MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmsubm Structured version   Visualization version   GIF version

Theorem lsmsubm 18380
Description: The sum of two commuting submonoids is a submonoid. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmsubg.p = (LSSum‘𝐺)
lsmsubg.z 𝑍 = (Cntz‘𝐺)
Assertion
Ref Expression
lsmsubm ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑇 𝑈) ∈ (SubMnd‘𝐺))

Proof of Theorem lsmsubm
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submrcl 17660 . . . 4 (𝑇 ∈ (SubMnd‘𝐺) → 𝐺 ∈ Mnd)
213ad2ant1 1164 . . 3 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → 𝐺 ∈ Mnd)
3 eqid 2800 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
43submss 17664 . . . 4 (𝑇 ∈ (SubMnd‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
543ad2ant1 1164 . . 3 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → 𝑇 ⊆ (Base‘𝐺))
63submss 17664 . . . 4 (𝑈 ∈ (SubMnd‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
763ad2ant2 1165 . . 3 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → 𝑈 ⊆ (Base‘𝐺))
8 lsmsubg.p . . . 4 = (LSSum‘𝐺)
93, 8lsmssv 18370 . . 3 ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑇 𝑈) ⊆ (Base‘𝐺))
102, 5, 7, 9syl3anc 1491 . 2 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑇 𝑈) ⊆ (Base‘𝐺))
11 simp2 1168 . . . 4 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → 𝑈 ∈ (SubMnd‘𝐺))
123, 8lsmub1x 18373 . . . 4 ((𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺)) → 𝑇 ⊆ (𝑇 𝑈))
135, 11, 12syl2anc 580 . . 3 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → 𝑇 ⊆ (𝑇 𝑈))
14 eqid 2800 . . . . 5 (0g𝐺) = (0g𝐺)
1514subm0cl 17666 . . . 4 (𝑇 ∈ (SubMnd‘𝐺) → (0g𝐺) ∈ 𝑇)
16153ad2ant1 1164 . . 3 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (0g𝐺) ∈ 𝑇)
1713, 16sseldd 3800 . 2 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (0g𝐺) ∈ (𝑇 𝑈))
18 eqid 2800 . . . . . . 7 (+g𝐺) = (+g𝐺)
193, 18, 8lsmelvalx 18367 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑥 ∈ (𝑇 𝑈) ↔ ∃𝑎𝑇𝑐𝑈 𝑥 = (𝑎(+g𝐺)𝑐)))
202, 5, 7, 19syl3anc 1491 . . . . 5 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑥 ∈ (𝑇 𝑈) ↔ ∃𝑎𝑇𝑐𝑈 𝑥 = (𝑎(+g𝐺)𝑐)))
213, 18, 8lsmelvalx 18367 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑦 ∈ (𝑇 𝑈) ↔ ∃𝑏𝑇𝑑𝑈 𝑦 = (𝑏(+g𝐺)𝑑)))
222, 5, 7, 21syl3anc 1491 . . . . 5 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑦 ∈ (𝑇 𝑈) ↔ ∃𝑏𝑇𝑑𝑈 𝑦 = (𝑏(+g𝐺)𝑑)))
2320, 22anbi12d 625 . . . 4 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → ((𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈)) ↔ (∃𝑎𝑇𝑐𝑈 𝑥 = (𝑎(+g𝐺)𝑐) ∧ ∃𝑏𝑇𝑑𝑈 𝑦 = (𝑏(+g𝐺)𝑑))))
24 reeanv 3289 . . . . 5 (∃𝑎𝑇𝑏𝑇 (∃𝑐𝑈 𝑥 = (𝑎(+g𝐺)𝑐) ∧ ∃𝑑𝑈 𝑦 = (𝑏(+g𝐺)𝑑)) ↔ (∃𝑎𝑇𝑐𝑈 𝑥 = (𝑎(+g𝐺)𝑐) ∧ ∃𝑏𝑇𝑑𝑈 𝑦 = (𝑏(+g𝐺)𝑑)))
25 reeanv 3289 . . . . . . 7 (∃𝑐𝑈𝑑𝑈 (𝑥 = (𝑎(+g𝐺)𝑐) ∧ 𝑦 = (𝑏(+g𝐺)𝑑)) ↔ (∃𝑐𝑈 𝑥 = (𝑎(+g𝐺)𝑐) ∧ ∃𝑑𝑈 𝑦 = (𝑏(+g𝐺)𝑑)))
262adantr 473 . . . . . . . . . . . 12 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝐺 ∈ Mnd)
275adantr 473 . . . . . . . . . . . . 13 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑇 ⊆ (Base‘𝐺))
28 simprll 798 . . . . . . . . . . . . 13 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑎𝑇)
2927, 28sseldd 3800 . . . . . . . . . . . 12 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑎 ∈ (Base‘𝐺))
30 simprlr 799 . . . . . . . . . . . . 13 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑏𝑇)
3127, 30sseldd 3800 . . . . . . . . . . . 12 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑏 ∈ (Base‘𝐺))
327adantr 473 . . . . . . . . . . . . 13 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑈 ⊆ (Base‘𝐺))
33 simprrl 800 . . . . . . . . . . . . 13 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑐𝑈)
3432, 33sseldd 3800 . . . . . . . . . . . 12 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑐 ∈ (Base‘𝐺))
35 simprrr 801 . . . . . . . . . . . . 13 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑑𝑈)
3632, 35sseldd 3800 . . . . . . . . . . . 12 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑑 ∈ (Base‘𝐺))
37 simpl3 1247 . . . . . . . . . . . . . 14 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑇 ⊆ (𝑍𝑈))
3837, 30sseldd 3800 . . . . . . . . . . . . 13 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑏 ∈ (𝑍𝑈))
39 lsmsubg.z . . . . . . . . . . . . . 14 𝑍 = (Cntz‘𝐺)
4018, 39cntzi 18073 . . . . . . . . . . . . 13 ((𝑏 ∈ (𝑍𝑈) ∧ 𝑐𝑈) → (𝑏(+g𝐺)𝑐) = (𝑐(+g𝐺)𝑏))
4138, 33, 40syl2anc 580 . . . . . . . . . . . 12 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → (𝑏(+g𝐺)𝑐) = (𝑐(+g𝐺)𝑏))
423, 18, 26, 29, 31, 34, 36, 41mnd4g 17621 . . . . . . . . . . 11 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → ((𝑎(+g𝐺)𝑏)(+g𝐺)(𝑐(+g𝐺)𝑑)) = ((𝑎(+g𝐺)𝑐)(+g𝐺)(𝑏(+g𝐺)𝑑)))
43 simpl1 1243 . . . . . . . . . . . . 13 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑇 ∈ (SubMnd‘𝐺))
4418submcl 17667 . . . . . . . . . . . . 13 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑎𝑇𝑏𝑇) → (𝑎(+g𝐺)𝑏) ∈ 𝑇)
4543, 28, 30, 44syl3anc 1491 . . . . . . . . . . . 12 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → (𝑎(+g𝐺)𝑏) ∈ 𝑇)
46 simpl2 1245 . . . . . . . . . . . . 13 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑈 ∈ (SubMnd‘𝐺))
4718submcl 17667 . . . . . . . . . . . . 13 ((𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑐𝑈𝑑𝑈) → (𝑐(+g𝐺)𝑑) ∈ 𝑈)
4846, 33, 35, 47syl3anc 1491 . . . . . . . . . . . 12 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → (𝑐(+g𝐺)𝑑) ∈ 𝑈)
493, 18, 8lsmelvalix 18368 . . . . . . . . . . . 12 (((𝐺 ∈ Mnd ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) ∧ ((𝑎(+g𝐺)𝑏) ∈ 𝑇 ∧ (𝑐(+g𝐺)𝑑) ∈ 𝑈)) → ((𝑎(+g𝐺)𝑏)(+g𝐺)(𝑐(+g𝐺)𝑑)) ∈ (𝑇 𝑈))
5026, 27, 32, 45, 48, 49syl32anc 1498 . . . . . . . . . . 11 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → ((𝑎(+g𝐺)𝑏)(+g𝐺)(𝑐(+g𝐺)𝑑)) ∈ (𝑇 𝑈))
5142, 50eqeltrrd 2880 . . . . . . . . . 10 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → ((𝑎(+g𝐺)𝑐)(+g𝐺)(𝑏(+g𝐺)𝑑)) ∈ (𝑇 𝑈))
52 oveq12 6888 . . . . . . . . . . 11 ((𝑥 = (𝑎(+g𝐺)𝑐) ∧ 𝑦 = (𝑏(+g𝐺)𝑑)) → (𝑥(+g𝐺)𝑦) = ((𝑎(+g𝐺)𝑐)(+g𝐺)(𝑏(+g𝐺)𝑑)))
5352eleq1d 2864 . . . . . . . . . 10 ((𝑥 = (𝑎(+g𝐺)𝑐) ∧ 𝑦 = (𝑏(+g𝐺)𝑑)) → ((𝑥(+g𝐺)𝑦) ∈ (𝑇 𝑈) ↔ ((𝑎(+g𝐺)𝑐)(+g𝐺)(𝑏(+g𝐺)𝑑)) ∈ (𝑇 𝑈)))
5451, 53syl5ibrcom 239 . . . . . . . . 9 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → ((𝑥 = (𝑎(+g𝐺)𝑐) ∧ 𝑦 = (𝑏(+g𝐺)𝑑)) → (𝑥(+g𝐺)𝑦) ∈ (𝑇 𝑈)))
5554anassrs 460 . . . . . . . 8 ((((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑇)) ∧ (𝑐𝑈𝑑𝑈)) → ((𝑥 = (𝑎(+g𝐺)𝑐) ∧ 𝑦 = (𝑏(+g𝐺)𝑑)) → (𝑥(+g𝐺)𝑦) ∈ (𝑇 𝑈)))
5655rexlimdvva 3220 . . . . . . 7 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑇)) → (∃𝑐𝑈𝑑𝑈 (𝑥 = (𝑎(+g𝐺)𝑐) ∧ 𝑦 = (𝑏(+g𝐺)𝑑)) → (𝑥(+g𝐺)𝑦) ∈ (𝑇 𝑈)))
5725, 56syl5bir 235 . . . . . 6 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑇)) → ((∃𝑐𝑈 𝑥 = (𝑎(+g𝐺)𝑐) ∧ ∃𝑑𝑈 𝑦 = (𝑏(+g𝐺)𝑑)) → (𝑥(+g𝐺)𝑦) ∈ (𝑇 𝑈)))
5857rexlimdvva 3220 . . . . 5 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (∃𝑎𝑇𝑏𝑇 (∃𝑐𝑈 𝑥 = (𝑎(+g𝐺)𝑐) ∧ ∃𝑑𝑈 𝑦 = (𝑏(+g𝐺)𝑑)) → (𝑥(+g𝐺)𝑦) ∈ (𝑇 𝑈)))
5924, 58syl5bir 235 . . . 4 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → ((∃𝑎𝑇𝑐𝑈 𝑥 = (𝑎(+g𝐺)𝑐) ∧ ∃𝑏𝑇𝑑𝑈 𝑦 = (𝑏(+g𝐺)𝑑)) → (𝑥(+g𝐺)𝑦) ∈ (𝑇 𝑈)))
6023, 59sylbid 232 . . 3 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → ((𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈)) → (𝑥(+g𝐺)𝑦) ∈ (𝑇 𝑈)))
6160ralrimivv 3152 . 2 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → ∀𝑥 ∈ (𝑇 𝑈)∀𝑦 ∈ (𝑇 𝑈)(𝑥(+g𝐺)𝑦) ∈ (𝑇 𝑈))
623, 14, 18issubm 17661 . . 3 (𝐺 ∈ Mnd → ((𝑇 𝑈) ∈ (SubMnd‘𝐺) ↔ ((𝑇 𝑈) ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ (𝑇 𝑈) ∧ ∀𝑥 ∈ (𝑇 𝑈)∀𝑦 ∈ (𝑇 𝑈)(𝑥(+g𝐺)𝑦) ∈ (𝑇 𝑈))))
632, 62syl 17 . 2 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → ((𝑇 𝑈) ∈ (SubMnd‘𝐺) ↔ ((𝑇 𝑈) ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ (𝑇 𝑈) ∧ ∀𝑥 ∈ (𝑇 𝑈)∀𝑦 ∈ (𝑇 𝑈)(𝑥(+g𝐺)𝑦) ∈ (𝑇 𝑈))))
6410, 17, 61, 63mpbir3and 1443 1 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑇 𝑈) ∈ (SubMnd‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wcel 2157  wral 3090  wrex 3091  wss 3770  cfv 6102  (class class class)co 6879  Basecbs 16183  +gcplusg 16266  0gc0g 16414  Mndcmnd 17608  SubMndcsubmnd 17648  Cntzccntz 18059  LSSumclsm 18361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-rep 4965  ax-sep 4976  ax-nul 4984  ax-pow 5036  ax-pr 5098  ax-un 7184  ax-cnex 10281  ax-resscn 10282  ax-1cn 10283  ax-icn 10284  ax-addcl 10285  ax-addrcl 10286  ax-mulcl 10287  ax-mulrcl 10288  ax-mulcom 10289  ax-addass 10290  ax-mulass 10291  ax-distr 10292  ax-i2m1 10293  ax-1ne0 10294  ax-1rid 10295  ax-rnegex 10296  ax-rrecex 10297  ax-cnre 10298  ax-pre-lttri 10299  ax-pre-lttrn 10300  ax-pre-ltadd 10301  ax-pre-mulgt0 10302
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ne 2973  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3388  df-sbc 3635  df-csb 3730  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-pss 3786  df-nul 4117  df-if 4279  df-pw 4352  df-sn 4370  df-pr 4372  df-tp 4374  df-op 4376  df-uni 4630  df-iun 4713  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5221  df-eprel 5226  df-po 5234  df-so 5235  df-fr 5272  df-we 5274  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-rn 5324  df-res 5325  df-ima 5326  df-pred 5899  df-ord 5945  df-on 5946  df-lim 5947  df-suc 5948  df-iota 6065  df-fun 6104  df-fn 6105  df-f 6106  df-f1 6107  df-fo 6108  df-f1o 6109  df-fv 6110  df-riota 6840  df-ov 6882  df-oprab 6883  df-mpt2 6884  df-om 7301  df-1st 7402  df-2nd 7403  df-wrecs 7646  df-recs 7708  df-rdg 7746  df-er 7983  df-en 8197  df-dom 8198  df-sdom 8199  df-pnf 10366  df-mnf 10367  df-xr 10368  df-ltxr 10369  df-le 10370  df-sub 10559  df-neg 10560  df-nn 11314  df-2 11375  df-ndx 16186  df-slot 16187  df-base 16189  df-sets 16190  df-ress 16191  df-plusg 16279  df-0g 16416  df-mgm 17556  df-sgrp 17598  df-mnd 17609  df-submnd 17650  df-cntz 18061  df-lsm 18363
This theorem is referenced by:  lsmsubg  18381
  Copyright terms: Public domain W3C validator