| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > jm2.27dlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for rmydioph 43055. Substitution of a tuple restriction into a projection that doesn't care. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
| Ref | Expression |
|---|---|
| jm2.27dlem1.1 | ⊢ 𝐴 ∈ (1...𝐵) |
| Ref | Expression |
|---|---|
| jm2.27dlem1 | ⊢ (𝑎 = (𝑏 ↾ (1...𝐵)) → (𝑎‘𝐴) = (𝑏‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 6821 | . 2 ⊢ (𝑎 = (𝑏 ↾ (1...𝐵)) → (𝑎‘𝐴) = ((𝑏 ↾ (1...𝐵))‘𝐴)) | |
| 2 | jm2.27dlem1.1 | . . 3 ⊢ 𝐴 ∈ (1...𝐵) | |
| 3 | fvres 6841 | . . 3 ⊢ (𝐴 ∈ (1...𝐵) → ((𝑏 ↾ (1...𝐵))‘𝐴) = (𝑏‘𝐴)) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ ((𝑏 ↾ (1...𝐵))‘𝐴) = (𝑏‘𝐴) |
| 5 | 1, 4 | eqtrdi 2782 | 1 ⊢ (𝑎 = (𝑏 ↾ (1...𝐵)) → (𝑎‘𝐴) = (𝑏‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ↾ cres 5616 ‘cfv 6481 (class class class)co 7346 1c1 11007 ...cfz 13407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-res 5626 df-iota 6437 df-fv 6489 |
| This theorem is referenced by: rmydioph 43055 rmxdioph 43057 expdiophlem2 43063 |
| Copyright terms: Public domain | W3C validator |