| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndidcl | Structured version Visualization version GIF version | ||
| Description: The identity element of a monoid belongs to the monoid. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| mndidcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| mndidcl.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| mndidcl | ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndidcl.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | mndidcl.o | . 2 ⊢ 0 = (0g‘𝐺) | |
| 3 | eqid 2729 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | 1, 3 | mndid 18671 | . 2 ⊢ (𝐺 ∈ Mnd → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)) |
| 5 | 1, 2, 3, 4 | mgmidcl 18593 | 1 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 Basecbs 17179 +gcplusg 17220 0gc0g 17402 Mndcmnd 18661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-riota 7344 df-ov 7390 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 |
| This theorem is referenced by: mndbn0 18677 hashfinmndnn 18678 mndpfo 18684 mndpsuppss 18692 prdsidlem 18696 imasmnd 18702 xpsmnd0 18705 idmhm 18722 mhmf1o 18723 mndvlid 18726 mndvrid 18727 issubmd 18733 submid 18737 0subm 18744 0mhm 18746 mhmco 18750 mhmeql 18753 submacs 18754 mndind 18755 prdspjmhm 18756 pwsdiagmhm 18758 pwsco1mhm 18759 pwsco2mhm 18760 gsumvallem2 18761 dfgrp2 18894 grpidcl 18897 mhmid 18995 mhmmnd 18996 mulgnn0cl 19022 mulgnn0z 19033 cntzsubm 19270 oppgmnd 19286 gex1 19521 mulgnn0di 19755 mulgmhm 19757 subcmn 19767 gsumval3 19837 gsumzcl2 19840 gsumzaddlem 19851 gsumzsplit 19857 gsumzmhm 19867 gsummpt1n0 19895 simpgnideld 20031 srgidcl 20108 srg0cl 20109 ringidcl 20174 gsummgp0 20227 c0mgm 20368 c0mhm 20369 c0snmgmhm 20371 c0snmhm 20372 pwssplit1 20966 rngqiprngimf1 21210 dsmm0cl 21649 dsmmacl 21650 mhmcompl 22267 mdet0 22493 mndifsplit 22523 gsummatr01lem3 22544 pmatcollpw3fi1lem1 22673 tmdmulg 23979 tmdgsum 23982 tsms0 24029 tsmssplit 24039 tsmsxp 24042 mndlactfo 32968 mndractfo 32970 mndlactf1o 32971 mndractf1o 32972 gsumwun 33005 cntzsnid 33009 submomnd 33024 omndmul2 33026 omndmul3 33027 omndmul 33028 ogrpinv0le 33029 gsumle 33038 fxpsubm 33129 slmd0vcl 33174 ply1degltdimlem 33618 lvecendof1f1o 33629 sibf0 34325 sitmcl 34342 primrootsunit1 42085 primrootscoprmpow 42087 primrootscoprbij 42090 evl1gprodd 42105 ringexp0nn 42122 aks6d1c5lem2 42126 pwssplit4 43078 mgpsumz 48350 lco0 48416 mndtccatid 49576 |
| Copyright terms: Public domain | W3C validator |