Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mndidcl | Structured version Visualization version GIF version |
Description: The identity element of a monoid belongs to the monoid. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
mndidcl.b | ⊢ 𝐵 = (Base‘𝐺) |
mndidcl.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
mndidcl | ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndidcl.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | mndidcl.o | . 2 ⊢ 0 = (0g‘𝐺) | |
3 | eqid 2738 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | 1, 3 | mndid 18395 | . 2 ⊢ (𝐺 ∈ Mnd → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)) |
5 | 1, 2, 3, 4 | mgmidcl 18350 | 1 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 Basecbs 16912 +gcplusg 16962 0gc0g 17150 Mndcmnd 18385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-riota 7232 df-ov 7278 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 |
This theorem is referenced by: mndbn0 18401 hashfinmndnn 18402 mndpfo 18408 prdsidlem 18417 imasmnd 18423 idmhm 18439 mhmf1o 18440 issubmd 18445 submid 18449 0subm 18456 0mhm 18458 mhmco 18462 mhmeql 18464 submacs 18465 mndind 18466 prdspjmhm 18467 pwsdiagmhm 18469 pwsco1mhm 18470 pwsco2mhm 18471 gsumvallem2 18472 dfgrp2 18604 grpidcl 18607 mhmid 18696 mhmmnd 18697 mulgnn0cl 18720 mulgnn0z 18730 cntzsubm 18942 oppgmnd 18961 gex1 19196 mulgnn0di 19427 mulgmhm 19429 subcmn 19438 gsumval3 19508 gsumzcl2 19511 gsumzaddlem 19522 gsumzsplit 19528 gsumzmhm 19538 gsummpt1n0 19566 simpgnideld 19702 srgidcl 19754 srg0cl 19755 ringidcl 19807 gsummgp0 19847 pwssplit1 20321 dsmm0cl 20947 dsmmacl 20948 mndvlid 21542 mndvrid 21543 mdet0 21755 mndifsplit 21785 gsummatr01lem3 21806 pmatcollpw3fi1lem1 21935 tmdmulg 23243 tmdgsum 23246 tsms0 23293 tsmssplit 23303 tsmsxp 23306 cntzsnid 31321 submomnd 31336 omndmul2 31338 omndmul3 31339 omndmul 31340 ogrpinv0le 31341 gsumle 31350 slmd0vcl 31474 sibf0 32301 sitmcl 32318 pwssplit4 40914 c0mgm 45467 c0mhm 45468 c0snmgmhm 45472 c0snmhm 45473 mgpsumz 45698 mndpsuppss 45707 lco0 45768 mndtccatid 46374 |
Copyright terms: Public domain | W3C validator |