| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndidcl | Structured version Visualization version GIF version | ||
| Description: The identity element of a monoid belongs to the monoid. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| mndidcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| mndidcl.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| mndidcl | ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndidcl.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | mndidcl.o | . 2 ⊢ 0 = (0g‘𝐺) | |
| 3 | eqid 2731 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | 1, 3 | mndid 18652 | . 2 ⊢ (𝐺 ∈ Mnd → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)) |
| 5 | 1, 2, 3, 4 | mgmidcl 18574 | 1 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 Basecbs 17120 +gcplusg 17161 0gc0g 17343 Mndcmnd 18642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-riota 7303 df-ov 7349 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 |
| This theorem is referenced by: mndbn0 18658 hashfinmndnn 18659 mndpfo 18665 mndpsuppss 18673 prdsidlem 18677 imasmnd 18683 xpsmnd0 18686 idmhm 18703 mhmf1o 18704 mndvlid 18707 mndvrid 18708 issubmd 18714 submid 18718 0subm 18725 0mhm 18727 mhmco 18731 mhmeql 18734 submacs 18735 mndind 18736 prdspjmhm 18737 pwsdiagmhm 18739 pwsco1mhm 18740 pwsco2mhm 18741 gsumvallem2 18742 dfgrp2 18875 grpidcl 18878 mhmid 18976 mhmmnd 18977 mulgnn0cl 19003 mulgnn0z 19014 cntzsubm 19250 oppgmnd 19266 gex1 19503 mulgnn0di 19737 mulgmhm 19739 subcmn 19749 gsumval3 19819 gsumzcl2 19822 gsumzaddlem 19833 gsumzsplit 19839 gsumzmhm 19849 gsummpt1n0 19877 simpgnideld 20013 submomnd 20044 omndmul2 20045 omndmul3 20046 omndmul 20047 ogrpinv0le 20048 gsumle 20057 srgidcl 20117 srg0cl 20118 ringidcl 20183 gsummgp0 20236 c0mgm 20377 c0mhm 20378 c0snmgmhm 20380 c0snmhm 20381 pwssplit1 20993 rngqiprngimf1 21237 dsmm0cl 21677 dsmmacl 21678 mhmcompl 22295 mdet0 22521 mndifsplit 22551 gsummatr01lem3 22572 pmatcollpw3fi1lem1 22701 tmdmulg 24007 tmdgsum 24010 tsms0 24057 tsmssplit 24067 tsmsxp 24070 mndlactfo 33008 mndractfo 33010 mndlactf1o 33011 mndractf1o 33012 gsumwun 33045 cntzsnid 33049 fxpsubm 33141 slmd0vcl 33190 ply1degltdimlem 33635 lvecendof1f1o 33646 sibf0 34347 sitmcl 34364 primrootsunit1 42200 primrootscoprmpow 42202 primrootscoprbij 42205 evl1gprodd 42220 ringexp0nn 42237 aks6d1c5lem2 42241 pwssplit4 43192 mgpsumz 48472 lco0 48538 mndtccatid 49698 |
| Copyright terms: Public domain | W3C validator |