![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mndidcl | Structured version Visualization version GIF version |
Description: The identity element of a monoid belongs to the monoid. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
mndidcl.b | ⊢ 𝐵 = (Base‘𝐺) |
mndidcl.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
mndidcl | ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndidcl.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | mndidcl.o | . 2 ⊢ 0 = (0g‘𝐺) | |
3 | eqid 2740 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | 1, 3 | mndid 18782 | . 2 ⊢ (𝐺 ∈ Mnd → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)) |
5 | 1, 2, 3, 4 | mgmidcl 18704 | 1 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 Basecbs 17258 +gcplusg 17311 0gc0g 17499 Mndcmnd 18772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-riota 7404 df-ov 7451 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 |
This theorem is referenced by: mndbn0 18788 hashfinmndnn 18789 mndpfo 18795 prdsidlem 18804 imasmnd 18810 xpsmnd0 18813 idmhm 18830 mhmf1o 18831 mndvlid 18834 mndvrid 18835 issubmd 18841 submid 18845 0subm 18852 0mhm 18854 mhmco 18858 mhmeql 18861 submacs 18862 mndind 18863 prdspjmhm 18864 pwsdiagmhm 18866 pwsco1mhm 18867 pwsco2mhm 18868 gsumvallem2 18869 dfgrp2 19002 grpidcl 19005 mhmid 19103 mhmmnd 19104 mulgnn0cl 19130 mulgnn0z 19141 cntzsubm 19378 oppgmnd 19397 gex1 19633 mulgnn0di 19867 mulgmhm 19869 subcmn 19879 gsumval3 19949 gsumzcl2 19952 gsumzaddlem 19963 gsumzsplit 19969 gsumzmhm 19979 gsummpt1n0 20007 simpgnideld 20143 srgidcl 20226 srg0cl 20227 ringidcl 20289 gsummgp0 20341 c0mgm 20485 c0mhm 20486 c0snmgmhm 20488 c0snmhm 20489 pwssplit1 21081 rngqiprngimf1 21333 dsmm0cl 21783 dsmmacl 21784 mhmcompl 22405 mdet0 22633 mndifsplit 22663 gsummatr01lem3 22684 pmatcollpw3fi1lem1 22813 tmdmulg 24121 tmdgsum 24124 tsms0 24171 tsmssplit 24181 tsmsxp 24184 mndlactfo 33013 mndractfo 33015 mndlactf1o 33016 mndractf1o 33017 cntzsnid 33045 submomnd 33060 omndmul2 33062 omndmul3 33063 omndmul 33064 ogrpinv0le 33065 gsumle 33074 slmd0vcl 33200 ply1degltdimlem 33635 lvecendof1f1o 33646 sibf0 34299 sitmcl 34316 primrootsunit1 42054 primrootscoprmpow 42056 primrootscoprbij 42059 evl1gprodd 42074 ringexp0nn 42091 aks6d1c5lem2 42095 pwssplit4 43046 mgpsumz 48087 mndpsuppss 48096 lco0 48156 mndtccatid 48760 |
Copyright terms: Public domain | W3C validator |