| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndidcl | Structured version Visualization version GIF version | ||
| Description: The identity element of a monoid belongs to the monoid. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| mndidcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| mndidcl.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| mndidcl | ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndidcl.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | mndidcl.o | . 2 ⊢ 0 = (0g‘𝐺) | |
| 3 | eqid 2729 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | 1, 3 | mndid 18647 | . 2 ⊢ (𝐺 ∈ Mnd → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)) |
| 5 | 1, 2, 3, 4 | mgmidcl 18569 | 1 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 Basecbs 17155 +gcplusg 17196 0gc0g 17378 Mndcmnd 18637 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 df-riota 7326 df-ov 7372 df-0g 17380 df-mgm 18543 df-sgrp 18622 df-mnd 18638 |
| This theorem is referenced by: mndbn0 18653 hashfinmndnn 18654 mndpfo 18660 mndpsuppss 18668 prdsidlem 18672 imasmnd 18678 xpsmnd0 18681 idmhm 18698 mhmf1o 18699 mndvlid 18702 mndvrid 18703 issubmd 18709 submid 18713 0subm 18720 0mhm 18722 mhmco 18726 mhmeql 18729 submacs 18730 mndind 18731 prdspjmhm 18732 pwsdiagmhm 18734 pwsco1mhm 18735 pwsco2mhm 18736 gsumvallem2 18737 dfgrp2 18870 grpidcl 18873 mhmid 18971 mhmmnd 18972 mulgnn0cl 18998 mulgnn0z 19009 cntzsubm 19246 oppgmnd 19262 gex1 19497 mulgnn0di 19731 mulgmhm 19733 subcmn 19743 gsumval3 19813 gsumzcl2 19816 gsumzaddlem 19827 gsumzsplit 19833 gsumzmhm 19843 gsummpt1n0 19871 simpgnideld 20007 srgidcl 20084 srg0cl 20085 ringidcl 20150 gsummgp0 20203 c0mgm 20344 c0mhm 20345 c0snmgmhm 20347 c0snmhm 20348 pwssplit1 20942 rngqiprngimf1 21186 dsmm0cl 21625 dsmmacl 21626 mhmcompl 22243 mdet0 22469 mndifsplit 22499 gsummatr01lem3 22520 pmatcollpw3fi1lem1 22649 tmdmulg 23955 tmdgsum 23958 tsms0 24005 tsmssplit 24015 tsmsxp 24018 mndlactfo 32941 mndractfo 32943 mndlactf1o 32944 mndractf1o 32945 gsumwun 32978 cntzsnid 32982 submomnd 32997 omndmul2 32999 omndmul3 33000 omndmul 33001 ogrpinv0le 33002 gsumle 33011 fxpsubm 33102 slmd0vcl 33147 ply1degltdimlem 33591 lvecendof1f1o 33602 sibf0 34298 sitmcl 34315 primrootsunit1 42058 primrootscoprmpow 42060 primrootscoprbij 42063 evl1gprodd 42078 ringexp0nn 42095 aks6d1c5lem2 42099 pwssplit4 43051 mgpsumz 48323 lco0 48389 mndtccatid 49549 |
| Copyright terms: Public domain | W3C validator |