| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > jm2.27dlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for rmydioph 43003. Substitution of a tuple restriction into a projection that doesn't care. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
| Ref | Expression |
|---|---|
| jm2.27dlem1.1 | ⊢ 𝐴 ∈ (1...𝐵) |
| Ref | Expression |
|---|---|
| jm2.27dlem1 | ⊢ (𝑎 = (𝑏 ↾ (1...𝐵)) → (𝑎‘𝐴) = (𝑏‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 6857 | . 2 ⊢ (𝑎 = (𝑏 ↾ (1...𝐵)) → (𝑎‘𝐴) = ((𝑏 ↾ (1...𝐵))‘𝐴)) | |
| 2 | jm2.27dlem1.1 | . . 3 ⊢ 𝐴 ∈ (1...𝐵) | |
| 3 | fvres 6877 | . . 3 ⊢ (𝐴 ∈ (1...𝐵) → ((𝑏 ↾ (1...𝐵))‘𝐴) = (𝑏‘𝐴)) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ ((𝑏 ↾ (1...𝐵))‘𝐴) = (𝑏‘𝐴) |
| 5 | 1, 4 | eqtrdi 2780 | 1 ⊢ (𝑎 = (𝑏 ↾ (1...𝐵)) → (𝑎‘𝐴) = (𝑏‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ↾ cres 5640 ‘cfv 6511 (class class class)co 7387 1c1 11069 ...cfz 13468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-res 5650 df-iota 6464 df-fv 6519 |
| This theorem is referenced by: rmydioph 43003 rmxdioph 43005 expdiophlem2 43011 |
| Copyright terms: Public domain | W3C validator |