Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.27dlem1 Structured version   Visualization version   GIF version

Theorem jm2.27dlem1 43012
Description: Lemma for rmydioph 43017. Substitution of a tuple restriction into a projection that doesn't care. (Contributed by Stefan O'Rear, 11-Oct-2014.)
Hypothesis
Ref Expression
jm2.27dlem1.1 𝐴 ∈ (1...𝐵)
Assertion
Ref Expression
jm2.27dlem1 (𝑎 = (𝑏 ↾ (1...𝐵)) → (𝑎𝐴) = (𝑏𝐴))
Distinct variable groups:   𝐴,𝑎,𝑏   𝐵,𝑎,𝑏

Proof of Theorem jm2.27dlem1
StepHypRef Expression
1 fveq1 6910 . 2 (𝑎 = (𝑏 ↾ (1...𝐵)) → (𝑎𝐴) = ((𝑏 ↾ (1...𝐵))‘𝐴))
2 jm2.27dlem1.1 . . 3 𝐴 ∈ (1...𝐵)
3 fvres 6930 . . 3 (𝐴 ∈ (1...𝐵) → ((𝑏 ↾ (1...𝐵))‘𝐴) = (𝑏𝐴))
42, 3ax-mp 5 . 2 ((𝑏 ↾ (1...𝐵))‘𝐴) = (𝑏𝐴)
51, 4eqtrdi 2792 1 (𝑎 = (𝑏 ↾ (1...𝐵)) → (𝑎𝐴) = (𝑏𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2107  cres 5692  cfv 6566  (class class class)co 7435  1c1 11160  ...cfz 13550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-sep 5303  ax-nul 5313  ax-pr 5439
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-rab 3435  df-v 3481  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-nul 4341  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-br 5150  df-opab 5212  df-xp 5696  df-res 5702  df-iota 6519  df-fv 6574
This theorem is referenced by:  rmydioph  43017  rmxdioph  43019  expdiophlem2  43025
  Copyright terms: Public domain W3C validator