Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mndidcl | Structured version Visualization version GIF version |
Description: The identity element of a monoid belongs to the monoid. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
mndidcl.b | ⊢ 𝐵 = (Base‘𝐺) |
mndidcl.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
mndidcl | ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndidcl.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | mndidcl.o | . 2 ⊢ 0 = (0g‘𝐺) | |
3 | eqid 2738 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | 1, 3 | mndid 18310 | . 2 ⊢ (𝐺 ∈ Mnd → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)) |
5 | 1, 2, 3, 4 | mgmidcl 18265 | 1 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 Basecbs 16840 +gcplusg 16888 0gc0g 17067 Mndcmnd 18300 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-riota 7212 df-ov 7258 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 |
This theorem is referenced by: mndbn0 18316 hashfinmndnn 18317 mndpfo 18323 prdsidlem 18332 imasmnd 18338 idmhm 18354 mhmf1o 18355 issubmd 18360 submid 18364 0subm 18371 0mhm 18373 mhmco 18377 mhmeql 18379 submacs 18380 mndind 18381 prdspjmhm 18382 pwsdiagmhm 18384 pwsco1mhm 18385 pwsco2mhm 18386 gsumvallem2 18387 dfgrp2 18519 grpidcl 18522 mhmid 18611 mhmmnd 18612 mulgnn0cl 18635 mulgnn0z 18645 cntzsubm 18857 oppgmnd 18876 gex1 19111 mulgnn0di 19342 mulgmhm 19344 subcmn 19353 gsumval3 19423 gsumzcl2 19426 gsumzaddlem 19437 gsumzsplit 19443 gsumzmhm 19453 gsummpt1n0 19481 simpgnideld 19617 srgidcl 19669 srg0cl 19670 ringidcl 19722 gsummgp0 19762 pwssplit1 20236 dsmm0cl 20857 dsmmacl 20858 mndvlid 21452 mndvrid 21453 mdet0 21663 mndifsplit 21693 gsummatr01lem3 21714 pmatcollpw3fi1lem1 21843 tmdmulg 23151 tmdgsum 23154 tsms0 23201 tsmssplit 23211 tsmsxp 23214 cntzsnid 31223 submomnd 31238 omndmul2 31240 omndmul3 31241 omndmul 31242 ogrpinv0le 31243 gsumle 31252 slmd0vcl 31376 sibf0 32201 sitmcl 32218 pwssplit4 40830 c0mgm 45355 c0mhm 45356 c0snmgmhm 45360 c0snmhm 45361 mgpsumz 45586 mndpsuppss 45595 lco0 45656 mndtccatid 46260 |
Copyright terms: Public domain | W3C validator |