Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.27dlem1 Structured version   Visualization version   GIF version

Theorem jm2.27dlem1 42331
Description: Lemma for rmydioph 42336. Substitution of a tuple restriction into a projection that doesn't care. (Contributed by Stefan O'Rear, 11-Oct-2014.)
Hypothesis
Ref Expression
jm2.27dlem1.1 𝐴 ∈ (1...𝐵)
Assertion
Ref Expression
jm2.27dlem1 (𝑎 = (𝑏 ↾ (1...𝐵)) → (𝑎𝐴) = (𝑏𝐴))
Distinct variable groups:   𝐴,𝑎,𝑏   𝐵,𝑎,𝑏

Proof of Theorem jm2.27dlem1
StepHypRef Expression
1 fveq1 6884 . 2 (𝑎 = (𝑏 ↾ (1...𝐵)) → (𝑎𝐴) = ((𝑏 ↾ (1...𝐵))‘𝐴))
2 jm2.27dlem1.1 . . 3 𝐴 ∈ (1...𝐵)
3 fvres 6904 . . 3 (𝐴 ∈ (1...𝐵) → ((𝑏 ↾ (1...𝐵))‘𝐴) = (𝑏𝐴))
42, 3ax-mp 5 . 2 ((𝑏 ↾ (1...𝐵))‘𝐴) = (𝑏𝐴)
51, 4eqtrdi 2782 1 (𝑎 = (𝑏 ↾ (1...𝐵)) → (𝑎𝐴) = (𝑏𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  cres 5671  cfv 6537  (class class class)co 7405  1c1 11113  ...cfz 13490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-xp 5675  df-res 5681  df-iota 6489  df-fv 6545
This theorem is referenced by:  rmydioph  42336  rmxdioph  42338  expdiophlem2  42344
  Copyright terms: Public domain W3C validator