![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > jm2.27dlem1 | Structured version Visualization version GIF version |
Description: Lemma for rmydioph 42973. Substitution of a tuple restriction into a projection that doesn't care. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
Ref | Expression |
---|---|
jm2.27dlem1.1 | ⊢ 𝐴 ∈ (1...𝐵) |
Ref | Expression |
---|---|
jm2.27dlem1 | ⊢ (𝑎 = (𝑏 ↾ (1...𝐵)) → (𝑎‘𝐴) = (𝑏‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6921 | . 2 ⊢ (𝑎 = (𝑏 ↾ (1...𝐵)) → (𝑎‘𝐴) = ((𝑏 ↾ (1...𝐵))‘𝐴)) | |
2 | jm2.27dlem1.1 | . . 3 ⊢ 𝐴 ∈ (1...𝐵) | |
3 | fvres 6941 | . . 3 ⊢ (𝐴 ∈ (1...𝐵) → ((𝑏 ↾ (1...𝐵))‘𝐴) = (𝑏‘𝐴)) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ ((𝑏 ↾ (1...𝐵))‘𝐴) = (𝑏‘𝐴) |
5 | 1, 4 | eqtrdi 2796 | 1 ⊢ (𝑎 = (𝑏 ↾ (1...𝐵)) → (𝑎‘𝐴) = (𝑏‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ↾ cres 5702 ‘cfv 6575 (class class class)co 7450 1c1 11187 ...cfz 13569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-res 5712 df-iota 6527 df-fv 6583 |
This theorem is referenced by: rmydioph 42973 rmxdioph 42975 expdiophlem2 42981 |
Copyright terms: Public domain | W3C validator |