Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lighneal Structured version   Visualization version   GIF version

Theorem lighneal 42357
Description: If a power of a prime 𝑃 (i.e. 𝑃𝑀) is of the form 2↑𝑁 − 1, then 𝑁 must be prime and 𝑀 must be 1. Generalization of mersenne 25364 (where 𝑀 = 1 is a prerequisite). Theorem of S. Ligh and L. Neal (1974) "A note on Mersenne mumbers", Mathematics Magazine, 47:4, 231-233. (Contributed by AV, 16-Aug-2021.)
Assertion
Ref Expression
lighneal (((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((2↑𝑁) − 1) = (𝑃𝑀)) → (𝑀 = 1 ∧ 𝑁 ∈ ℙ))

Proof of Theorem lighneal
StepHypRef Expression
1 lighneallem1 42351 . . . . . . 7 ((𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((2↑𝑁) − 1) ≠ (𝑃𝑀))
2 eqneqall 3009 . . . . . . 7 (((2↑𝑁) − 1) = (𝑃𝑀) → (((2↑𝑁) − 1) ≠ (𝑃𝑀) → 𝑀 = 1))
31, 2syl5com 31 . . . . . 6 ((𝑃 = 2 ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1))
433exp 1154 . . . . 5 (𝑃 = 2 → (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1))))
54a1d 25 . . . 4 (𝑃 = 2 → (𝑃 ∈ ℙ → (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))))
6 eldifsn 4535 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) ↔ (𝑃 ∈ ℙ ∧ 𝑃 ≠ 2))
7 lighneallem2 42352 . . . . . . . . . . . 12 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 2 ∥ 𝑁 ∧ ((2↑𝑁) − 1) = (𝑃𝑀)) → 𝑀 = 1)
873exp 1154 . . . . . . . . . . 11 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 ∥ 𝑁 → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))
983exp 1154 . . . . . . . . . 10 (𝑃 ∈ (ℙ ∖ {2}) → (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → (2 ∥ 𝑁 → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))))
109com3r 87 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑃 ∈ (ℙ ∖ {2}) → (𝑀 ∈ ℕ → (2 ∥ 𝑁 → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))))
1110com24 95 . . . . . . . 8 (𝑁 ∈ ℕ → (2 ∥ 𝑁 → (𝑀 ∈ ℕ → (𝑃 ∈ (ℙ ∖ {2}) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))))
12 lighneallem3 42353 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 2 ∥ 𝑁 ∧ 2 ∥ 𝑀) ∧ ((2↑𝑁) − 1) = (𝑃𝑀)) → 𝑀 = 1)
13123exp 1154 . . . . . . . . . . . . . 14 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((¬ 2 ∥ 𝑁 ∧ 2 ∥ 𝑀) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))
14133exp 1154 . . . . . . . . . . . . 13 (𝑃 ∈ (ℙ ∖ {2}) → (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → ((¬ 2 ∥ 𝑁 ∧ 2 ∥ 𝑀) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))))
1514com24 95 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → ((¬ 2 ∥ 𝑁 ∧ 2 ∥ 𝑀) → (𝑁 ∈ ℕ → (𝑀 ∈ ℕ → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))))
1615com14 96 . . . . . . . . . . 11 (𝑀 ∈ ℕ → ((¬ 2 ∥ 𝑁 ∧ 2 ∥ 𝑀) → (𝑁 ∈ ℕ → (𝑃 ∈ (ℙ ∖ {2}) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))))
1716expcomd 408 . . . . . . . . . 10 (𝑀 ∈ ℕ → (2 ∥ 𝑀 → (¬ 2 ∥ 𝑁 → (𝑁 ∈ ℕ → (𝑃 ∈ (ℙ ∖ {2}) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1))))))
18 lighneallem4 42356 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (¬ 2 ∥ 𝑁 ∧ ¬ 2 ∥ 𝑀) ∧ ((2↑𝑁) − 1) = (𝑃𝑀)) → 𝑀 = 1)
19183exp 1154 . . . . . . . . . . . . . 14 ((𝑃 ∈ (ℙ ∖ {2}) ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((¬ 2 ∥ 𝑁 ∧ ¬ 2 ∥ 𝑀) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))
20193exp 1154 . . . . . . . . . . . . 13 (𝑃 ∈ (ℙ ∖ {2}) → (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → ((¬ 2 ∥ 𝑁 ∧ ¬ 2 ∥ 𝑀) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))))
2120com24 95 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → ((¬ 2 ∥ 𝑁 ∧ ¬ 2 ∥ 𝑀) → (𝑁 ∈ ℕ → (𝑀 ∈ ℕ → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))))
2221com14 96 . . . . . . . . . . 11 (𝑀 ∈ ℕ → ((¬ 2 ∥ 𝑁 ∧ ¬ 2 ∥ 𝑀) → (𝑁 ∈ ℕ → (𝑃 ∈ (ℙ ∖ {2}) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))))
2322expcomd 408 . . . . . . . . . 10 (𝑀 ∈ ℕ → (¬ 2 ∥ 𝑀 → (¬ 2 ∥ 𝑁 → (𝑁 ∈ ℕ → (𝑃 ∈ (ℙ ∖ {2}) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1))))))
2417, 23pm2.61d 172 . . . . . . . . 9 (𝑀 ∈ ℕ → (¬ 2 ∥ 𝑁 → (𝑁 ∈ ℕ → (𝑃 ∈ (ℙ ∖ {2}) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))))
2524com13 88 . . . . . . . 8 (𝑁 ∈ ℕ → (¬ 2 ∥ 𝑁 → (𝑀 ∈ ℕ → (𝑃 ∈ (ℙ ∖ {2}) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))))
2611, 25pm2.61d 172 . . . . . . 7 (𝑁 ∈ ℕ → (𝑀 ∈ ℕ → (𝑃 ∈ (ℙ ∖ {2}) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1))))
2726com13 88 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1))))
286, 27sylbir 227 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑃 ≠ 2) → (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1))))
2928expcom 404 . . . 4 (𝑃 ≠ 2 → (𝑃 ∈ ℙ → (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1)))))
305, 29pm2.61ine 3081 . . 3 (𝑃 ∈ ℙ → (𝑀 ∈ ℕ → (𝑁 ∈ ℕ → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑀 = 1))))
31303imp1 1462 . 2 (((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((2↑𝑁) − 1) = (𝑃𝑀)) → 𝑀 = 1)
32 oveq2 6912 . . . . . 6 (𝑀 = 1 → (𝑃𝑀) = (𝑃↑1))
3332eqeq2d 2834 . . . . 5 (𝑀 = 1 → (((2↑𝑁) − 1) = (𝑃𝑀) ↔ ((2↑𝑁) − 1) = (𝑃↑1)))
3433adantl 475 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑀 = 1) → (((2↑𝑁) − 1) = (𝑃𝑀) ↔ ((2↑𝑁) − 1) = (𝑃↑1)))
35 prmnn 15759 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
3635nncnd 11367 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
37363ad2ant1 1169 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑃 ∈ ℂ)
3837exp1d 13296 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑃↑1) = 𝑃)
3938eqeq2d 2834 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((2↑𝑁) − 1) = (𝑃↑1) ↔ ((2↑𝑁) − 1) = 𝑃))
40 nnz 11726 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
41403ad2ant3 1171 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
42 simpl1 1248 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((2↑𝑁) − 1) = 𝑃) → 𝑃 ∈ ℙ)
43 eleq1 2893 . . . . . . . . . 10 (((2↑𝑁) − 1) = 𝑃 → (((2↑𝑁) − 1) ∈ ℙ ↔ 𝑃 ∈ ℙ))
4443adantl 475 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((2↑𝑁) − 1) = 𝑃) → (((2↑𝑁) − 1) ∈ ℙ ↔ 𝑃 ∈ ℙ))
4542, 44mpbird 249 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((2↑𝑁) − 1) = 𝑃) → ((2↑𝑁) − 1) ∈ ℙ)
46 mersenne 25364 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ((2↑𝑁) − 1) ∈ ℙ) → 𝑁 ∈ ℙ)
4741, 45, 46syl2an2r 677 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((2↑𝑁) − 1) = 𝑃) → 𝑁 ∈ ℙ)
4847ex 403 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((2↑𝑁) − 1) = 𝑃𝑁 ∈ ℙ))
4939, 48sylbid 232 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((2↑𝑁) − 1) = (𝑃↑1) → 𝑁 ∈ ℙ))
5049adantr 474 . . . 4 (((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑀 = 1) → (((2↑𝑁) − 1) = (𝑃↑1) → 𝑁 ∈ ℙ))
5134, 50sylbid 232 . . 3 (((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑀 = 1) → (((2↑𝑁) − 1) = (𝑃𝑀) → 𝑁 ∈ ℙ))
5251impancom 445 . 2 (((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((2↑𝑁) − 1) = (𝑃𝑀)) → (𝑀 = 1 → 𝑁 ∈ ℙ))
5331, 52jcai 514 1 (((𝑃 ∈ ℙ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ ((2↑𝑁) − 1) = (𝑃𝑀)) → (𝑀 = 1 ∧ 𝑁 ∈ ℙ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3a 1113   = wceq 1658  wcel 2166  wne 2998  cdif 3794  {csn 4396   class class class wbr 4872  (class class class)co 6904  cc 10249  1c1 10252  cmin 10584  cn 11349  2c2 11405  cz 11703  cexp 13153  cdvds 15356  cprime 15756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-rep 4993  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126  ax-un 7208  ax-inf2 8814  ax-cnex 10307  ax-resscn 10308  ax-1cn 10309  ax-icn 10310  ax-addcl 10311  ax-addrcl 10312  ax-mulcl 10313  ax-mulrcl 10314  ax-mulcom 10315  ax-addass 10316  ax-mulass 10317  ax-distr 10318  ax-i2m1 10319  ax-1ne0 10320  ax-1rid 10321  ax-rnegex 10322  ax-rrecex 10323  ax-cnre 10324  ax-pre-lttri 10325  ax-pre-lttrn 10326  ax-pre-ltadd 10327  ax-pre-mulgt0 10328  ax-pre-sup 10329  ax-addf 10330  ax-mulf 10331
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-nel 3102  df-ral 3121  df-rex 3122  df-reu 3123  df-rmo 3124  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-pss 3813  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-tp 4401  df-op 4403  df-uni 4658  df-int 4697  df-iun 4741  df-iin 4742  df-br 4873  df-opab 4935  df-mpt 4952  df-tr 4975  df-id 5249  df-eprel 5254  df-po 5262  df-so 5263  df-fr 5300  df-se 5301  df-we 5302  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-pred 5919  df-ord 5965  df-on 5966  df-lim 5967  df-suc 5968  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-f1 6127  df-fo 6128  df-f1o 6129  df-fv 6130  df-isom 6131  df-riota 6865  df-ov 6907  df-oprab 6908  df-mpt2 6909  df-of 7156  df-om 7326  df-1st 7427  df-2nd 7428  df-supp 7559  df-wrecs 7671  df-recs 7733  df-rdg 7771  df-1o 7825  df-2o 7826  df-oadd 7829  df-er 8008  df-map 8123  df-pm 8124  df-ixp 8175  df-en 8222  df-dom 8223  df-sdom 8224  df-fin 8225  df-fsupp 8544  df-fi 8585  df-sup 8616  df-inf 8617  df-oi 8683  df-card 9077  df-cda 9304  df-pnf 10392  df-mnf 10393  df-xr 10394  df-ltxr 10395  df-le 10396  df-sub 10586  df-neg 10587  df-div 11009  df-nn 11350  df-2 11413  df-3 11414  df-4 11415  df-5 11416  df-6 11417  df-7 11418  df-8 11419  df-9 11420  df-n0 11618  df-z 11704  df-dec 11821  df-uz 11968  df-q 12071  df-rp 12112  df-xneg 12231  df-xadd 12232  df-xmul 12233  df-ioo 12466  df-ioc 12467  df-ico 12468  df-icc 12469  df-fz 12619  df-fzo 12760  df-fl 12887  df-mod 12963  df-seq 13095  df-exp 13154  df-fac 13353  df-bc 13382  df-hash 13410  df-shft 14183  df-cj 14215  df-re 14216  df-im 14217  df-sqrt 14351  df-abs 14352  df-limsup 14578  df-clim 14595  df-rlim 14596  df-sum 14793  df-ef 15169  df-sin 15171  df-cos 15172  df-pi 15174  df-dvds 15357  df-gcd 15589  df-prm 15757  df-pc 15912  df-struct 16223  df-ndx 16224  df-slot 16225  df-base 16227  df-sets 16228  df-ress 16229  df-plusg 16317  df-mulr 16318  df-starv 16319  df-sca 16320  df-vsca 16321  df-ip 16322  df-tset 16323  df-ple 16324  df-ds 16326  df-unif 16327  df-hom 16328  df-cco 16329  df-rest 16435  df-topn 16436  df-0g 16454  df-gsum 16455  df-topgen 16456  df-pt 16457  df-prds 16460  df-xrs 16514  df-qtop 16519  df-imas 16520  df-xps 16522  df-mre 16598  df-mrc 16599  df-acs 16601  df-mgm 17594  df-sgrp 17636  df-mnd 17647  df-submnd 17688  df-mulg 17894  df-cntz 18099  df-cmn 18547  df-psmet 20097  df-xmet 20098  df-met 20099  df-bl 20100  df-mopn 20101  df-fbas 20102  df-fg 20103  df-cnfld 20106  df-top 21068  df-topon 21085  df-topsp 21107  df-bases 21120  df-cld 21193  df-ntr 21194  df-cls 21195  df-nei 21272  df-lp 21310  df-perf 21311  df-cn 21401  df-cnp 21402  df-haus 21489  df-tx 21735  df-hmeo 21928  df-fil 22019  df-fm 22111  df-flim 22112  df-flf 22113  df-xms 22494  df-ms 22495  df-tms 22496  df-cncf 23050  df-limc 24028  df-dv 24029  df-log 24701
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator