Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mbfmcst Structured version   Visualization version   GIF version

Theorem mbfmcst 31892
Description: A constant function is measurable. Cf. mbfconst 24484. (Contributed by Thierry Arnoux, 26-Jan-2017.)
Hypotheses
Ref Expression
mbfmcst.1 (𝜑𝑆 ran sigAlgebra)
mbfmcst.2 (𝜑𝑇 ran sigAlgebra)
mbfmcst.3 (𝜑𝐹 = (𝑥 𝑆𝐴))
mbfmcst.4 (𝜑𝐴 𝑇)
Assertion
Ref Expression
mbfmcst (𝜑𝐹 ∈ (𝑆MblFnM𝑇))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑆   𝑥,𝑇   𝜑,𝑥
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem mbfmcst
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mbfmcst.3 . . . 4 (𝜑𝐹 = (𝑥 𝑆𝐴))
2 mbfmcst.4 . . . . 5 (𝜑𝐴 𝑇)
32adantr 484 . . . 4 ((𝜑𝑥 𝑆) → 𝐴 𝑇)
41, 3fmpt3d 6911 . . 3 (𝜑𝐹: 𝑆 𝑇)
5 mbfmcst.2 . . . . 5 (𝜑𝑇 ran sigAlgebra)
6 unielsiga 31762 . . . . 5 (𝑇 ran sigAlgebra → 𝑇𝑇)
75, 6syl 17 . . . 4 (𝜑 𝑇𝑇)
8 mbfmcst.1 . . . . 5 (𝜑𝑆 ran sigAlgebra)
9 unielsiga 31762 . . . . 5 (𝑆 ran sigAlgebra → 𝑆𝑆)
108, 9syl 17 . . . 4 (𝜑 𝑆𝑆)
117, 10elmapd 8500 . . 3 (𝜑 → (𝐹 ∈ ( 𝑇m 𝑆) ↔ 𝐹: 𝑆 𝑇))
124, 11mpbird 260 . 2 (𝜑𝐹 ∈ ( 𝑇m 𝑆))
13 fconstmpt 5596 . . . . . . . . . . 11 ( 𝑆 × {𝐴}) = (𝑥 𝑆𝐴)
1413cnveqi 5728 . . . . . . . . . 10 ( 𝑆 × {𝐴}) = (𝑥 𝑆𝐴)
15 cnvxp 6000 . . . . . . . . . 10 ( 𝑆 × {𝐴}) = ({𝐴} × 𝑆)
1614, 15eqtr3i 2761 . . . . . . . . 9 (𝑥 𝑆𝐴) = ({𝐴} × 𝑆)
1716imaeq1i 5911 . . . . . . . 8 ((𝑥 𝑆𝐴) “ 𝑦) = (({𝐴} × 𝑆) “ 𝑦)
18 df-ima 5549 . . . . . . . 8 (({𝐴} × 𝑆) “ 𝑦) = ran (({𝐴} × 𝑆) ↾ 𝑦)
19 df-rn 5547 . . . . . . . 8 ran (({𝐴} × 𝑆) ↾ 𝑦) = dom (({𝐴} × 𝑆) ↾ 𝑦)
2017, 18, 193eqtri 2763 . . . . . . 7 ((𝑥 𝑆𝐴) “ 𝑦) = dom (({𝐴} × 𝑆) ↾ 𝑦)
21 df-res 5548 . . . . . . . . . 10 (({𝐴} × 𝑆) ↾ 𝑦) = (({𝐴} × 𝑆) ∩ (𝑦 × V))
22 inxp 5686 . . . . . . . . . 10 (({𝐴} × 𝑆) ∩ (𝑦 × V)) = (({𝐴} ∩ 𝑦) × ( 𝑆 ∩ V))
23 inv1 4295 . . . . . . . . . . 11 ( 𝑆 ∩ V) = 𝑆
2423xpeq2i 5563 . . . . . . . . . 10 (({𝐴} ∩ 𝑦) × ( 𝑆 ∩ V)) = (({𝐴} ∩ 𝑦) × 𝑆)
2521, 22, 243eqtri 2763 . . . . . . . . 9 (({𝐴} × 𝑆) ↾ 𝑦) = (({𝐴} ∩ 𝑦) × 𝑆)
2625cnveqi 5728 . . . . . . . 8 (({𝐴} × 𝑆) ↾ 𝑦) = (({𝐴} ∩ 𝑦) × 𝑆)
2726dmeqi 5758 . . . . . . 7 dom (({𝐴} × 𝑆) ↾ 𝑦) = dom (({𝐴} ∩ 𝑦) × 𝑆)
28 cnvxp 6000 . . . . . . . 8 (({𝐴} ∩ 𝑦) × 𝑆) = ( 𝑆 × ({𝐴} ∩ 𝑦))
2928dmeqi 5758 . . . . . . 7 dom (({𝐴} ∩ 𝑦) × 𝑆) = dom ( 𝑆 × ({𝐴} ∩ 𝑦))
3020, 27, 293eqtri 2763 . . . . . 6 ((𝑥 𝑆𝐴) “ 𝑦) = dom ( 𝑆 × ({𝐴} ∩ 𝑦))
31 xpeq2 5557 . . . . . . . . . . 11 (({𝐴} ∩ 𝑦) = ∅ → ( 𝑆 × ({𝐴} ∩ 𝑦)) = ( 𝑆 × ∅))
32 xp0 6001 . . . . . . . . . . 11 ( 𝑆 × ∅) = ∅
3331, 32eqtrdi 2787 . . . . . . . . . 10 (({𝐴} ∩ 𝑦) = ∅ → ( 𝑆 × ({𝐴} ∩ 𝑦)) = ∅)
3433dmeqd 5759 . . . . . . . . 9 (({𝐴} ∩ 𝑦) = ∅ → dom ( 𝑆 × ({𝐴} ∩ 𝑦)) = dom ∅)
35 dm0 5774 . . . . . . . . 9 dom ∅ = ∅
3634, 35eqtrdi 2787 . . . . . . . 8 (({𝐴} ∩ 𝑦) = ∅ → dom ( 𝑆 × ({𝐴} ∩ 𝑦)) = ∅)
3736adantl 485 . . . . . . 7 ((𝜑 ∧ ({𝐴} ∩ 𝑦) = ∅) → dom ( 𝑆 × ({𝐴} ∩ 𝑦)) = ∅)
38 0elsiga 31748 . . . . . . . . 9 (𝑆 ran sigAlgebra → ∅ ∈ 𝑆)
398, 38syl 17 . . . . . . . 8 (𝜑 → ∅ ∈ 𝑆)
4039adantr 484 . . . . . . 7 ((𝜑 ∧ ({𝐴} ∩ 𝑦) = ∅) → ∅ ∈ 𝑆)
4137, 40eqeltrd 2831 . . . . . 6 ((𝜑 ∧ ({𝐴} ∩ 𝑦) = ∅) → dom ( 𝑆 × ({𝐴} ∩ 𝑦)) ∈ 𝑆)
4230, 41eqeltrid 2835 . . . . 5 ((𝜑 ∧ ({𝐴} ∩ 𝑦) = ∅) → ((𝑥 𝑆𝐴) “ 𝑦) ∈ 𝑆)
43 dmxp 5783 . . . . . . . 8 (({𝐴} ∩ 𝑦) ≠ ∅ → dom ( 𝑆 × ({𝐴} ∩ 𝑦)) = 𝑆)
4443adantl 485 . . . . . . 7 ((𝜑 ∧ ({𝐴} ∩ 𝑦) ≠ ∅) → dom ( 𝑆 × ({𝐴} ∩ 𝑦)) = 𝑆)
4510adantr 484 . . . . . . 7 ((𝜑 ∧ ({𝐴} ∩ 𝑦) ≠ ∅) → 𝑆𝑆)
4644, 45eqeltrd 2831 . . . . . 6 ((𝜑 ∧ ({𝐴} ∩ 𝑦) ≠ ∅) → dom ( 𝑆 × ({𝐴} ∩ 𝑦)) ∈ 𝑆)
4730, 46eqeltrid 2835 . . . . 5 ((𝜑 ∧ ({𝐴} ∩ 𝑦) ≠ ∅) → ((𝑥 𝑆𝐴) “ 𝑦) ∈ 𝑆)
4842, 47pm2.61dane 3019 . . . 4 (𝜑 → ((𝑥 𝑆𝐴) “ 𝑦) ∈ 𝑆)
4948ralrimivw 3096 . . 3 (𝜑 → ∀𝑦𝑇 ((𝑥 𝑆𝐴) “ 𝑦) ∈ 𝑆)
501cnveqd 5729 . . . . . 6 (𝜑𝐹 = (𝑥 𝑆𝐴))
5150imaeq1d 5913 . . . . 5 (𝜑 → (𝐹𝑦) = ((𝑥 𝑆𝐴) “ 𝑦))
5251eleq1d 2815 . . . 4 (𝜑 → ((𝐹𝑦) ∈ 𝑆 ↔ ((𝑥 𝑆𝐴) “ 𝑦) ∈ 𝑆))
5352ralbidv 3108 . . 3 (𝜑 → (∀𝑦𝑇 (𝐹𝑦) ∈ 𝑆 ↔ ∀𝑦𝑇 ((𝑥 𝑆𝐴) “ 𝑦) ∈ 𝑆))
5449, 53mpbird 260 . 2 (𝜑 → ∀𝑦𝑇 (𝐹𝑦) ∈ 𝑆)
558, 5ismbfm 31885 . 2 (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹 ∈ ( 𝑇m 𝑆) ∧ ∀𝑦𝑇 (𝐹𝑦) ∈ 𝑆)))
5612, 54, 55mpbir2and 713 1 (𝜑𝐹 ∈ (𝑆MblFnM𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  wne 2932  wral 3051  Vcvv 3398  cin 3852  c0 4223  {csn 4527   cuni 4805  cmpt 5120   × cxp 5534  ccnv 5535  dom cdm 5536  ran crn 5537  cres 5538  cima 5539  wf 6354  (class class class)co 7191  m cmap 8486  sigAlgebracsiga 31742  MblFnMcmbfm 31883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-fv 6366  df-ov 7194  df-oprab 7195  df-mpo 7196  df-map 8488  df-siga 31743  df-mbfm 31884
This theorem is referenced by:  sibf0  31967
  Copyright terms: Public domain W3C validator