Step | Hyp | Ref
| Expression |
1 | | mbfmcst.3 |
. . . 4
⊢ (𝜑 → 𝐹 = (𝑥 ∈ ∪ 𝑆 ↦ 𝐴)) |
2 | | mbfmcst.4 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ ∪ 𝑇) |
3 | 2 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ∪ 𝑆) → 𝐴 ∈ ∪ 𝑇) |
4 | 1, 3 | fmpt3d 6972 |
. . 3
⊢ (𝜑 → 𝐹:∪ 𝑆⟶∪ 𝑇) |
5 | | mbfmcst.2 |
. . . . 5
⊢ (𝜑 → 𝑇 ∈ ∪ ran
sigAlgebra) |
6 | | unielsiga 31996 |
. . . . 5
⊢ (𝑇 ∈ ∪ ran sigAlgebra → ∪ 𝑇 ∈ 𝑇) |
7 | 5, 6 | syl 17 |
. . . 4
⊢ (𝜑 → ∪ 𝑇
∈ 𝑇) |
8 | | mbfmcst.1 |
. . . . 5
⊢ (𝜑 → 𝑆 ∈ ∪ ran
sigAlgebra) |
9 | | unielsiga 31996 |
. . . . 5
⊢ (𝑆 ∈ ∪ ran sigAlgebra → ∪ 𝑆 ∈ 𝑆) |
10 | 8, 9 | syl 17 |
. . . 4
⊢ (𝜑 → ∪ 𝑆
∈ 𝑆) |
11 | 7, 10 | elmapd 8587 |
. . 3
⊢ (𝜑 → (𝐹 ∈ (∪ 𝑇 ↑m ∪ 𝑆)
↔ 𝐹:∪ 𝑆⟶∪ 𝑇)) |
12 | 4, 11 | mpbird 256 |
. 2
⊢ (𝜑 → 𝐹 ∈ (∪ 𝑇 ↑m ∪ 𝑆)) |
13 | | fconstmpt 5640 |
. . . . . . . . . . 11
⊢ (∪ 𝑆
× {𝐴}) = (𝑥 ∈ ∪ 𝑆
↦ 𝐴) |
14 | 13 | cnveqi 5772 |
. . . . . . . . . 10
⊢ ◡(∪ 𝑆 × {𝐴}) = ◡(𝑥 ∈ ∪ 𝑆 ↦ 𝐴) |
15 | | cnvxp 6049 |
. . . . . . . . . 10
⊢ ◡(∪ 𝑆 × {𝐴}) = ({𝐴} × ∪ 𝑆) |
16 | 14, 15 | eqtr3i 2768 |
. . . . . . . . 9
⊢ ◡(𝑥 ∈ ∪ 𝑆 ↦ 𝐴) = ({𝐴} × ∪ 𝑆) |
17 | 16 | imaeq1i 5955 |
. . . . . . . 8
⊢ (◡(𝑥 ∈ ∪ 𝑆 ↦ 𝐴) “ 𝑦) = (({𝐴} × ∪ 𝑆) “ 𝑦) |
18 | | df-ima 5593 |
. . . . . . . 8
⊢ (({𝐴} × ∪ 𝑆)
“ 𝑦) = ran (({𝐴} × ∪ 𝑆)
↾ 𝑦) |
19 | | df-rn 5591 |
. . . . . . . 8
⊢ ran
(({𝐴} × ∪ 𝑆)
↾ 𝑦) = dom ◡(({𝐴} × ∪ 𝑆) ↾ 𝑦) |
20 | 17, 18, 19 | 3eqtri 2770 |
. . . . . . 7
⊢ (◡(𝑥 ∈ ∪ 𝑆 ↦ 𝐴) “ 𝑦) = dom ◡(({𝐴} × ∪ 𝑆) ↾ 𝑦) |
21 | | df-res 5592 |
. . . . . . . . . 10
⊢ (({𝐴} × ∪ 𝑆)
↾ 𝑦) = (({𝐴} × ∪ 𝑆)
∩ (𝑦 ×
V)) |
22 | | inxp 5730 |
. . . . . . . . . 10
⊢ (({𝐴} × ∪ 𝑆)
∩ (𝑦 × V)) =
(({𝐴} ∩ 𝑦) × (∪ 𝑆
∩ V)) |
23 | | inv1 4325 |
. . . . . . . . . . 11
⊢ (∪ 𝑆
∩ V) = ∪ 𝑆 |
24 | 23 | xpeq2i 5607 |
. . . . . . . . . 10
⊢ (({𝐴} ∩ 𝑦) × (∪ 𝑆 ∩ V)) = (({𝐴} ∩ 𝑦) × ∪ 𝑆) |
25 | 21, 22, 24 | 3eqtri 2770 |
. . . . . . . . 9
⊢ (({𝐴} × ∪ 𝑆)
↾ 𝑦) = (({𝐴} ∩ 𝑦) × ∪ 𝑆) |
26 | 25 | cnveqi 5772 |
. . . . . . . 8
⊢ ◡(({𝐴} × ∪ 𝑆) ↾ 𝑦) = ◡(({𝐴} ∩ 𝑦) × ∪ 𝑆) |
27 | 26 | dmeqi 5802 |
. . . . . . 7
⊢ dom ◡(({𝐴} × ∪ 𝑆) ↾ 𝑦) = dom ◡(({𝐴} ∩ 𝑦) × ∪ 𝑆) |
28 | | cnvxp 6049 |
. . . . . . . 8
⊢ ◡(({𝐴} ∩ 𝑦) × ∪ 𝑆) = (∪ 𝑆
× ({𝐴} ∩ 𝑦)) |
29 | 28 | dmeqi 5802 |
. . . . . . 7
⊢ dom ◡(({𝐴} ∩ 𝑦) × ∪ 𝑆) = dom (∪ 𝑆
× ({𝐴} ∩ 𝑦)) |
30 | 20, 27, 29 | 3eqtri 2770 |
. . . . . 6
⊢ (◡(𝑥 ∈ ∪ 𝑆 ↦ 𝐴) “ 𝑦) = dom (∪ 𝑆 × ({𝐴} ∩ 𝑦)) |
31 | | xpeq2 5601 |
. . . . . . . . . . 11
⊢ (({𝐴} ∩ 𝑦) = ∅ → (∪ 𝑆
× ({𝐴} ∩ 𝑦)) = (∪ 𝑆
× ∅)) |
32 | | xp0 6050 |
. . . . . . . . . . 11
⊢ (∪ 𝑆
× ∅) = ∅ |
33 | 31, 32 | eqtrdi 2795 |
. . . . . . . . . 10
⊢ (({𝐴} ∩ 𝑦) = ∅ → (∪ 𝑆
× ({𝐴} ∩ 𝑦)) = ∅) |
34 | 33 | dmeqd 5803 |
. . . . . . . . 9
⊢ (({𝐴} ∩ 𝑦) = ∅ → dom (∪ 𝑆
× ({𝐴} ∩ 𝑦)) = dom
∅) |
35 | | dm0 5818 |
. . . . . . . . 9
⊢ dom
∅ = ∅ |
36 | 34, 35 | eqtrdi 2795 |
. . . . . . . 8
⊢ (({𝐴} ∩ 𝑦) = ∅ → dom (∪ 𝑆
× ({𝐴} ∩ 𝑦)) = ∅) |
37 | 36 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ ({𝐴} ∩ 𝑦) = ∅) → dom (∪ 𝑆
× ({𝐴} ∩ 𝑦)) = ∅) |
38 | | 0elsiga 31982 |
. . . . . . . . 9
⊢ (𝑆 ∈ ∪ ran sigAlgebra → ∅ ∈ 𝑆) |
39 | 8, 38 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ∅ ∈ 𝑆) |
40 | 39 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ({𝐴} ∩ 𝑦) = ∅) → ∅ ∈ 𝑆) |
41 | 37, 40 | eqeltrd 2839 |
. . . . . 6
⊢ ((𝜑 ∧ ({𝐴} ∩ 𝑦) = ∅) → dom (∪ 𝑆
× ({𝐴} ∩ 𝑦)) ∈ 𝑆) |
42 | 30, 41 | eqeltrid 2843 |
. . . . 5
⊢ ((𝜑 ∧ ({𝐴} ∩ 𝑦) = ∅) → (◡(𝑥 ∈ ∪ 𝑆 ↦ 𝐴) “ 𝑦) ∈ 𝑆) |
43 | | dmxp 5827 |
. . . . . . . 8
⊢ (({𝐴} ∩ 𝑦) ≠ ∅ → dom (∪ 𝑆
× ({𝐴} ∩ 𝑦)) = ∪ 𝑆) |
44 | 43 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ ({𝐴} ∩ 𝑦) ≠ ∅) → dom (∪ 𝑆
× ({𝐴} ∩ 𝑦)) = ∪ 𝑆) |
45 | 10 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ({𝐴} ∩ 𝑦) ≠ ∅) → ∪ 𝑆
∈ 𝑆) |
46 | 44, 45 | eqeltrd 2839 |
. . . . . 6
⊢ ((𝜑 ∧ ({𝐴} ∩ 𝑦) ≠ ∅) → dom (∪ 𝑆
× ({𝐴} ∩ 𝑦)) ∈ 𝑆) |
47 | 30, 46 | eqeltrid 2843 |
. . . . 5
⊢ ((𝜑 ∧ ({𝐴} ∩ 𝑦) ≠ ∅) → (◡(𝑥 ∈ ∪ 𝑆 ↦ 𝐴) “ 𝑦) ∈ 𝑆) |
48 | 42, 47 | pm2.61dane 3031 |
. . . 4
⊢ (𝜑 → (◡(𝑥 ∈ ∪ 𝑆 ↦ 𝐴) “ 𝑦) ∈ 𝑆) |
49 | 48 | ralrimivw 3108 |
. . 3
⊢ (𝜑 → ∀𝑦 ∈ 𝑇 (◡(𝑥 ∈ ∪ 𝑆 ↦ 𝐴) “ 𝑦) ∈ 𝑆) |
50 | 1 | cnveqd 5773 |
. . . . . 6
⊢ (𝜑 → ◡𝐹 = ◡(𝑥 ∈ ∪ 𝑆 ↦ 𝐴)) |
51 | 50 | imaeq1d 5957 |
. . . . 5
⊢ (𝜑 → (◡𝐹 “ 𝑦) = (◡(𝑥 ∈ ∪ 𝑆 ↦ 𝐴) “ 𝑦)) |
52 | 51 | eleq1d 2823 |
. . . 4
⊢ (𝜑 → ((◡𝐹 “ 𝑦) ∈ 𝑆 ↔ (◡(𝑥 ∈ ∪ 𝑆 ↦ 𝐴) “ 𝑦) ∈ 𝑆)) |
53 | 52 | ralbidv 3120 |
. . 3
⊢ (𝜑 → (∀𝑦 ∈ 𝑇 (◡𝐹 “ 𝑦) ∈ 𝑆 ↔ ∀𝑦 ∈ 𝑇 (◡(𝑥 ∈ ∪ 𝑆 ↦ 𝐴) “ 𝑦) ∈ 𝑆)) |
54 | 49, 53 | mpbird 256 |
. 2
⊢ (𝜑 → ∀𝑦 ∈ 𝑇 (◡𝐹 “ 𝑦) ∈ 𝑆) |
55 | 8, 5 | ismbfm 32119 |
. 2
⊢ (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹 ∈ (∪ 𝑇 ↑m ∪ 𝑆)
∧ ∀𝑦 ∈
𝑇 (◡𝐹 “ 𝑦) ∈ 𝑆))) |
56 | 12, 54, 55 | mpbir2and 709 |
1
⊢ (𝜑 → 𝐹 ∈ (𝑆MblFnM𝑇)) |