| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > jm2.27dlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for rmydioph 43047. This theorem is used along with the next three to efficiently infer steps like 7 ∈ (1...;10). (Contributed by Stefan O'Rear, 11-Oct-2014.) |
| Ref | Expression |
|---|---|
| jm2.27dlem2.1 | ⊢ 𝐴 ∈ (1...𝐵) |
| jm2.27dlem2.2 | ⊢ 𝐶 = (𝐵 + 1) |
| jm2.27dlem2.3 | ⊢ 𝐵 ∈ ℕ |
| Ref | Expression |
|---|---|
| jm2.27dlem2 | ⊢ 𝐴 ∈ (1...𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jm2.27dlem2.1 | . . 3 ⊢ 𝐴 ∈ (1...𝐵) | |
| 2 | elfzelz 13419 | . . 3 ⊢ (𝐴 ∈ (1...𝐵) → 𝐴 ∈ ℤ) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ 𝐴 ∈ ℤ |
| 4 | elfzle1 13422 | . . 3 ⊢ (𝐴 ∈ (1...𝐵) → 1 ≤ 𝐴) | |
| 5 | 1, 4 | ax-mp 5 | . 2 ⊢ 1 ≤ 𝐴 |
| 6 | 3 | zrei 12469 | . . . 4 ⊢ 𝐴 ∈ ℝ |
| 7 | jm2.27dlem2.3 | . . . . 5 ⊢ 𝐵 ∈ ℕ | |
| 8 | 7 | nnrei 12129 | . . . 4 ⊢ 𝐵 ∈ ℝ |
| 9 | elfzle2 13423 | . . . . 5 ⊢ (𝐴 ∈ (1...𝐵) → 𝐴 ≤ 𝐵) | |
| 10 | 1, 9 | ax-mp 5 | . . . 4 ⊢ 𝐴 ≤ 𝐵 |
| 11 | letrp1 11960 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ (𝐵 + 1)) | |
| 12 | 6, 8, 10, 11 | mp3an 1463 | . . 3 ⊢ 𝐴 ≤ (𝐵 + 1) |
| 13 | jm2.27dlem2.2 | . . 3 ⊢ 𝐶 = (𝐵 + 1) | |
| 14 | 12, 13 | breqtrri 5113 | . 2 ⊢ 𝐴 ≤ 𝐶 |
| 15 | 1z 12497 | . . 3 ⊢ 1 ∈ ℤ | |
| 16 | nnz 12484 | . . . . 5 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℤ) | |
| 17 | peano2z 12508 | . . . . 5 ⊢ (𝐵 ∈ ℤ → (𝐵 + 1) ∈ ℤ) | |
| 18 | 7, 16, 17 | mp2b 10 | . . . 4 ⊢ (𝐵 + 1) ∈ ℤ |
| 19 | 13, 18 | eqeltri 2827 | . . 3 ⊢ 𝐶 ∈ ℤ |
| 20 | elfz1 13407 | . . 3 ⊢ ((1 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∈ (1...𝐶) ↔ (𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ∧ 𝐴 ≤ 𝐶))) | |
| 21 | 15, 19, 20 | mp2an 692 | . 2 ⊢ (𝐴 ∈ (1...𝐶) ↔ (𝐴 ∈ ℤ ∧ 1 ≤ 𝐴 ∧ 𝐴 ≤ 𝐶)) |
| 22 | 3, 5, 14, 21 | mpbir3an 1342 | 1 ⊢ 𝐴 ∈ (1...𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 class class class wbr 5086 (class class class)co 7341 ℝcr 11000 1c1 11002 + caddc 11004 ≤ cle 11142 ℕcn 12120 ℤcz 12463 ...cfz 13402 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-n0 12377 df-z 12464 df-uz 12728 df-fz 13403 |
| This theorem is referenced by: rmydioph 43047 expdiophlem2 43055 |
| Copyright terms: Public domain | W3C validator |