Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mndidcl | Structured version Visualization version GIF version |
Description: The identity element of a monoid belongs to the monoid. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
mndidcl.b | ⊢ 𝐵 = (Base‘𝐺) |
mndidcl.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
mndidcl | ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndidcl.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | mndidcl.o | . 2 ⊢ 0 = (0g‘𝐺) | |
3 | eqid 2739 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | 1, 3 | mndid 18376 | . 2 ⊢ (𝐺 ∈ Mnd → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)) |
5 | 1, 2, 3, 4 | mgmidcl 18331 | 1 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 ‘cfv 6430 Basecbs 16893 +gcplusg 16943 0gc0g 17131 Mndcmnd 18366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-iota 6388 df-fun 6432 df-fv 6438 df-riota 7225 df-ov 7271 df-0g 17133 df-mgm 18307 df-sgrp 18356 df-mnd 18367 |
This theorem is referenced by: mndbn0 18382 hashfinmndnn 18383 mndpfo 18389 prdsidlem 18398 imasmnd 18404 idmhm 18420 mhmf1o 18421 issubmd 18426 submid 18430 0subm 18437 0mhm 18439 mhmco 18443 mhmeql 18445 submacs 18446 mndind 18447 prdspjmhm 18448 pwsdiagmhm 18450 pwsco1mhm 18451 pwsco2mhm 18452 gsumvallem2 18453 dfgrp2 18585 grpidcl 18588 mhmid 18677 mhmmnd 18678 mulgnn0cl 18701 mulgnn0z 18711 cntzsubm 18923 oppgmnd 18942 gex1 19177 mulgnn0di 19408 mulgmhm 19410 subcmn 19419 gsumval3 19489 gsumzcl2 19492 gsumzaddlem 19503 gsumzsplit 19509 gsumzmhm 19519 gsummpt1n0 19547 simpgnideld 19683 srgidcl 19735 srg0cl 19736 ringidcl 19788 gsummgp0 19828 pwssplit1 20302 dsmm0cl 20928 dsmmacl 20929 mndvlid 21523 mndvrid 21524 mdet0 21736 mndifsplit 21766 gsummatr01lem3 21787 pmatcollpw3fi1lem1 21916 tmdmulg 23224 tmdgsum 23227 tsms0 23274 tsmssplit 23284 tsmsxp 23287 cntzsnid 31300 submomnd 31315 omndmul2 31317 omndmul3 31318 omndmul 31319 ogrpinv0le 31320 gsumle 31329 slmd0vcl 31453 sibf0 32280 sitmcl 32297 pwssplit4 40894 c0mgm 45419 c0mhm 45420 c0snmgmhm 45424 c0snmhm 45425 mgpsumz 45650 mndpsuppss 45659 lco0 45720 mndtccatid 46326 |
Copyright terms: Public domain | W3C validator |