| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndidcl | Structured version Visualization version GIF version | ||
| Description: The identity element of a monoid belongs to the monoid. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| mndidcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| mndidcl.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| mndidcl | ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndidcl.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | mndidcl.o | . 2 ⊢ 0 = (0g‘𝐺) | |
| 3 | eqid 2735 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | 1, 3 | mndid 18720 | . 2 ⊢ (𝐺 ∈ Mnd → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)) |
| 5 | 1, 2, 3, 4 | mgmidcl 18642 | 1 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ‘cfv 6530 Basecbs 17226 +gcplusg 17269 0gc0g 17451 Mndcmnd 18710 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6483 df-fun 6532 df-fv 6538 df-riota 7360 df-ov 7406 df-0g 17453 df-mgm 18616 df-sgrp 18695 df-mnd 18711 |
| This theorem is referenced by: mndbn0 18726 hashfinmndnn 18727 mndpfo 18733 mndpsuppss 18741 prdsidlem 18745 imasmnd 18751 xpsmnd0 18754 idmhm 18771 mhmf1o 18772 mndvlid 18775 mndvrid 18776 issubmd 18782 submid 18786 0subm 18793 0mhm 18795 mhmco 18799 mhmeql 18802 submacs 18803 mndind 18804 prdspjmhm 18805 pwsdiagmhm 18807 pwsco1mhm 18808 pwsco2mhm 18809 gsumvallem2 18810 dfgrp2 18943 grpidcl 18946 mhmid 19044 mhmmnd 19045 mulgnn0cl 19071 mulgnn0z 19082 cntzsubm 19319 oppgmnd 19335 gex1 19570 mulgnn0di 19804 mulgmhm 19806 subcmn 19816 gsumval3 19886 gsumzcl2 19889 gsumzaddlem 19900 gsumzsplit 19906 gsumzmhm 19916 gsummpt1n0 19944 simpgnideld 20080 srgidcl 20157 srg0cl 20158 ringidcl 20223 gsummgp0 20276 c0mgm 20417 c0mhm 20418 c0snmgmhm 20420 c0snmhm 20421 pwssplit1 21015 rngqiprngimf1 21259 dsmm0cl 21698 dsmmacl 21699 mhmcompl 22316 mdet0 22542 mndifsplit 22572 gsummatr01lem3 22593 pmatcollpw3fi1lem1 22722 tmdmulg 24028 tmdgsum 24031 tsms0 24078 tsmssplit 24088 tsmsxp 24091 mndlactfo 32968 mndractfo 32970 mndlactf1o 32971 mndractf1o 32972 gsumwun 33005 cntzsnid 33009 submomnd 33024 omndmul2 33026 omndmul3 33027 omndmul 33028 ogrpinv0le 33029 gsumle 33038 slmd0vcl 33164 ply1degltdimlem 33608 lvecendof1f1o 33619 sibf0 34312 sitmcl 34329 primrootsunit1 42056 primrootscoprmpow 42058 primrootscoprbij 42061 evl1gprodd 42076 ringexp0nn 42093 aks6d1c5lem2 42097 pwssplit4 43060 mgpsumz 48285 lco0 48351 mndtccatid 49412 |
| Copyright terms: Public domain | W3C validator |