| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > jm2.27dlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for rmydioph 42975. Substitution of a tuple restriction into a projection that doesn't care. (Contributed by Stefan O'Rear, 11-Oct-2014.) |
| Ref | Expression |
|---|---|
| jm2.27dlem1.1 | ⊢ 𝐴 ∈ (1...𝐵) |
| Ref | Expression |
|---|---|
| jm2.27dlem1 | ⊢ (𝑎 = (𝑏 ↾ (1...𝐵)) → (𝑎‘𝐴) = (𝑏‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 6864 | . 2 ⊢ (𝑎 = (𝑏 ↾ (1...𝐵)) → (𝑎‘𝐴) = ((𝑏 ↾ (1...𝐵))‘𝐴)) | |
| 2 | jm2.27dlem1.1 | . . 3 ⊢ 𝐴 ∈ (1...𝐵) | |
| 3 | fvres 6884 | . . 3 ⊢ (𝐴 ∈ (1...𝐵) → ((𝑏 ↾ (1...𝐵))‘𝐴) = (𝑏‘𝐴)) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ ((𝑏 ↾ (1...𝐵))‘𝐴) = (𝑏‘𝐴) |
| 5 | 1, 4 | eqtrdi 2781 | 1 ⊢ (𝑎 = (𝑏 ↾ (1...𝐵)) → (𝑎‘𝐴) = (𝑏‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ↾ cres 5648 ‘cfv 6519 (class class class)co 7394 1c1 11087 ...cfz 13481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-xp 5652 df-res 5658 df-iota 6472 df-fv 6527 |
| This theorem is referenced by: rmydioph 42975 rmxdioph 42977 expdiophlem2 42983 |
| Copyright terms: Public domain | W3C validator |