![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mndidcl | Structured version Visualization version GIF version |
Description: The identity element of a monoid belongs to the monoid. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
mndidcl.b | ⊢ 𝐵 = (Base‘𝐺) |
mndidcl.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
mndidcl | ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndidcl.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | mndidcl.o | . 2 ⊢ 0 = (0g‘𝐺) | |
3 | eqid 2733 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | 1, 3 | mndid 18635 | . 2 ⊢ (𝐺 ∈ Mnd → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)) |
5 | 1, 2, 3, 4 | mgmidcl 18585 | 1 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ‘cfv 6544 Basecbs 17144 +gcplusg 17197 0gc0g 17385 Mndcmnd 18625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-riota 7365 df-ov 7412 df-0g 17387 df-mgm 18561 df-sgrp 18610 df-mnd 18626 |
This theorem is referenced by: mndbn0 18641 hashfinmndnn 18642 mndpfo 18648 prdsidlem 18657 imasmnd 18663 xpsmnd0 18666 idmhm 18681 mhmf1o 18682 issubmd 18687 submid 18691 0subm 18698 0mhm 18700 mhmco 18704 mhmeql 18707 submacs 18708 mndind 18709 prdspjmhm 18710 pwsdiagmhm 18712 pwsco1mhm 18713 pwsco2mhm 18714 gsumvallem2 18715 dfgrp2 18847 grpidcl 18850 mhmid 18946 mhmmnd 18947 mulgnn0cl 18970 mulgnn0z 18981 cntzsubm 19202 oppgmnd 19221 gex1 19459 mulgnn0di 19693 mulgmhm 19695 subcmn 19705 gsumval3 19775 gsumzcl2 19778 gsumzaddlem 19789 gsumzsplit 19795 gsumzmhm 19805 gsummpt1n0 19833 simpgnideld 19969 srgidcl 20022 srg0cl 20023 ringidcl 20083 gsummgp0 20130 pwssplit1 20670 dsmm0cl 21295 dsmmacl 21296 mndvlid 21895 mndvrid 21896 mdet0 22108 mndifsplit 22138 gsummatr01lem3 22159 pmatcollpw3fi1lem1 22288 tmdmulg 23596 tmdgsum 23599 tsms0 23646 tsmssplit 23656 tsmsxp 23659 cntzsnid 32213 submomnd 32228 omndmul2 32230 omndmul3 32231 omndmul 32232 ogrpinv0le 32233 gsumle 32242 slmd0vcl 32366 ply1degltdimlem 32707 sibf0 33333 sitmcl 33350 mhmcompl 41120 pwssplit4 41831 c0mgm 46708 c0mhm 46709 c0snmgmhm 46713 c0snmhm 46714 rngqiprngimf1 46785 mgpsumz 47038 mndpsuppss 47047 lco0 47108 mndtccatid 47713 |
Copyright terms: Public domain | W3C validator |