Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mbfmcst Structured version   Visualization version   GIF version

Theorem mbfmcst 30837
Description: A constant function is measurable. Cf. mbfconst 23741. (Contributed by Thierry Arnoux, 26-Jan-2017.)
Hypotheses
Ref Expression
mbfmcst.1 (𝜑𝑆 ran sigAlgebra)
mbfmcst.2 (𝜑𝑇 ran sigAlgebra)
mbfmcst.3 (𝜑𝐹 = (𝑥 𝑆𝐴))
mbfmcst.4 (𝜑𝐴 𝑇)
Assertion
Ref Expression
mbfmcst (𝜑𝐹 ∈ (𝑆MblFnM𝑇))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑆   𝑥,𝑇   𝜑,𝑥
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem mbfmcst
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mbfmcst.3 . . . 4 (𝜑𝐹 = (𝑥 𝑆𝐴))
2 mbfmcst.4 . . . . 5 (𝜑𝐴 𝑇)
32adantr 473 . . . 4 ((𝜑𝑥 𝑆) → 𝐴 𝑇)
41, 3fmpt3d 6612 . . 3 (𝜑𝐹: 𝑆 𝑇)
5 mbfmcst.2 . . . . 5 (𝜑𝑇 ran sigAlgebra)
6 unielsiga 30707 . . . . 5 (𝑇 ran sigAlgebra → 𝑇𝑇)
75, 6syl 17 . . . 4 (𝜑 𝑇𝑇)
8 mbfmcst.1 . . . . 5 (𝜑𝑆 ran sigAlgebra)
9 unielsiga 30707 . . . . 5 (𝑆 ran sigAlgebra → 𝑆𝑆)
108, 9syl 17 . . . 4 (𝜑 𝑆𝑆)
117, 10elmapd 8109 . . 3 (𝜑 → (𝐹 ∈ ( 𝑇𝑚 𝑆) ↔ 𝐹: 𝑆 𝑇))
124, 11mpbird 249 . 2 (𝜑𝐹 ∈ ( 𝑇𝑚 𝑆))
13 fconstmpt 5368 . . . . . . . . . . 11 ( 𝑆 × {𝐴}) = (𝑥 𝑆𝐴)
1413cnveqi 5500 . . . . . . . . . 10 ( 𝑆 × {𝐴}) = (𝑥 𝑆𝐴)
15 cnvxp 5768 . . . . . . . . . 10 ( 𝑆 × {𝐴}) = ({𝐴} × 𝑆)
1614, 15eqtr3i 2823 . . . . . . . . 9 (𝑥 𝑆𝐴) = ({𝐴} × 𝑆)
1716imaeq1i 5680 . . . . . . . 8 ((𝑥 𝑆𝐴) “ 𝑦) = (({𝐴} × 𝑆) “ 𝑦)
18 df-ima 5325 . . . . . . . 8 (({𝐴} × 𝑆) “ 𝑦) = ran (({𝐴} × 𝑆) ↾ 𝑦)
19 df-rn 5323 . . . . . . . 8 ran (({𝐴} × 𝑆) ↾ 𝑦) = dom (({𝐴} × 𝑆) ↾ 𝑦)
2017, 18, 193eqtri 2825 . . . . . . 7 ((𝑥 𝑆𝐴) “ 𝑦) = dom (({𝐴} × 𝑆) ↾ 𝑦)
21 df-res 5324 . . . . . . . . . 10 (({𝐴} × 𝑆) ↾ 𝑦) = (({𝐴} × 𝑆) ∩ (𝑦 × V))
22 inxp 5458 . . . . . . . . . 10 (({𝐴} × 𝑆) ∩ (𝑦 × V)) = (({𝐴} ∩ 𝑦) × ( 𝑆 ∩ V))
23 inv1 4166 . . . . . . . . . . 11 ( 𝑆 ∩ V) = 𝑆
2423xpeq2i 5339 . . . . . . . . . 10 (({𝐴} ∩ 𝑦) × ( 𝑆 ∩ V)) = (({𝐴} ∩ 𝑦) × 𝑆)
2521, 22, 243eqtri 2825 . . . . . . . . 9 (({𝐴} × 𝑆) ↾ 𝑦) = (({𝐴} ∩ 𝑦) × 𝑆)
2625cnveqi 5500 . . . . . . . 8 (({𝐴} × 𝑆) ↾ 𝑦) = (({𝐴} ∩ 𝑦) × 𝑆)
2726dmeqi 5528 . . . . . . 7 dom (({𝐴} × 𝑆) ↾ 𝑦) = dom (({𝐴} ∩ 𝑦) × 𝑆)
28 cnvxp 5768 . . . . . . . 8 (({𝐴} ∩ 𝑦) × 𝑆) = ( 𝑆 × ({𝐴} ∩ 𝑦))
2928dmeqi 5528 . . . . . . 7 dom (({𝐴} ∩ 𝑦) × 𝑆) = dom ( 𝑆 × ({𝐴} ∩ 𝑦))
3020, 27, 293eqtri 2825 . . . . . 6 ((𝑥 𝑆𝐴) “ 𝑦) = dom ( 𝑆 × ({𝐴} ∩ 𝑦))
31 xpeq2 5333 . . . . . . . . . . 11 (({𝐴} ∩ 𝑦) = ∅ → ( 𝑆 × ({𝐴} ∩ 𝑦)) = ( 𝑆 × ∅))
32 xp0 5769 . . . . . . . . . . 11 ( 𝑆 × ∅) = ∅
3331, 32syl6eq 2849 . . . . . . . . . 10 (({𝐴} ∩ 𝑦) = ∅ → ( 𝑆 × ({𝐴} ∩ 𝑦)) = ∅)
3433dmeqd 5529 . . . . . . . . 9 (({𝐴} ∩ 𝑦) = ∅ → dom ( 𝑆 × ({𝐴} ∩ 𝑦)) = dom ∅)
35 dm0 5542 . . . . . . . . 9 dom ∅ = ∅
3634, 35syl6eq 2849 . . . . . . . 8 (({𝐴} ∩ 𝑦) = ∅ → dom ( 𝑆 × ({𝐴} ∩ 𝑦)) = ∅)
3736adantl 474 . . . . . . 7 ((𝜑 ∧ ({𝐴} ∩ 𝑦) = ∅) → dom ( 𝑆 × ({𝐴} ∩ 𝑦)) = ∅)
38 0elsiga 30693 . . . . . . . . 9 (𝑆 ran sigAlgebra → ∅ ∈ 𝑆)
398, 38syl 17 . . . . . . . 8 (𝜑 → ∅ ∈ 𝑆)
4039adantr 473 . . . . . . 7 ((𝜑 ∧ ({𝐴} ∩ 𝑦) = ∅) → ∅ ∈ 𝑆)
4137, 40eqeltrd 2878 . . . . . 6 ((𝜑 ∧ ({𝐴} ∩ 𝑦) = ∅) → dom ( 𝑆 × ({𝐴} ∩ 𝑦)) ∈ 𝑆)
4230, 41syl5eqel 2882 . . . . 5 ((𝜑 ∧ ({𝐴} ∩ 𝑦) = ∅) → ((𝑥 𝑆𝐴) “ 𝑦) ∈ 𝑆)
43 dmxp 5547 . . . . . . . 8 (({𝐴} ∩ 𝑦) ≠ ∅ → dom ( 𝑆 × ({𝐴} ∩ 𝑦)) = 𝑆)
4443adantl 474 . . . . . . 7 ((𝜑 ∧ ({𝐴} ∩ 𝑦) ≠ ∅) → dom ( 𝑆 × ({𝐴} ∩ 𝑦)) = 𝑆)
4510adantr 473 . . . . . . 7 ((𝜑 ∧ ({𝐴} ∩ 𝑦) ≠ ∅) → 𝑆𝑆)
4644, 45eqeltrd 2878 . . . . . 6 ((𝜑 ∧ ({𝐴} ∩ 𝑦) ≠ ∅) → dom ( 𝑆 × ({𝐴} ∩ 𝑦)) ∈ 𝑆)
4730, 46syl5eqel 2882 . . . . 5 ((𝜑 ∧ ({𝐴} ∩ 𝑦) ≠ ∅) → ((𝑥 𝑆𝐴) “ 𝑦) ∈ 𝑆)
4842, 47pm2.61dane 3058 . . . 4 (𝜑 → ((𝑥 𝑆𝐴) “ 𝑦) ∈ 𝑆)
4948ralrimivw 3148 . . 3 (𝜑 → ∀𝑦𝑇 ((𝑥 𝑆𝐴) “ 𝑦) ∈ 𝑆)
501cnveqd 5501 . . . . . 6 (𝜑𝐹 = (𝑥 𝑆𝐴))
5150imaeq1d 5682 . . . . 5 (𝜑 → (𝐹𝑦) = ((𝑥 𝑆𝐴) “ 𝑦))
5251eleq1d 2863 . . . 4 (𝜑 → ((𝐹𝑦) ∈ 𝑆 ↔ ((𝑥 𝑆𝐴) “ 𝑦) ∈ 𝑆))
5352ralbidv 3167 . . 3 (𝜑 → (∀𝑦𝑇 (𝐹𝑦) ∈ 𝑆 ↔ ∀𝑦𝑇 ((𝑥 𝑆𝐴) “ 𝑦) ∈ 𝑆))
5449, 53mpbird 249 . 2 (𝜑 → ∀𝑦𝑇 (𝐹𝑦) ∈ 𝑆)
558, 5ismbfm 30830 . 2 (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹 ∈ ( 𝑇𝑚 𝑆) ∧ ∀𝑦𝑇 (𝐹𝑦) ∈ 𝑆)))
5612, 54, 55mpbir2and 705 1 (𝜑𝐹 ∈ (𝑆MblFnM𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wcel 2157  wne 2971  wral 3089  Vcvv 3385  cin 3768  c0 4115  {csn 4368   cuni 4628  cmpt 4922   × cxp 5310  ccnv 5311  dom cdm 5312  ran crn 5313  cres 5314  cima 5315  wf 6097  (class class class)co 6878  𝑚 cmap 8095  sigAlgebracsiga 30686  MblFnMcmbfm 30828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-fv 6109  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-map 8097  df-siga 30687  df-mbfm 30829
This theorem is referenced by:  sibf0  30912
  Copyright terms: Public domain W3C validator