Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mndidcl | Structured version Visualization version GIF version |
Description: The identity element of a monoid belongs to the monoid. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
mndidcl.b | ⊢ 𝐵 = (Base‘𝐺) |
mndidcl.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
mndidcl | ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndidcl.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | mndidcl.o | . 2 ⊢ 0 = (0g‘𝐺) | |
3 | eqid 2737 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | 1, 3 | mndid 18183 | . 2 ⊢ (𝐺 ∈ Mnd → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)) |
5 | 1, 2, 3, 4 | mgmidcl 18138 | 1 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 ‘cfv 6380 Basecbs 16760 +gcplusg 16802 0gc0g 16944 Mndcmnd 18173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-iota 6338 df-fun 6382 df-fv 6388 df-riota 7170 df-ov 7216 df-0g 16946 df-mgm 18114 df-sgrp 18163 df-mnd 18174 |
This theorem is referenced by: mndbn0 18189 hashfinmndnn 18190 mndpfo 18196 prdsidlem 18205 imasmnd 18211 idmhm 18227 mhmf1o 18228 issubmd 18233 submid 18237 0subm 18244 0mhm 18246 mhmco 18250 mhmeql 18252 submacs 18253 mndind 18254 prdspjmhm 18255 pwsdiagmhm 18257 pwsco1mhm 18258 pwsco2mhm 18259 gsumvallem2 18260 dfgrp2 18392 grpidcl 18395 mhmid 18484 mhmmnd 18485 mulgnn0cl 18508 mulgnn0z 18518 cntzsubm 18730 oppgmnd 18746 gex1 18980 mulgnn0di 19211 mulgmhm 19213 subcmn 19222 gsumval3 19292 gsumzcl2 19295 gsumzaddlem 19306 gsumzsplit 19312 gsumzmhm 19322 gsummpt1n0 19350 simpgnideld 19486 srgidcl 19533 srg0cl 19534 ringidcl 19586 gsummgp0 19626 pwssplit1 20096 dsmm0cl 20702 dsmmacl 20703 mndvlid 21292 mndvrid 21293 mdet0 21503 mndifsplit 21533 gsummatr01lem3 21554 pmatcollpw3fi1lem1 21683 tmdmulg 22989 tmdgsum 22992 tsms0 23039 tsmssplit 23049 tsmsxp 23052 cntzsnid 31040 submomnd 31055 omndmul2 31057 omndmul3 31058 omndmul 31059 ogrpinv0le 31060 gsumle 31069 slmd0vcl 31193 sibf0 32013 sitmcl 32030 pwssplit4 40617 c0mgm 45140 c0mhm 45141 c0snmgmhm 45145 c0snmhm 45146 mgpsumz 45371 mndpsuppss 45380 lco0 45441 mndtccatid 46045 |
Copyright terms: Public domain | W3C validator |