![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > jm2.27dlem2 | Structured version Visualization version GIF version |
Description: Lemma for rmydioph 41753. This theorem is used along with the next three to efficiently infer steps like 7 ∈ (1...;10). (Contributed by Stefan O'Rear, 11-Oct-2014.) |
Ref | Expression |
---|---|
jm2.27dlem2.1 | ⊢ 𝐴 ∈ (1...𝐵) |
jm2.27dlem2.2 | ⊢ 𝐶 = (𝐵 + 1) |
jm2.27dlem2.3 | ⊢ 𝐵 ∈ ℕ |
Ref | Expression |
---|---|
jm2.27dlem2 | ⊢ 𝐴 ∈ (1...𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jm2.27dlem2.1 | . . 3 ⊢ 𝐴 ∈ (1...𝐵) | |
2 | elfzelz 13501 | . . 3 ⊢ (𝐴 ∈ (1...𝐵) → 𝐴 ∈ ℤ) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ 𝐴 ∈ ℤ |
4 | elfzle1 13504 | . . 3 ⊢ (𝐴 ∈ (1...𝐵) → 1 ≤ 𝐴) | |
5 | 1, 4 | ax-mp 5 | . 2 ⊢ 1 ≤ 𝐴 |
6 | 3 | zrei 12564 | . . . 4 ⊢ 𝐴 ∈ ℝ |
7 | jm2.27dlem2.3 | . . . . 5 ⊢ 𝐵 ∈ ℕ | |
8 | 7 | nnrei 12221 | . . . 4 ⊢ 𝐵 ∈ ℝ |
9 | elfzle2 13505 | . . . . 5 ⊢ (𝐴 ∈ (1...𝐵) → 𝐴 ≤ 𝐵) | |
10 | 1, 9 | ax-mp 5 | . . . 4 ⊢ 𝐴 ≤ 𝐵 |
11 | letrp1 12058 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ (𝐵 + 1)) | |
12 | 6, 8, 10, 11 | mp3an 1462 | . . 3 ⊢ 𝐴 ≤ (𝐵 + 1) |
13 | jm2.27dlem2.2 | . . 3 ⊢ 𝐶 = (𝐵 + 1) | |
14 | 12, 13 | breqtrri 5176 | . 2 ⊢ 𝐴 ≤ 𝐶 |
15 | 1z 12592 | . . 3 ⊢ 1 ∈ ℤ | |
16 | nnz 12579 | . . . . 5 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℤ) | |
17 | peano2z 12603 | . . . . 5 ⊢ (𝐵 ∈ ℤ → (𝐵 + 1) ∈ ℤ) | |
18 | 7, 16, 17 | mp2b 10 | . . . 4 ⊢ (𝐵 + 1) ∈ ℤ |
19 | 13, 18 | eqeltri 2830 | . . 3 ⊢ 𝐶 ∈ ℤ |
20 | elfz1 13489 | . . 3 ⊢ ((1 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∈ (1...𝐶) ↔ (𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ∧ 𝐴 ≤ 𝐶))) | |
21 | 15, 19, 20 | mp2an 691 | . 2 ⊢ (𝐴 ∈ (1...𝐶) ↔ (𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ∧ 𝐴 ≤ 𝐶)) |
22 | 3, 5, 14, 21 | mpbir3an 1342 | 1 ⊢ 𝐴 ∈ (1...𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 class class class wbr 5149 (class class class)co 7409 ℝcr 11109 1c1 11111 + caddc 11113 ≤ cle 11249 ℕcn 12212 ℤcz 12558 ...cfz 13484 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-n0 12473 df-z 12559 df-uz 12823 df-fz 13485 |
This theorem is referenced by: rmydioph 41753 expdiophlem2 41761 |
Copyright terms: Public domain | W3C validator |