| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndidcl | Structured version Visualization version GIF version | ||
| Description: The identity element of a monoid belongs to the monoid. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| mndidcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| mndidcl.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| mndidcl | ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndidcl.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | mndidcl.o | . 2 ⊢ 0 = (0g‘𝐺) | |
| 3 | eqid 2729 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | 1, 3 | mndid 18618 | . 2 ⊢ (𝐺 ∈ Mnd → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)) |
| 5 | 1, 2, 3, 4 | mgmidcl 18540 | 1 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6482 Basecbs 17120 +gcplusg 17161 0gc0g 17343 Mndcmnd 18608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6438 df-fun 6484 df-fv 6490 df-riota 7306 df-ov 7352 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 |
| This theorem is referenced by: mndbn0 18624 hashfinmndnn 18625 mndpfo 18631 mndpsuppss 18639 prdsidlem 18643 imasmnd 18649 xpsmnd0 18652 idmhm 18669 mhmf1o 18670 mndvlid 18673 mndvrid 18674 issubmd 18680 submid 18684 0subm 18691 0mhm 18693 mhmco 18697 mhmeql 18700 submacs 18701 mndind 18702 prdspjmhm 18703 pwsdiagmhm 18705 pwsco1mhm 18706 pwsco2mhm 18707 gsumvallem2 18708 dfgrp2 18841 grpidcl 18844 mhmid 18942 mhmmnd 18943 mulgnn0cl 18969 mulgnn0z 18980 cntzsubm 19217 oppgmnd 19233 gex1 19470 mulgnn0di 19704 mulgmhm 19706 subcmn 19716 gsumval3 19786 gsumzcl2 19789 gsumzaddlem 19800 gsumzsplit 19806 gsumzmhm 19816 gsummpt1n0 19844 simpgnideld 19980 submomnd 20011 omndmul2 20012 omndmul3 20013 omndmul 20014 ogrpinv0le 20015 gsumle 20024 srgidcl 20084 srg0cl 20085 ringidcl 20150 gsummgp0 20203 c0mgm 20344 c0mhm 20345 c0snmgmhm 20347 c0snmhm 20348 pwssplit1 20963 rngqiprngimf1 21207 dsmm0cl 21647 dsmmacl 21648 mhmcompl 22265 mdet0 22491 mndifsplit 22521 gsummatr01lem3 22542 pmatcollpw3fi1lem1 22671 tmdmulg 23977 tmdgsum 23980 tsms0 24027 tsmssplit 24037 tsmsxp 24040 mndlactfo 32981 mndractfo 32983 mndlactf1o 32984 mndractf1o 32985 gsumwun 33018 cntzsnid 33022 fxpsubm 33114 slmd0vcl 33163 ply1degltdimlem 33589 lvecendof1f1o 33600 sibf0 34302 sitmcl 34319 primrootsunit1 42070 primrootscoprmpow 42072 primrootscoprbij 42075 evl1gprodd 42090 ringexp0nn 42107 aks6d1c5lem2 42111 pwssplit4 43062 mgpsumz 48346 lco0 48412 mndtccatid 49572 |
| Copyright terms: Public domain | W3C validator |