Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > jm2.27dlem1 | Structured version Visualization version GIF version |
Description: Lemma for rmydioph 40836. Substitution of a tuple restriction into a projection that doesn't care. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
Ref | Expression |
---|---|
jm2.27dlem1.1 | ⊢ 𝐴 ∈ (1...𝐵) |
Ref | Expression |
---|---|
jm2.27dlem1 | ⊢ (𝑎 = (𝑏 ↾ (1...𝐵)) → (𝑎‘𝐴) = (𝑏‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6773 | . 2 ⊢ (𝑎 = (𝑏 ↾ (1...𝐵)) → (𝑎‘𝐴) = ((𝑏 ↾ (1...𝐵))‘𝐴)) | |
2 | jm2.27dlem1.1 | . . 3 ⊢ 𝐴 ∈ (1...𝐵) | |
3 | fvres 6793 | . . 3 ⊢ (𝐴 ∈ (1...𝐵) → ((𝑏 ↾ (1...𝐵))‘𝐴) = (𝑏‘𝐴)) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ ((𝑏 ↾ (1...𝐵))‘𝐴) = (𝑏‘𝐴) |
5 | 1, 4 | eqtrdi 2794 | 1 ⊢ (𝑎 = (𝑏 ↾ (1...𝐵)) → (𝑎‘𝐴) = (𝑏‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ↾ cres 5591 ‘cfv 6433 (class class class)co 7275 1c1 10872 ...cfz 13239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-res 5601 df-iota 6391 df-fv 6441 |
This theorem is referenced by: rmydioph 40836 rmxdioph 40838 expdiophlem2 40844 |
Copyright terms: Public domain | W3C validator |