| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndidcl | Structured version Visualization version GIF version | ||
| Description: The identity element of a monoid belongs to the monoid. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| mndidcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| mndidcl.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| mndidcl | ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndidcl.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | mndidcl.o | . 2 ⊢ 0 = (0g‘𝐺) | |
| 3 | eqid 2730 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | 1, 3 | mndid 18678 | . 2 ⊢ (𝐺 ∈ Mnd → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)) |
| 5 | 1, 2, 3, 4 | mgmidcl 18600 | 1 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 Basecbs 17186 +gcplusg 17227 0gc0g 17409 Mndcmnd 18668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-riota 7347 df-ov 7393 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 |
| This theorem is referenced by: mndbn0 18684 hashfinmndnn 18685 mndpfo 18691 mndpsuppss 18699 prdsidlem 18703 imasmnd 18709 xpsmnd0 18712 idmhm 18729 mhmf1o 18730 mndvlid 18733 mndvrid 18734 issubmd 18740 submid 18744 0subm 18751 0mhm 18753 mhmco 18757 mhmeql 18760 submacs 18761 mndind 18762 prdspjmhm 18763 pwsdiagmhm 18765 pwsco1mhm 18766 pwsco2mhm 18767 gsumvallem2 18768 dfgrp2 18901 grpidcl 18904 mhmid 19002 mhmmnd 19003 mulgnn0cl 19029 mulgnn0z 19040 cntzsubm 19277 oppgmnd 19293 gex1 19528 mulgnn0di 19762 mulgmhm 19764 subcmn 19774 gsumval3 19844 gsumzcl2 19847 gsumzaddlem 19858 gsumzsplit 19864 gsumzmhm 19874 gsummpt1n0 19902 simpgnideld 20038 srgidcl 20115 srg0cl 20116 ringidcl 20181 gsummgp0 20234 c0mgm 20375 c0mhm 20376 c0snmgmhm 20378 c0snmhm 20379 pwssplit1 20973 rngqiprngimf1 21217 dsmm0cl 21656 dsmmacl 21657 mhmcompl 22274 mdet0 22500 mndifsplit 22530 gsummatr01lem3 22551 pmatcollpw3fi1lem1 22680 tmdmulg 23986 tmdgsum 23989 tsms0 24036 tsmssplit 24046 tsmsxp 24049 mndlactfo 32975 mndractfo 32977 mndlactf1o 32978 mndractf1o 32979 gsumwun 33012 cntzsnid 33016 submomnd 33031 omndmul2 33033 omndmul3 33034 omndmul 33035 ogrpinv0le 33036 gsumle 33045 fxpsubm 33136 slmd0vcl 33181 ply1degltdimlem 33625 lvecendof1f1o 33636 sibf0 34332 sitmcl 34349 primrootsunit1 42092 primrootscoprmpow 42094 primrootscoprbij 42097 evl1gprodd 42112 ringexp0nn 42129 aks6d1c5lem2 42133 pwssplit4 43085 mgpsumz 48354 lco0 48420 mndtccatid 49580 |
| Copyright terms: Public domain | W3C validator |