| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndidcl | Structured version Visualization version GIF version | ||
| Description: The identity element of a monoid belongs to the monoid. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| mndidcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| mndidcl.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| mndidcl | ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndidcl.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | mndidcl.o | . 2 ⊢ 0 = (0g‘𝐺) | |
| 3 | eqid 2729 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | 1, 3 | mndid 18653 | . 2 ⊢ (𝐺 ∈ Mnd → ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥(+g‘𝐺)𝑦) = 𝑦 ∧ (𝑦(+g‘𝐺)𝑥) = 𝑦)) |
| 5 | 1, 2, 3, 4 | mgmidcl 18575 | 1 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 Basecbs 17155 +gcplusg 17196 0gc0g 17378 Mndcmnd 18643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 df-riota 7326 df-ov 7372 df-0g 17380 df-mgm 18549 df-sgrp 18628 df-mnd 18644 |
| This theorem is referenced by: mndbn0 18659 hashfinmndnn 18660 mndpfo 18666 mndpsuppss 18674 prdsidlem 18678 imasmnd 18684 xpsmnd0 18687 idmhm 18704 mhmf1o 18705 mndvlid 18708 mndvrid 18709 issubmd 18715 submid 18719 0subm 18726 0mhm 18728 mhmco 18732 mhmeql 18735 submacs 18736 mndind 18737 prdspjmhm 18738 pwsdiagmhm 18740 pwsco1mhm 18741 pwsco2mhm 18742 gsumvallem2 18743 dfgrp2 18876 grpidcl 18879 mhmid 18977 mhmmnd 18978 mulgnn0cl 19004 mulgnn0z 19015 cntzsubm 19252 oppgmnd 19268 gex1 19505 mulgnn0di 19739 mulgmhm 19741 subcmn 19751 gsumval3 19821 gsumzcl2 19824 gsumzaddlem 19835 gsumzsplit 19841 gsumzmhm 19851 gsummpt1n0 19879 simpgnideld 20015 submomnd 20046 omndmul2 20047 omndmul3 20048 omndmul 20049 ogrpinv0le 20050 gsumle 20059 srgidcl 20119 srg0cl 20120 ringidcl 20185 gsummgp0 20238 c0mgm 20379 c0mhm 20380 c0snmgmhm 20382 c0snmhm 20383 pwssplit1 20998 rngqiprngimf1 21242 dsmm0cl 21682 dsmmacl 21683 mhmcompl 22300 mdet0 22526 mndifsplit 22556 gsummatr01lem3 22577 pmatcollpw3fi1lem1 22706 tmdmulg 24012 tmdgsum 24015 tsms0 24062 tsmssplit 24072 tsmsxp 24075 mndlactfo 33011 mndractfo 33013 mndlactf1o 33014 mndractf1o 33015 gsumwun 33048 cntzsnid 33052 fxpsubm 33144 slmd0vcl 33190 ply1degltdimlem 33611 lvecendof1f1o 33622 sibf0 34318 sitmcl 34335 primrootsunit1 42078 primrootscoprmpow 42080 primrootscoprbij 42083 evl1gprodd 42098 ringexp0nn 42115 aks6d1c5lem2 42119 pwssplit4 43071 mgpsumz 48343 lco0 48409 mndtccatid 49569 |
| Copyright terms: Public domain | W3C validator |