| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > jm2.27dlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for rmydioph 43171. This theorem is used along with the next three to efficiently infer steps like 7 ∈ (1...;10). (Contributed by Stefan O'Rear, 11-Oct-2014.) |
| Ref | Expression |
|---|---|
| jm2.27dlem2.1 | ⊢ 𝐴 ∈ (1...𝐵) |
| jm2.27dlem2.2 | ⊢ 𝐶 = (𝐵 + 1) |
| jm2.27dlem2.3 | ⊢ 𝐵 ∈ ℕ |
| Ref | Expression |
|---|---|
| jm2.27dlem2 | ⊢ 𝐴 ∈ (1...𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jm2.27dlem2.1 | . . 3 ⊢ 𝐴 ∈ (1...𝐵) | |
| 2 | elfzelz 13431 | . . 3 ⊢ (𝐴 ∈ (1...𝐵) → 𝐴 ∈ ℤ) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ 𝐴 ∈ ℤ |
| 4 | elfzle1 13434 | . . 3 ⊢ (𝐴 ∈ (1...𝐵) → 1 ≤ 𝐴) | |
| 5 | 1, 4 | ax-mp 5 | . 2 ⊢ 1 ≤ 𝐴 |
| 6 | 3 | zrei 12485 | . . . 4 ⊢ 𝐴 ∈ ℝ |
| 7 | jm2.27dlem2.3 | . . . . 5 ⊢ 𝐵 ∈ ℕ | |
| 8 | 7 | nnrei 12145 | . . . 4 ⊢ 𝐵 ∈ ℝ |
| 9 | elfzle2 13435 | . . . . 5 ⊢ (𝐴 ∈ (1...𝐵) → 𝐴 ≤ 𝐵) | |
| 10 | 1, 9 | ax-mp 5 | . . . 4 ⊢ 𝐴 ≤ 𝐵 |
| 11 | letrp1 11976 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ (𝐵 + 1)) | |
| 12 | 6, 8, 10, 11 | mp3an 1463 | . . 3 ⊢ 𝐴 ≤ (𝐵 + 1) |
| 13 | jm2.27dlem2.2 | . . 3 ⊢ 𝐶 = (𝐵 + 1) | |
| 14 | 12, 13 | breqtrri 5122 | . 2 ⊢ 𝐴 ≤ 𝐶 |
| 15 | 1z 12512 | . . 3 ⊢ 1 ∈ ℤ | |
| 16 | nnz 12500 | . . . . 5 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℤ) | |
| 17 | peano2z 12523 | . . . . 5 ⊢ (𝐵 ∈ ℤ → (𝐵 + 1) ∈ ℤ) | |
| 18 | 7, 16, 17 | mp2b 10 | . . . 4 ⊢ (𝐵 + 1) ∈ ℤ |
| 19 | 13, 18 | eqeltri 2829 | . . 3 ⊢ 𝐶 ∈ ℤ |
| 20 | elfz1 13419 | . . 3 ⊢ ((1 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∈ (1...𝐶) ↔ (𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ∧ 𝐴 ≤ 𝐶))) | |
| 21 | 15, 19, 20 | mp2an 692 | . 2 ⊢ (𝐴 ∈ (1...𝐶) ↔ (𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ∧ 𝐴 ≤ 𝐶)) |
| 22 | 3, 5, 14, 21 | mpbir3an 1342 | 1 ⊢ 𝐴 ∈ (1...𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 (class class class)co 7355 ℝcr 11016 1c1 11018 + caddc 11020 ≤ cle 11158 ℕcn 12136 ℤcz 12479 ...cfz 13414 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-n0 12393 df-z 12480 df-uz 12743 df-fz 13415 |
| This theorem is referenced by: rmydioph 43171 expdiophlem2 43179 |
| Copyright terms: Public domain | W3C validator |