MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmsubm Structured version   Visualization version   GIF version

Theorem lsmsubm 19560
Description: The sum of two commuting submonoids is a submonoid. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmsubg.p = (LSSum‘𝐺)
lsmsubg.z 𝑍 = (Cntz‘𝐺)
Assertion
Ref Expression
lsmsubm ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑇 𝑈) ∈ (SubMnd‘𝐺))

Proof of Theorem lsmsubm
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submrcl 18705 . . . 4 (𝑇 ∈ (SubMnd‘𝐺) → 𝐺 ∈ Mnd)
213ad2ant1 1133 . . 3 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → 𝐺 ∈ Mnd)
3 eqid 2731 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
43submss 18712 . . . 4 (𝑇 ∈ (SubMnd‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
543ad2ant1 1133 . . 3 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → 𝑇 ⊆ (Base‘𝐺))
63submss 18712 . . . 4 (𝑈 ∈ (SubMnd‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
763ad2ant2 1134 . . 3 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → 𝑈 ⊆ (Base‘𝐺))
8 lsmsubg.p . . . 4 = (LSSum‘𝐺)
93, 8lsmssv 19550 . . 3 ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑇 𝑈) ⊆ (Base‘𝐺))
102, 5, 7, 9syl3anc 1373 . 2 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑇 𝑈) ⊆ (Base‘𝐺))
11 simp2 1137 . . . 4 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → 𝑈 ∈ (SubMnd‘𝐺))
123, 8lsmub1x 19553 . . . 4 ((𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺)) → 𝑇 ⊆ (𝑇 𝑈))
135, 11, 12syl2anc 584 . . 3 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → 𝑇 ⊆ (𝑇 𝑈))
14 eqid 2731 . . . . 5 (0g𝐺) = (0g𝐺)
1514subm0cl 18714 . . . 4 (𝑇 ∈ (SubMnd‘𝐺) → (0g𝐺) ∈ 𝑇)
16153ad2ant1 1133 . . 3 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (0g𝐺) ∈ 𝑇)
1713, 16sseldd 3930 . 2 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (0g𝐺) ∈ (𝑇 𝑈))
18 eqid 2731 . . . . . . 7 (+g𝐺) = (+g𝐺)
193, 18, 8lsmelvalx 19547 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑥 ∈ (𝑇 𝑈) ↔ ∃𝑎𝑇𝑐𝑈 𝑥 = (𝑎(+g𝐺)𝑐)))
202, 5, 7, 19syl3anc 1373 . . . . 5 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑥 ∈ (𝑇 𝑈) ↔ ∃𝑎𝑇𝑐𝑈 𝑥 = (𝑎(+g𝐺)𝑐)))
213, 18, 8lsmelvalx 19547 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑦 ∈ (𝑇 𝑈) ↔ ∃𝑏𝑇𝑑𝑈 𝑦 = (𝑏(+g𝐺)𝑑)))
222, 5, 7, 21syl3anc 1373 . . . . 5 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑦 ∈ (𝑇 𝑈) ↔ ∃𝑏𝑇𝑑𝑈 𝑦 = (𝑏(+g𝐺)𝑑)))
2320, 22anbi12d 632 . . . 4 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → ((𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈)) ↔ (∃𝑎𝑇𝑐𝑈 𝑥 = (𝑎(+g𝐺)𝑐) ∧ ∃𝑏𝑇𝑑𝑈 𝑦 = (𝑏(+g𝐺)𝑑))))
24 reeanv 3204 . . . . 5 (∃𝑎𝑇𝑏𝑇 (∃𝑐𝑈 𝑥 = (𝑎(+g𝐺)𝑐) ∧ ∃𝑑𝑈 𝑦 = (𝑏(+g𝐺)𝑑)) ↔ (∃𝑎𝑇𝑐𝑈 𝑥 = (𝑎(+g𝐺)𝑐) ∧ ∃𝑏𝑇𝑑𝑈 𝑦 = (𝑏(+g𝐺)𝑑)))
25 reeanv 3204 . . . . . . 7 (∃𝑐𝑈𝑑𝑈 (𝑥 = (𝑎(+g𝐺)𝑐) ∧ 𝑦 = (𝑏(+g𝐺)𝑑)) ↔ (∃𝑐𝑈 𝑥 = (𝑎(+g𝐺)𝑐) ∧ ∃𝑑𝑈 𝑦 = (𝑏(+g𝐺)𝑑)))
262adantr 480 . . . . . . . . . . . 12 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝐺 ∈ Mnd)
275adantr 480 . . . . . . . . . . . . 13 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑇 ⊆ (Base‘𝐺))
28 simprll 778 . . . . . . . . . . . . 13 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑎𝑇)
2927, 28sseldd 3930 . . . . . . . . . . . 12 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑎 ∈ (Base‘𝐺))
30 simprlr 779 . . . . . . . . . . . . 13 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑏𝑇)
3127, 30sseldd 3930 . . . . . . . . . . . 12 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑏 ∈ (Base‘𝐺))
327adantr 480 . . . . . . . . . . . . 13 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑈 ⊆ (Base‘𝐺))
33 simprrl 780 . . . . . . . . . . . . 13 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑐𝑈)
3432, 33sseldd 3930 . . . . . . . . . . . 12 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑐 ∈ (Base‘𝐺))
35 simprrr 781 . . . . . . . . . . . . 13 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑑𝑈)
3632, 35sseldd 3930 . . . . . . . . . . . 12 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑑 ∈ (Base‘𝐺))
37 simpl3 1194 . . . . . . . . . . . . . 14 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑇 ⊆ (𝑍𝑈))
3837, 30sseldd 3930 . . . . . . . . . . . . 13 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑏 ∈ (𝑍𝑈))
39 lsmsubg.z . . . . . . . . . . . . . 14 𝑍 = (Cntz‘𝐺)
4018, 39cntzi 19236 . . . . . . . . . . . . 13 ((𝑏 ∈ (𝑍𝑈) ∧ 𝑐𝑈) → (𝑏(+g𝐺)𝑐) = (𝑐(+g𝐺)𝑏))
4138, 33, 40syl2anc 584 . . . . . . . . . . . 12 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → (𝑏(+g𝐺)𝑐) = (𝑐(+g𝐺)𝑏))
423, 18, 26, 29, 31, 34, 36, 41mnd4g 18651 . . . . . . . . . . 11 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → ((𝑎(+g𝐺)𝑏)(+g𝐺)(𝑐(+g𝐺)𝑑)) = ((𝑎(+g𝐺)𝑐)(+g𝐺)(𝑏(+g𝐺)𝑑)))
43 simpl1 1192 . . . . . . . . . . . . 13 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑇 ∈ (SubMnd‘𝐺))
4418submcl 18715 . . . . . . . . . . . . 13 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑎𝑇𝑏𝑇) → (𝑎(+g𝐺)𝑏) ∈ 𝑇)
4543, 28, 30, 44syl3anc 1373 . . . . . . . . . . . 12 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → (𝑎(+g𝐺)𝑏) ∈ 𝑇)
46 simpl2 1193 . . . . . . . . . . . . 13 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → 𝑈 ∈ (SubMnd‘𝐺))
4718submcl 18715 . . . . . . . . . . . . 13 ((𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑐𝑈𝑑𝑈) → (𝑐(+g𝐺)𝑑) ∈ 𝑈)
4846, 33, 35, 47syl3anc 1373 . . . . . . . . . . . 12 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → (𝑐(+g𝐺)𝑑) ∈ 𝑈)
493, 18, 8lsmelvalix 19548 . . . . . . . . . . . 12 (((𝐺 ∈ Mnd ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) ∧ ((𝑎(+g𝐺)𝑏) ∈ 𝑇 ∧ (𝑐(+g𝐺)𝑑) ∈ 𝑈)) → ((𝑎(+g𝐺)𝑏)(+g𝐺)(𝑐(+g𝐺)𝑑)) ∈ (𝑇 𝑈))
5026, 27, 32, 45, 48, 49syl32anc 1380 . . . . . . . . . . 11 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → ((𝑎(+g𝐺)𝑏)(+g𝐺)(𝑐(+g𝐺)𝑑)) ∈ (𝑇 𝑈))
5142, 50eqeltrrd 2832 . . . . . . . . . 10 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → ((𝑎(+g𝐺)𝑐)(+g𝐺)(𝑏(+g𝐺)𝑑)) ∈ (𝑇 𝑈))
52 oveq12 7350 . . . . . . . . . . 11 ((𝑥 = (𝑎(+g𝐺)𝑐) ∧ 𝑦 = (𝑏(+g𝐺)𝑑)) → (𝑥(+g𝐺)𝑦) = ((𝑎(+g𝐺)𝑐)(+g𝐺)(𝑏(+g𝐺)𝑑)))
5352eleq1d 2816 . . . . . . . . . 10 ((𝑥 = (𝑎(+g𝐺)𝑐) ∧ 𝑦 = (𝑏(+g𝐺)𝑑)) → ((𝑥(+g𝐺)𝑦) ∈ (𝑇 𝑈) ↔ ((𝑎(+g𝐺)𝑐)(+g𝐺)(𝑏(+g𝐺)𝑑)) ∈ (𝑇 𝑈)))
5451, 53syl5ibrcom 247 . . . . . . . . 9 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ ((𝑎𝑇𝑏𝑇) ∧ (𝑐𝑈𝑑𝑈))) → ((𝑥 = (𝑎(+g𝐺)𝑐) ∧ 𝑦 = (𝑏(+g𝐺)𝑑)) → (𝑥(+g𝐺)𝑦) ∈ (𝑇 𝑈)))
5554anassrs 467 . . . . . . . 8 ((((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑇)) ∧ (𝑐𝑈𝑑𝑈)) → ((𝑥 = (𝑎(+g𝐺)𝑐) ∧ 𝑦 = (𝑏(+g𝐺)𝑑)) → (𝑥(+g𝐺)𝑦) ∈ (𝑇 𝑈)))
5655rexlimdvva 3189 . . . . . . 7 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑇)) → (∃𝑐𝑈𝑑𝑈 (𝑥 = (𝑎(+g𝐺)𝑐) ∧ 𝑦 = (𝑏(+g𝐺)𝑑)) → (𝑥(+g𝐺)𝑦) ∈ (𝑇 𝑈)))
5725, 56biimtrrid 243 . . . . . 6 (((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) ∧ (𝑎𝑇𝑏𝑇)) → ((∃𝑐𝑈 𝑥 = (𝑎(+g𝐺)𝑐) ∧ ∃𝑑𝑈 𝑦 = (𝑏(+g𝐺)𝑑)) → (𝑥(+g𝐺)𝑦) ∈ (𝑇 𝑈)))
5857rexlimdvva 3189 . . . . 5 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (∃𝑎𝑇𝑏𝑇 (∃𝑐𝑈 𝑥 = (𝑎(+g𝐺)𝑐) ∧ ∃𝑑𝑈 𝑦 = (𝑏(+g𝐺)𝑑)) → (𝑥(+g𝐺)𝑦) ∈ (𝑇 𝑈)))
5924, 58biimtrrid 243 . . . 4 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → ((∃𝑎𝑇𝑐𝑈 𝑥 = (𝑎(+g𝐺)𝑐) ∧ ∃𝑏𝑇𝑑𝑈 𝑦 = (𝑏(+g𝐺)𝑑)) → (𝑥(+g𝐺)𝑦) ∈ (𝑇 𝑈)))
6023, 59sylbid 240 . . 3 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → ((𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈)) → (𝑥(+g𝐺)𝑦) ∈ (𝑇 𝑈)))
6160ralrimivv 3173 . 2 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → ∀𝑥 ∈ (𝑇 𝑈)∀𝑦 ∈ (𝑇 𝑈)(𝑥(+g𝐺)𝑦) ∈ (𝑇 𝑈))
623, 14, 18issubm 18706 . . 3 (𝐺 ∈ Mnd → ((𝑇 𝑈) ∈ (SubMnd‘𝐺) ↔ ((𝑇 𝑈) ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ (𝑇 𝑈) ∧ ∀𝑥 ∈ (𝑇 𝑈)∀𝑦 ∈ (𝑇 𝑈)(𝑥(+g𝐺)𝑦) ∈ (𝑇 𝑈))))
632, 62syl 17 . 2 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → ((𝑇 𝑈) ∈ (SubMnd‘𝐺) ↔ ((𝑇 𝑈) ⊆ (Base‘𝐺) ∧ (0g𝐺) ∈ (𝑇 𝑈) ∧ ∀𝑥 ∈ (𝑇 𝑈)∀𝑦 ∈ (𝑇 𝑈)(𝑥(+g𝐺)𝑦) ∈ (𝑇 𝑈))))
6410, 17, 61, 63mpbir3and 1343 1 ((𝑇 ∈ (SubMnd‘𝐺) ∧ 𝑈 ∈ (SubMnd‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑇 𝑈) ∈ (SubMnd‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  wss 3897  cfv 6476  (class class class)co 7341  Basecbs 17115  +gcplusg 17156  0gc0g 17338  Mndcmnd 18637  SubMndcsubmnd 18685  Cntzccntz 19222  LSSumclsm 19541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-0g 17340  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-cntz 19224  df-lsm 19543
This theorem is referenced by:  lsmsubg  19561
  Copyright terms: Public domain W3C validator