  1c1 11114  cmin 11449  cn 12217  2c2 12272  cz 12563  cexp 14032  cdvds 16202  cprime 16613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-inf2 9639  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190  ax-pre-sup 11191  ax-addf 11192  ax-mulf 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7673  df-om 7859  df-1st 7978  df-2nd 7979  df-supp 8150  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-1o 8469  df-2o 8470  df-oadd 8473  df-er 8706  df-map 8825  df-pm 8826  df-ixp 8895  df-en 8943  df-dom 8944  df-sdom 8945  df-fin 8946  df-fsupp 9365  df-fi 9409  df-sup 9440  df-inf 9441  df-oi 9508  df-dju 9899  df-card 9937  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-2 12280  df-3 12281  df-4 12282  df-5 12283  df-6 12284  df-7 12285  df-8 12286  df-9 12287  df-n0 12478  df-z 12564  df-dec 12683  df-uz 12828  df-q 12938  df-rp 12980  df-xneg 13097  df-xadd 13098  df-xmul 13099  df-ioo 13333  df-ioc 13334  df-ico 13335  df-icc 13336  df-fz 13490  df-fzo 13633  df-fl 13762  df-mod 13840  df-seq 13972  df-exp 14033  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15019  df-cj 15051  df-re 15052  df-im 15053  df-sqrt 15187  df-abs 15188  df-limsup 15420  df-clim 15437  df-rlim 15438  df-sum 15638  df-ef 16016  df-sin 16018  df-cos 16019  df-pi 16021  df-dvds 16203  df-gcd 16441  df-prm 16614  df-pc 16775  df-struct 17085  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-ress 17179  df-plusg 17215  df-mulr 17216  df-starv 17217  df-sca 17218  df-vsca 17219  df-ip 17220  df-tset 17221  df-ple 17222  df-ds 17224  df-unif 17225  df-hom 17226  df-cco 17227  df-rest 17373  df-topn 17374  df-0g 17392  df-gsum 17393  df-topgen 17394  df-pt 17395  df-prds 17398  df-xrs 17453  df-qtop 17458  df-imas 17459  df-xps 17461  df-mre 17535  df-mrc 17536  df-acs 17538  df-mgm 18566  df-sgrp 18645  df-mnd 18661  df-submnd 18707  df-mulg 18988  df-cntz 19223  df-cmn 19692  df-psmet 21137  df-xmet 21138  df-met 21139  df-bl 21140  df-mopn 21141  df-fbas 21142  df-fg 21143  df-cnfld 21146  df-top 22617  df-topon 22634  df-topsp 22656  df-bases 22670  df-cld 22744  df-ntr 22745  df-cls 22746  df-nei 22823  df-lp 22861  df-perf 22862  df-cn 22952  df-cnp 22953  df-haus 23040  df-tx 23287  df-hmeo 23480  df-fil 23571  df-fm 23663  df-flim 23664  df-flf 23665  df-xms 24047  df-ms 24048  df-tms 24049  df-cncf 24619  df-limc 25616  df-dv 25617  df-log 26298
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator