![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mndidcl | Structured version Visualization version GIF version |
Description: The identity element of a monoid belongs to the monoid. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
mndidcl.b | ⊢ 𝐵 = (Base‘𝐺) |
mndidcl.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
mndidcl | ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndidcl.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | mndidcl.o | . 2 ⊢ 0 = (0g‘𝐺) | |
3 | eqid 2732 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | 1, 3 | mndid 18669 | . 2 ⊢ (𝐺 ∈ Mnd → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)) |
5 | 1, 2, 3, 4 | mgmidcl 18591 | 1 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ‘cfv 6543 Basecbs 17148 +gcplusg 17201 0gc0g 17389 Mndcmnd 18659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-riota 7367 df-ov 7414 df-0g 17391 df-mgm 18565 df-sgrp 18644 df-mnd 18660 |
This theorem is referenced by: mndbn0 18675 hashfinmndnn 18676 mndpfo 18682 prdsidlem 18691 imasmnd 18697 xpsmnd0 18700 idmhm 18717 mhmf1o 18718 issubmd 18723 submid 18727 0subm 18734 0mhm 18736 mhmco 18740 mhmeql 18743 submacs 18744 mndind 18745 prdspjmhm 18746 pwsdiagmhm 18748 pwsco1mhm 18749 pwsco2mhm 18750 gsumvallem2 18751 dfgrp2 18883 grpidcl 18886 mhmid 18982 mhmmnd 18983 mulgnn0cl 19006 mulgnn0z 19017 cntzsubm 19243 oppgmnd 19262 gex1 19500 mulgnn0di 19734 mulgmhm 19736 subcmn 19746 gsumval3 19816 gsumzcl2 19819 gsumzaddlem 19830 gsumzsplit 19836 gsumzmhm 19846 gsummpt1n0 19874 simpgnideld 20010 srgidcl 20093 srg0cl 20094 ringidcl 20154 gsummgp0 20206 c0mgm 20350 c0mhm 20351 c0snmgmhm 20353 c0snmhm 20354 pwssplit1 20814 rngqiprngimf1 21059 dsmm0cl 21514 dsmmacl 21515 mndvlid 22115 mndvrid 22116 mdet0 22328 mndifsplit 22358 gsummatr01lem3 22379 pmatcollpw3fi1lem1 22508 tmdmulg 23816 tmdgsum 23819 tsms0 23866 tsmssplit 23876 tsmsxp 23879 cntzsnid 32471 submomnd 32486 omndmul2 32488 omndmul3 32489 omndmul 32490 ogrpinv0le 32491 gsumle 32500 slmd0vcl 32624 ply1degltdimlem 32983 sibf0 33619 sitmcl 33636 mhmcompl 41422 pwssplit4 42133 mgpsumz 47127 mndpsuppss 47136 lco0 47196 mndtccatid 47801 |
Copyright terms: Public domain | W3C validator |