MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmsubm Structured version   Visualization version   GIF version

Theorem lsmsubm 19173
Description: The sum of two commuting submonoids is a submonoid. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmsubg.p = (LSSum‘𝐺)
lsmsubg.z 𝑍 = (Cntz‘𝐺)
Assertion
Ref Expression
lsmsubm ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑇 𝑈) ∈ (SubMnd‘𝐺))

Proof of Theorem lsmsubm
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submrcl 18356 . . . 4 (𝑇 ∈ (SubMnd‘𝐺) → 𝐺 ∈ Mnd)
213ad2ant1 1131 . . 3 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → 𝐺 ∈ Mnd)
3 eqid 2738 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
43submss 18363 . . . 4 (𝑇 ∈ (SubMnd‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
543ad2ant1 1131 . . 3 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → 𝑇 ⊆ (Base‘𝐺))
63submss 18363 . . . 4 (𝑈 ∈ (SubMnd‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
763ad2ant2 1132 . . 3 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → 𝑈 ⊆ (Base‘𝐺))
8 lsmsubg.p . . . 4 = (LSSum‘𝐺)
93, 8lsmssv 19163 . . 3 ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑇 𝑈) ⊆ (Base‘𝐺))
102, 5, 7, 9syl3anc 1369 . 2 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑇 𝑈) ⊆ (Base‘𝐺))
11 simp2 1135 . . . 4 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → 𝑈 ∈ (SubMnd‘𝐺))
123, 8lsmub1x 19166 . . . 4 ((𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺)) → 𝑇 ⊆ (𝑇 𝑈))
135, 11, 12syl2anc 583 . . 3 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → 𝑇 ⊆ (𝑇 𝑈))
14 eqid 2738 . . . . 5 (0g𝐺) = (0g𝐺)
1514subm0cl 18365 . . . 4 (𝑇 ∈ (SubMnd‘𝐺) → (0g𝐺) ∈ 𝑇)
16153ad2ant1 1131 . . 3 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (0g𝐺) ∈ 𝑇)
1713, 16sseldd 3918 . 2 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (0g𝐺) ∈ (𝑇 𝑈))
18 eqid 2738 . . . . . . 7 (+g𝐺) = (+g𝐺)
193, 18, 8lsmelvalx 19160 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑥 ∈ (𝑇 𝑈) ↔ ∃𝑎𝑇𝑐𝑈 𝑥 = (𝑎(+g𝐺)𝑐)))
202, 5, 7, 19syl3anc 1369 . . . . 5 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑥 ∈ (𝑇 𝑈) ↔ ∃𝑎𝑇𝑐𝑈 𝑥 = (𝑎(+g𝐺)𝑐)))
213, 18, 8lsmelvalx 19160 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑦 ∈ (𝑇 𝑈) ↔ ∃𝑏𝑇𝑑𝑈 𝑦 = (𝑏(+g𝐺)𝑑)))
222, 5, 7, 21syl3anc 1369 . . . . 5 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑦 ∈ (𝑇 𝑈) ↔ ∃𝑏𝑇𝑑𝑈 𝑦 = (𝑏(+g𝐺)𝑑)))
2320, 22anbi12d 630 . . . 4 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → ((𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈)) ↔ (∃𝑎𝑇𝑐𝑈 𝑥 = (𝑎(+g𝐺)𝑐) ∧ ∃𝑏𝑇𝑑𝑈 𝑦 = (𝑏(+g𝐺)𝑑))))
24 reeanv 3292 . . . . 5 (∃𝑎𝑇𝑏𝑇 (∃𝑐𝑈 𝑥 = (𝑎(+g𝐺)𝑐) ∧ ∃𝑑𝑈 𝑦 = (𝑏(+g𝐺)𝑑)) ↔ (∃𝑎𝑇𝑐𝑈 𝑥 = (𝑎(+g𝐺)𝑐) ∧ ∃𝑏𝑇𝑑𝑈 𝑦 = (𝑏(+g𝐺)𝑑)))
25 reeanv 3292 . . . . . . 7 (∃𝑐𝑈𝑑𝑈 (𝑥 = (𝑎(+g𝐺)𝑐) ∧ 𝑦 = (𝑏(+g𝐺)𝑑)) ↔ (∃𝑐𝑈 𝑥 = (𝑎(+g𝐺)𝑐) ∧ ∃𝑑𝑈 𝑦 = (𝑏(+g𝐺)𝑑)))
262adantr 480 . . . . . . . . . . . 12 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝐺 ∈ Mnd)
275adantr 480 . . . . . . . . . . . . 13 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑇 ⊆ (Base‘𝐺))
28 simprll 775 . . . . . . . . . . . . 13 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑎𝑇)
2927, 28sseldd 3918 . . . . . . . . . . . 12 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑎 ∈ (Base‘𝐺))
30 simprlr 776 . . . . . . . . . . . . 13 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑏𝑇)
3127, 30sseldd 3918 . . . . . . . . . . . 12 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑏 ∈ (Base‘𝐺))
327adantr 480 . . . . . . . . . . . . 13 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑈 ⊆ (Base‘𝐺))
33 simprrl 777 . . . . . . . . . . . . 13 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑐𝑈)
3432, 33sseldd 3918 . . . . . . . . . . . 12 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑐 ∈ (Base‘𝐺))
35 simprrr 778 . . . . . . . . . . . . 13 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑑𝑈)
3632, 35sseldd 3918 . . . . . . . . . . . 12 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑑 ∈ (Base‘𝐺))
37 simpl3 1191 . . . . . . . . . . . . . 14 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑇 ⊆ (𝑍𝑈))
3837, 30sseldd 3918 . . . . . . . . . . . . 13 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑏 ∈ (𝑍𝑈))
39 lsmsubg.z . . . . . . . . . . . . . 14 𝑍 = (Cntz‘𝐺)
4018, 39cntzi 18850 . . . . . . . . . . . . 13 ((𝑏 ∈ (𝑍𝑈) ∧ 𝑐𝑈) → (𝑏(+g𝐺)𝑐) = (𝑐(+g𝐺)𝑏))
4138, 33, 40syl2anc 583 . . . . . . . . . . . 12 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → (𝑏(+g𝐺)𝑐) = (𝑐(+g𝐺)𝑏))
423, 18, 26, 29, 31, 34, 36, 41mnd4g 18314 . . . . . . . . . . 11 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → ((𝑎(+g𝐺)𝑏)(+g𝐺)(𝑐(+g𝐺)𝑑)) = ((𝑎(+g𝐺)𝑐)(+g𝐺)(𝑏(+g𝐺)𝑑)))
43 simpl1 1189 . . . . . . . . . . . . 13 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑇 ∈ (SubMnd‘𝐺))
4418submcl 18366 . . . . . . . . . . . . 13 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑎𝑇𝑏𝑇) → (𝑎(+g𝐺)𝑏) ∈ 𝑇)
4543, 28, 30, 44syl3anc 1369 . . . . . . . . . . . 12 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → (𝑎(+g𝐺)𝑏) ∈ 𝑇)
46 simpl2 1190 . . . . . . . . . . . . 13 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑈 ∈ (SubMnd‘𝐺))
4718submcl 18366 . . . . . . . . . . . . 13 ((𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑐𝑈𝑑𝑈) → (𝑐(+g𝐺)𝑑) ∈ 𝑈)
4846, 33, 35, 47syl3anc 1369 . . . . . . . . . . . 12 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → (𝑐(+g𝐺)𝑑) ∈ 𝑈)
493, 18, 8lsmelvalix 19161 . . . . . . . . . . . 12 (((𝐺 ∈ Mnd ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) ∧ ((𝑎(+g𝐺)𝑏) ∈ 𝑇 ∧ (𝑐(+g𝐺)𝑑) ∈ 𝑈)) → ((𝑎(+g𝐺)𝑏)(+g𝐺)(𝑐(+g𝐺)𝑑)) ∈ (𝑇 𝑈))
5026, 27, 32, 45, 48, 49syl32anc 1376 . . . . . . . . . . 11 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → ((𝑎(+g𝐺)𝑏)(+g𝐺)(𝑐(+g𝐺)𝑑)) ∈ (𝑇 𝑈))
5142, 50eqeltrrd 2840 . . . . . . . . . 10 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → ((𝑎(+g𝐺)𝑐)(+g𝐺)(𝑏(+g𝐺)𝑑)) ∈ (𝑇 𝑈))
52 oveq12 7264 . . . . . . . . . . 11 ((𝑥 = (𝑎(+g𝐺)𝑐) ∧ 𝑦 = (𝑏(+g𝐺)𝑑)) → (𝑥(+g𝐺)𝑦) = ((𝑎(+g𝐺)𝑐)(+g𝐺)(𝑏(+g𝐺)𝑑)))
5352eleq1d 2823 . . . . . . . . . 10 ((𝑥 = (𝑎(+g𝐺)𝑐) ∧ 𝑦 = (𝑏(+g𝐺)𝑑)) → ((𝑥(+g𝐺)𝑦) ∈ (𝑇 𝑈) ↔ ((𝑎(+g𝐺)𝑐)(+g𝐺)(𝑏(+g𝐺)𝑑)) ∈ (𝑇 𝑈)))
5451, 53syl5ibrcom 246 . . . . . . . . 9 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → ((𝑥 = (𝑎(+g𝐺)𝑐) ∧ 𝑦 = (𝑏(+g𝐺)𝑑)) → (𝑥(+g𝐺)𝑦) ∈ (𝑇 𝑈)))
5554anassrs 467 . . . . . . . 8 ((((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑇)) ∧ (𝑐𝑈𝑑𝑈)) → ((𝑥 = (𝑎(+g𝐺)𝑐) ∧ 𝑦 = (𝑏(+g𝐺)𝑑)) → (𝑥(+g𝐺)𝑦) ∈ (𝑇 𝑈)))
5655rexlimdvva 3222 . . . . . . 7 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑇)) → (∃𝑐𝑈𝑑𝑈 (𝑥 = (𝑎(+g𝐺)𝑐) ∧ 𝑦 = (𝑏(+g𝐺)𝑑)) → (𝑥(+g𝐺)𝑦) ∈ (𝑇 𝑈)))
5725, 56syl5bir 242 . . . . . 6 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑇)) → ((∃𝑐𝑈 𝑥 = (𝑎(+g𝐺)𝑐) ∧ ∃𝑑𝑈 𝑦 = (𝑏(+g𝐺)𝑑)) → (𝑥(+g𝐺)𝑦) ∈ (𝑇 𝑈)))
5857rexlimdvva 3222 . . . . 5 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (∃𝑎𝑇𝑏𝑇 (∃𝑐𝑈 𝑥 = (𝑎(+g𝐺)𝑐) ∧ ∃𝑑𝑈 𝑦 = (𝑏(+g𝐺)𝑑)) → (𝑥(+g𝐺)𝑦) ∈ (𝑇 𝑈)))
5924, 58syl5bir 242 . . . 4 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → ((∃𝑎𝑇𝑐𝑈 𝑥 = (𝑎(+g𝐺)𝑐) ∧ ∃𝑏𝑇𝑑𝑈 𝑦 = (𝑏(+g𝐺)𝑑)) → (𝑥(+g𝐺)𝑦) ∈ (𝑇 𝑈)))
6023, 59sylbid 239 . . 3 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → ((𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈)) → (𝑥(+g𝐺)𝑦) ∈ (𝑇 𝑈)))
6160ralrimivv 3113 . 2 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → ∀𝑥 ∈ (𝑇 𝑈)∀𝑦 ∈ (𝑇 𝑈)(𝑥(+g𝐺)𝑦) ∈ (𝑇 𝑈))
623, 14, 18issubm 18357 . . 3 (𝐺 ∈ Mnd → ((𝑇 𝑈) ∈ (SubMnd‘𝐺) ↔ ((𝑇 𝑈) ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ (𝑇 𝑈) ∧ ∀𝑥 ∈ (𝑇 𝑈)∀𝑦 ∈ (𝑇 𝑈)(𝑥(+g𝐺)𝑦) ∈ (𝑇 𝑈))))
632, 62syl 17 . 2 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → ((𝑇 𝑈) ∈ (SubMnd‘𝐺) ↔ ((𝑇 𝑈) ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ (𝑇 𝑈) ∧ ∀𝑥 ∈ (𝑇 𝑈)∀𝑦 ∈ (𝑇 𝑈)(𝑥(+g𝐺)𝑦) ∈ (𝑇 𝑈))))
6410, 17, 61, 63mpbir3and 1340 1 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑇 𝑈) ∈ (SubMnd‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  wss 3883  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  0gc0g 17067  Mndcmnd 18300  SubMndcsubmnd 18344  Cntzccntz 18836  LSSumclsm 19154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-cntz 18838  df-lsm 19156
This theorem is referenced by:  lsmsubg  19174
  Copyright terms: Public domain W3C validator