MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzaddlem Structured version   Visualization version   GIF version

Theorem gsumzaddlem 19858
Description: The sum of two group sums. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 5-Jun-2019.)
Hypotheses
Ref Expression
gsumzadd.b 𝐵 = (Base‘𝐺)
gsumzadd.0 0 = (0g𝐺)
gsumzadd.p + = (+g𝐺)
gsumzadd.z 𝑍 = (Cntz‘𝐺)
gsumzadd.g (𝜑𝐺 ∈ Mnd)
gsumzadd.a (𝜑𝐴𝑉)
gsumzadd.fn (𝜑𝐹 finSupp 0 )
gsumzadd.hn (𝜑𝐻 finSupp 0 )
gsumzaddlem.w 𝑊 = ((𝐹𝐻) supp 0 )
gsumzaddlem.f (𝜑𝐹:𝐴𝐵)
gsumzaddlem.h (𝜑𝐻:𝐴𝐵)
gsumzaddlem.1 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumzaddlem.2 (𝜑 → ran 𝐻 ⊆ (𝑍‘ran 𝐻))
gsumzaddlem.3 (𝜑 → ran (𝐹f + 𝐻) ⊆ (𝑍‘ran (𝐹f + 𝐻)))
gsumzaddlem.4 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → (𝐹𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻𝑥))}))
Assertion
Ref Expression
gsumzaddlem (𝜑 → (𝐺 Σg (𝐹f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))
Distinct variable groups:   𝑥,𝑘, +   0 ,𝑘,𝑥   𝑘,𝐹,𝑥   𝑘,𝐺,𝑥   𝐴,𝑘,𝑥   𝐵,𝑘,𝑥   𝑘,𝐻,𝑥   𝜑,𝑘,𝑥   𝑥,𝑉   𝑘,𝑊,𝑥   𝑘,𝑍,𝑥
Allowed substitution hint:   𝑉(𝑘)

Proof of Theorem gsumzaddlem
Dummy variables 𝑓 𝑛 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumzadd.g . . . . . 6 (𝜑𝐺 ∈ Mnd)
2 gsumzadd.b . . . . . . . 8 𝐵 = (Base‘𝐺)
3 gsumzadd.0 . . . . . . . 8 0 = (0g𝐺)
42, 3mndidcl 18683 . . . . . . 7 (𝐺 ∈ Mnd → 0𝐵)
51, 4syl 17 . . . . . 6 (𝜑0𝐵)
6 gsumzadd.p . . . . . . 7 + = (+g𝐺)
72, 6, 3mndlid 18688 . . . . . 6 ((𝐺 ∈ Mnd ∧ 0𝐵) → ( 0 + 0 ) = 0 )
81, 5, 7syl2anc 584 . . . . 5 (𝜑 → ( 0 + 0 ) = 0 )
98adantr 480 . . . 4 ((𝜑𝑊 = ∅) → ( 0 + 0 ) = 0 )
10 gsumzaddlem.f . . . . . . . 8 (𝜑𝐹:𝐴𝐵)
11 gsumzadd.a . . . . . . . 8 (𝜑𝐴𝑉)
123fvexi 6875 . . . . . . . . 9 0 ∈ V
1312a1i 11 . . . . . . . 8 (𝜑0 ∈ V)
14 gsumzaddlem.h . . . . . . . . . . 11 (𝜑𝐻:𝐴𝐵)
1514, 11fexd 7204 . . . . . . . . . 10 (𝜑𝐻 ∈ V)
1615suppun 8166 . . . . . . . . 9 (𝜑 → (𝐹 supp 0 ) ⊆ ((𝐹𝐻) supp 0 ))
17 gsumzaddlem.w . . . . . . . . 9 𝑊 = ((𝐹𝐻) supp 0 )
1816, 17sseqtrrdi 3991 . . . . . . . 8 (𝜑 → (𝐹 supp 0 ) ⊆ 𝑊)
1910, 11, 13, 18gsumcllem 19845 . . . . . . 7 ((𝜑𝑊 = ∅) → 𝐹 = (𝑥𝐴0 ))
2019oveq2d 7406 . . . . . 6 ((𝜑𝑊 = ∅) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑥𝐴0 )))
213gsumz 18770 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝐴𝑉) → (𝐺 Σg (𝑥𝐴0 )) = 0 )
221, 11, 21syl2anc 584 . . . . . . 7 (𝜑 → (𝐺 Σg (𝑥𝐴0 )) = 0 )
2322adantr 480 . . . . . 6 ((𝜑𝑊 = ∅) → (𝐺 Σg (𝑥𝐴0 )) = 0 )
2420, 23eqtrd 2765 . . . . 5 ((𝜑𝑊 = ∅) → (𝐺 Σg 𝐹) = 0 )
2510, 11fexd 7204 . . . . . . . . . . 11 (𝜑𝐹 ∈ V)
2625suppun 8166 . . . . . . . . . 10 (𝜑 → (𝐻 supp 0 ) ⊆ ((𝐻𝐹) supp 0 ))
27 uncom 4124 . . . . . . . . . . 11 (𝐹𝐻) = (𝐻𝐹)
2827oveq1i 7400 . . . . . . . . . 10 ((𝐹𝐻) supp 0 ) = ((𝐻𝐹) supp 0 )
2926, 28sseqtrrdi 3991 . . . . . . . . 9 (𝜑 → (𝐻 supp 0 ) ⊆ ((𝐹𝐻) supp 0 ))
3029, 17sseqtrrdi 3991 . . . . . . . 8 (𝜑 → (𝐻 supp 0 ) ⊆ 𝑊)
3114, 11, 13, 30gsumcllem 19845 . . . . . . 7 ((𝜑𝑊 = ∅) → 𝐻 = (𝑥𝐴0 ))
3231oveq2d 7406 . . . . . 6 ((𝜑𝑊 = ∅) → (𝐺 Σg 𝐻) = (𝐺 Σg (𝑥𝐴0 )))
3332, 23eqtrd 2765 . . . . 5 ((𝜑𝑊 = ∅) → (𝐺 Σg 𝐻) = 0 )
3424, 33oveq12d 7408 . . . 4 ((𝜑𝑊 = ∅) → ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)) = ( 0 + 0 ))
3511adantr 480 . . . . . . . 8 ((𝜑𝑊 = ∅) → 𝐴𝑉)
365ad2antrr 726 . . . . . . . 8 (((𝜑𝑊 = ∅) ∧ 𝑥𝐴) → 0𝐵)
3735, 36, 36, 19, 31offval2 7676 . . . . . . 7 ((𝜑𝑊 = ∅) → (𝐹f + 𝐻) = (𝑥𝐴 ↦ ( 0 + 0 )))
389mpteq2dv 5204 . . . . . . 7 ((𝜑𝑊 = ∅) → (𝑥𝐴 ↦ ( 0 + 0 )) = (𝑥𝐴0 ))
3937, 38eqtrd 2765 . . . . . 6 ((𝜑𝑊 = ∅) → (𝐹f + 𝐻) = (𝑥𝐴0 ))
4039oveq2d 7406 . . . . 5 ((𝜑𝑊 = ∅) → (𝐺 Σg (𝐹f + 𝐻)) = (𝐺 Σg (𝑥𝐴0 )))
4140, 23eqtrd 2765 . . . 4 ((𝜑𝑊 = ∅) → (𝐺 Σg (𝐹f + 𝐻)) = 0 )
429, 34, 413eqtr4rd 2776 . . 3 ((𝜑𝑊 = ∅) → (𝐺 Σg (𝐹f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))
4342ex 412 . 2 (𝜑 → (𝑊 = ∅ → (𝐺 Σg (𝐹f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))))
441adantr 480 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → 𝐺 ∈ Mnd)
452, 6mndcl 18676 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ 𝑧𝐵𝑤𝐵) → (𝑧 + 𝑤) ∈ 𝐵)
46453expb 1120 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ (𝑧𝐵𝑤𝐵)) → (𝑧 + 𝑤) ∈ 𝐵)
4744, 46sylan 580 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ (𝑧𝐵𝑤𝐵)) → (𝑧 + 𝑤) ∈ 𝐵)
4847caovclg 7584 . . . . . . 7 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
49 simprl 770 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → (♯‘𝑊) ∈ ℕ)
50 nnuz 12843 . . . . . . . 8 ℕ = (ℤ‘1)
5149, 50eleqtrdi 2839 . . . . . . 7 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → (♯‘𝑊) ∈ (ℤ‘1))
5210adantr 480 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → 𝐹:𝐴𝐵)
53 f1of1 6802 . . . . . . . . . . . 12 (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑓:(1...(♯‘𝑊))–1-1𝑊)
5453ad2antll 729 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → 𝑓:(1...(♯‘𝑊))–1-1𝑊)
55 suppssdm 8159 . . . . . . . . . . . . . 14 ((𝐹𝐻) supp 0 ) ⊆ dom (𝐹𝐻)
5655a1i 11 . . . . . . . . . . . . 13 (𝜑 → ((𝐹𝐻) supp 0 ) ⊆ dom (𝐹𝐻))
5717a1i 11 . . . . . . . . . . . . 13 (𝜑𝑊 = ((𝐹𝐻) supp 0 ))
58 dmun 5877 . . . . . . . . . . . . . 14 dom (𝐹𝐻) = (dom 𝐹 ∪ dom 𝐻)
5910fdmd 6701 . . . . . . . . . . . . . . . 16 (𝜑 → dom 𝐹 = 𝐴)
6014fdmd 6701 . . . . . . . . . . . . . . . 16 (𝜑 → dom 𝐻 = 𝐴)
6159, 60uneq12d 4135 . . . . . . . . . . . . . . 15 (𝜑 → (dom 𝐹 ∪ dom 𝐻) = (𝐴𝐴))
62 unidm 4123 . . . . . . . . . . . . . . 15 (𝐴𝐴) = 𝐴
6361, 62eqtrdi 2781 . . . . . . . . . . . . . 14 (𝜑 → (dom 𝐹 ∪ dom 𝐻) = 𝐴)
6458, 63eqtr2id 2778 . . . . . . . . . . . . 13 (𝜑𝐴 = dom (𝐹𝐻))
6556, 57, 643sstr4d 4005 . . . . . . . . . . . 12 (𝜑𝑊𝐴)
6665adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → 𝑊𝐴)
67 f1ss 6764 . . . . . . . . . . 11 ((𝑓:(1...(♯‘𝑊))–1-1𝑊𝑊𝐴) → 𝑓:(1...(♯‘𝑊))–1-1𝐴)
6854, 66, 67syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → 𝑓:(1...(♯‘𝑊))–1-1𝐴)
69 f1f 6759 . . . . . . . . . 10 (𝑓:(1...(♯‘𝑊))–1-1𝐴𝑓:(1...(♯‘𝑊))⟶𝐴)
7068, 69syl 17 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → 𝑓:(1...(♯‘𝑊))⟶𝐴)
71 fco 6715 . . . . . . . . 9 ((𝐹:𝐴𝐵𝑓:(1...(♯‘𝑊))⟶𝐴) → (𝐹𝑓):(1...(♯‘𝑊))⟶𝐵)
7252, 70, 71syl2anc 584 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → (𝐹𝑓):(1...(♯‘𝑊))⟶𝐵)
7372ffvelcdmda 7059 . . . . . . 7 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → ((𝐹𝑓)‘𝑘) ∈ 𝐵)
7414adantr 480 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → 𝐻:𝐴𝐵)
75 fco 6715 . . . . . . . . 9 ((𝐻:𝐴𝐵𝑓:(1...(♯‘𝑊))⟶𝐴) → (𝐻𝑓):(1...(♯‘𝑊))⟶𝐵)
7674, 70, 75syl2anc 584 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → (𝐻𝑓):(1...(♯‘𝑊))⟶𝐵)
7776ffvelcdmda 7059 . . . . . . 7 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → ((𝐻𝑓)‘𝑘) ∈ 𝐵)
7852ffnd 6692 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → 𝐹 Fn 𝐴)
7974ffnd 6692 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → 𝐻 Fn 𝐴)
8011adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → 𝐴𝑉)
81 ovexd 7425 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → (1...(♯‘𝑊)) ∈ V)
82 inidm 4193 . . . . . . . . . . 11 (𝐴𝐴) = 𝐴
8378, 79, 70, 80, 80, 81, 82ofco 7681 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → ((𝐹f + 𝐻) ∘ 𝑓) = ((𝐹𝑓) ∘f + (𝐻𝑓)))
8483fveq1d 6863 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → (((𝐹f + 𝐻) ∘ 𝑓)‘𝑘) = (((𝐹𝑓) ∘f + (𝐻𝑓))‘𝑘))
8584adantr 480 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → (((𝐹f + 𝐻) ∘ 𝑓)‘𝑘) = (((𝐹𝑓) ∘f + (𝐻𝑓))‘𝑘))
86 fnfco 6728 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑓:(1...(♯‘𝑊))⟶𝐴) → (𝐹𝑓) Fn (1...(♯‘𝑊)))
8778, 70, 86syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → (𝐹𝑓) Fn (1...(♯‘𝑊)))
88 fnfco 6728 . . . . . . . . . 10 ((𝐻 Fn 𝐴𝑓:(1...(♯‘𝑊))⟶𝐴) → (𝐻𝑓) Fn (1...(♯‘𝑊)))
8979, 70, 88syl2anc 584 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → (𝐻𝑓) Fn (1...(♯‘𝑊)))
90 inidm 4193 . . . . . . . . 9 ((1...(♯‘𝑊)) ∩ (1...(♯‘𝑊))) = (1...(♯‘𝑊))
91 eqidd 2731 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → ((𝐹𝑓)‘𝑘) = ((𝐹𝑓)‘𝑘))
92 eqidd 2731 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → ((𝐻𝑓)‘𝑘) = ((𝐻𝑓)‘𝑘))
9387, 89, 81, 81, 90, 91, 92ofval 7667 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → (((𝐹𝑓) ∘f + (𝐻𝑓))‘𝑘) = (((𝐹𝑓)‘𝑘) + ((𝐻𝑓)‘𝑘)))
9485, 93eqtrd 2765 . . . . . . 7 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → (((𝐹f + 𝐻) ∘ 𝑓)‘𝑘) = (((𝐹𝑓)‘𝑘) + ((𝐻𝑓)‘𝑘)))
951ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → 𝐺 ∈ Mnd)
96 elfzouz 13631 . . . . . . . . . 10 (𝑛 ∈ (1..^(♯‘𝑊)) → 𝑛 ∈ (ℤ‘1))
9796adantl 481 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → 𝑛 ∈ (ℤ‘1))
98 elfzouz2 13642 . . . . . . . . . . . . 13 (𝑛 ∈ (1..^(♯‘𝑊)) → (♯‘𝑊) ∈ (ℤ𝑛))
9998adantl 481 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (♯‘𝑊) ∈ (ℤ𝑛))
100 fzss2 13532 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ (ℤ𝑛) → (1...𝑛) ⊆ (1...(♯‘𝑊)))
10199, 100syl 17 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (1...𝑛) ⊆ (1...(♯‘𝑊)))
102101sselda 3949 . . . . . . . . . 10 ((((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ (1...(♯‘𝑊)))
10373adantlr 715 . . . . . . . . . 10 ((((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → ((𝐹𝑓)‘𝑘) ∈ 𝐵)
104102, 103syldan 591 . . . . . . . . 9 ((((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) ∧ 𝑘 ∈ (1...𝑛)) → ((𝐹𝑓)‘𝑘) ∈ 𝐵)
1052, 6mndcl 18676 . . . . . . . . . . 11 ((𝐺 ∈ Mnd ∧ 𝑘𝐵𝑥𝐵) → (𝑘 + 𝑥) ∈ 𝐵)
1061053expb 1120 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ (𝑘𝐵𝑥𝐵)) → (𝑘 + 𝑥) ∈ 𝐵)
10795, 106sylan 580 . . . . . . . . 9 ((((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) ∧ (𝑘𝐵𝑥𝐵)) → (𝑘 + 𝑥) ∈ 𝐵)
10897, 104, 107seqcl 13994 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (seq1( + , (𝐹𝑓))‘𝑛) ∈ 𝐵)
10977adantlr 715 . . . . . . . . . 10 ((((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → ((𝐻𝑓)‘𝑘) ∈ 𝐵)
110102, 109syldan 591 . . . . . . . . 9 ((((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) ∧ 𝑘 ∈ (1...𝑛)) → ((𝐻𝑓)‘𝑘) ∈ 𝐵)
11197, 110, 107seqcl 13994 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (seq1( + , (𝐻𝑓))‘𝑛) ∈ 𝐵)
112 fzofzp1 13732 . . . . . . . . 9 (𝑛 ∈ (1..^(♯‘𝑊)) → (𝑛 + 1) ∈ (1...(♯‘𝑊)))
113 ffvelcdm 7056 . . . . . . . . 9 (((𝐹𝑓):(1...(♯‘𝑊))⟶𝐵 ∧ (𝑛 + 1) ∈ (1...(♯‘𝑊))) → ((𝐹𝑓)‘(𝑛 + 1)) ∈ 𝐵)
11472, 112, 113syl2an 596 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → ((𝐹𝑓)‘(𝑛 + 1)) ∈ 𝐵)
115 ffvelcdm 7056 . . . . . . . . 9 (((𝐻𝑓):(1...(♯‘𝑊))⟶𝐵 ∧ (𝑛 + 1) ∈ (1...(♯‘𝑊))) → ((𝐻𝑓)‘(𝑛 + 1)) ∈ 𝐵)
11676, 112, 115syl2an 596 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → ((𝐻𝑓)‘(𝑛 + 1)) ∈ 𝐵)
117 fvco3 6963 . . . . . . . . . . . 12 ((𝑓:(1...(♯‘𝑊))⟶𝐴 ∧ (𝑛 + 1) ∈ (1...(♯‘𝑊))) → ((𝐹𝑓)‘(𝑛 + 1)) = (𝐹‘(𝑓‘(𝑛 + 1))))
11870, 112, 117syl2an 596 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → ((𝐹𝑓)‘(𝑛 + 1)) = (𝐹‘(𝑓‘(𝑛 + 1))))
119 fveq2 6861 . . . . . . . . . . . . 13 (𝑘 = (𝑓‘(𝑛 + 1)) → (𝐹𝑘) = (𝐹‘(𝑓‘(𝑛 + 1))))
120119eleq1d 2814 . . . . . . . . . . . 12 (𝑘 = (𝑓‘(𝑛 + 1)) → ((𝐹𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))}) ↔ (𝐹‘(𝑓‘(𝑛 + 1))) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))})))
121 gsumzaddlem.4 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑥𝐴𝑘 ∈ (𝐴𝑥))) → (𝐹𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻𝑥))}))
122121expr 456 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (𝑘 ∈ (𝐴𝑥) → (𝐹𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻𝑥))})))
123122ralrimiv 3125 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → ∀𝑘 ∈ (𝐴𝑥)(𝐹𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻𝑥))}))
124123ex 412 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥𝐴 → ∀𝑘 ∈ (𝐴𝑥)(𝐹𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻𝑥))})))
125124alrimiv 1927 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥(𝑥𝐴 → ∀𝑘 ∈ (𝐴𝑥)(𝐹𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻𝑥))})))
126125ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → ∀𝑥(𝑥𝐴 → ∀𝑘 ∈ (𝐴𝑥)(𝐹𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻𝑥))})))
127 imassrn 6045 . . . . . . . . . . . . . 14 (𝑓 “ (1...𝑛)) ⊆ ran 𝑓
12870adantr 480 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → 𝑓:(1...(♯‘𝑊))⟶𝐴)
129128frnd 6699 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → ran 𝑓𝐴)
130127, 129sstrid 3961 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (𝑓 “ (1...𝑛)) ⊆ 𝐴)
131 vex 3454 . . . . . . . . . . . . . . 15 𝑓 ∈ V
132131imaex 7893 . . . . . . . . . . . . . 14 (𝑓 “ (1...𝑛)) ∈ V
133 sseq1 3975 . . . . . . . . . . . . . . 15 (𝑥 = (𝑓 “ (1...𝑛)) → (𝑥𝐴 ↔ (𝑓 “ (1...𝑛)) ⊆ 𝐴))
134 difeq2 4086 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑓 “ (1...𝑛)) → (𝐴𝑥) = (𝐴 ∖ (𝑓 “ (1...𝑛))))
135 reseq2 5948 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑓 “ (1...𝑛)) → (𝐻𝑥) = (𝐻 ↾ (𝑓 “ (1...𝑛))))
136135oveq2d 7406 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝑓 “ (1...𝑛)) → (𝐺 Σg (𝐻𝑥)) = (𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛)))))
137136sneqd 4604 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑓 “ (1...𝑛)) → {(𝐺 Σg (𝐻𝑥))} = {(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))})
138137fveq2d 6865 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑓 “ (1...𝑛)) → (𝑍‘{(𝐺 Σg (𝐻𝑥))}) = (𝑍‘{(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))}))
139138eleq2d 2815 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑓 “ (1...𝑛)) → ((𝐹𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻𝑥))}) ↔ (𝐹𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))})))
140134, 139raleqbidv 3321 . . . . . . . . . . . . . . 15 (𝑥 = (𝑓 “ (1...𝑛)) → (∀𝑘 ∈ (𝐴𝑥)(𝐹𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻𝑥))}) ↔ ∀𝑘 ∈ (𝐴 ∖ (𝑓 “ (1...𝑛)))(𝐹𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))})))
141133, 140imbi12d 344 . . . . . . . . . . . . . 14 (𝑥 = (𝑓 “ (1...𝑛)) → ((𝑥𝐴 → ∀𝑘 ∈ (𝐴𝑥)(𝐹𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻𝑥))})) ↔ ((𝑓 “ (1...𝑛)) ⊆ 𝐴 → ∀𝑘 ∈ (𝐴 ∖ (𝑓 “ (1...𝑛)))(𝐹𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))}))))
142132, 141spcv 3574 . . . . . . . . . . . . 13 (∀𝑥(𝑥𝐴 → ∀𝑘 ∈ (𝐴𝑥)(𝐹𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻𝑥))})) → ((𝑓 “ (1...𝑛)) ⊆ 𝐴 → ∀𝑘 ∈ (𝐴 ∖ (𝑓 “ (1...𝑛)))(𝐹𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))})))
143126, 130, 142sylc 65 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → ∀𝑘 ∈ (𝐴 ∖ (𝑓 “ (1...𝑛)))(𝐹𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))}))
144 ffvelcdm 7056 . . . . . . . . . . . . . 14 ((𝑓:(1...(♯‘𝑊))⟶𝐴 ∧ (𝑛 + 1) ∈ (1...(♯‘𝑊))) → (𝑓‘(𝑛 + 1)) ∈ 𝐴)
14570, 112, 144syl2an 596 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (𝑓‘(𝑛 + 1)) ∈ 𝐴)
146 fzp1nel 13579 . . . . . . . . . . . . . 14 ¬ (𝑛 + 1) ∈ (1...𝑛)
14768adantr 480 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → 𝑓:(1...(♯‘𝑊))–1-1𝐴)
148112adantl 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (𝑛 + 1) ∈ (1...(♯‘𝑊)))
149 f1elima 7241 . . . . . . . . . . . . . . 15 ((𝑓:(1...(♯‘𝑊))–1-1𝐴 ∧ (𝑛 + 1) ∈ (1...(♯‘𝑊)) ∧ (1...𝑛) ⊆ (1...(♯‘𝑊))) → ((𝑓‘(𝑛 + 1)) ∈ (𝑓 “ (1...𝑛)) ↔ (𝑛 + 1) ∈ (1...𝑛)))
150147, 148, 101, 149syl3anc 1373 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → ((𝑓‘(𝑛 + 1)) ∈ (𝑓 “ (1...𝑛)) ↔ (𝑛 + 1) ∈ (1...𝑛)))
151146, 150mtbiri 327 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → ¬ (𝑓‘(𝑛 + 1)) ∈ (𝑓 “ (1...𝑛)))
152145, 151eldifd 3928 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (𝑓‘(𝑛 + 1)) ∈ (𝐴 ∖ (𝑓 “ (1...𝑛))))
153120, 143, 152rspcdva 3592 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (𝐹‘(𝑓‘(𝑛 + 1))) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))}))
154118, 153eqeltrd 2829 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → ((𝐹𝑓)‘(𝑛 + 1)) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))}))
155 gsumzadd.z . . . . . . . . . . . . 13 𝑍 = (Cntz‘𝐺)
156132a1i 11 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (𝑓 “ (1...𝑛)) ∈ V)
15714ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → 𝐻:𝐴𝐵)
158157, 130fssresd 6730 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (𝐻 ↾ (𝑓 “ (1...𝑛))):(𝑓 “ (1...𝑛))⟶𝐵)
159 gsumzaddlem.2 . . . . . . . . . . . . . . 15 (𝜑 → ran 𝐻 ⊆ (𝑍‘ran 𝐻))
160159ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → ran 𝐻 ⊆ (𝑍‘ran 𝐻))
161 resss 5975 . . . . . . . . . . . . . . 15 (𝐻 ↾ (𝑓 “ (1...𝑛))) ⊆ 𝐻
162161rnssi 5907 . . . . . . . . . . . . . 14 ran (𝐻 ↾ (𝑓 “ (1...𝑛))) ⊆ ran 𝐻
163155cntzidss 19279 . . . . . . . . . . . . . 14 ((ran 𝐻 ⊆ (𝑍‘ran 𝐻) ∧ ran (𝐻 ↾ (𝑓 “ (1...𝑛))) ⊆ ran 𝐻) → ran (𝐻 ↾ (𝑓 “ (1...𝑛))) ⊆ (𝑍‘ran (𝐻 ↾ (𝑓 “ (1...𝑛)))))
164160, 162, 163sylancl 586 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → ran (𝐻 ↾ (𝑓 “ (1...𝑛))) ⊆ (𝑍‘ran (𝐻 ↾ (𝑓 “ (1...𝑛)))))
16597, 50eleqtrrdi 2840 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → 𝑛 ∈ ℕ)
166 f1ores 6817 . . . . . . . . . . . . . . 15 ((𝑓:(1...(♯‘𝑊))–1-1𝐴 ∧ (1...𝑛) ⊆ (1...(♯‘𝑊))) → (𝑓 ↾ (1...𝑛)):(1...𝑛)–1-1-onto→(𝑓 “ (1...𝑛)))
167147, 101, 166syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (𝑓 ↾ (1...𝑛)):(1...𝑛)–1-1-onto→(𝑓 “ (1...𝑛)))
168 f1of1 6802 . . . . . . . . . . . . . 14 ((𝑓 ↾ (1...𝑛)):(1...𝑛)–1-1-onto→(𝑓 “ (1...𝑛)) → (𝑓 ↾ (1...𝑛)):(1...𝑛)–1-1→(𝑓 “ (1...𝑛)))
169167, 168syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (𝑓 ↾ (1...𝑛)):(1...𝑛)–1-1→(𝑓 “ (1...𝑛)))
170 suppssdm 8159 . . . . . . . . . . . . . . 15 ((𝐻 ↾ (𝑓 “ (1...𝑛))) supp 0 ) ⊆ dom (𝐻 ↾ (𝑓 “ (1...𝑛)))
171 dmres 5986 . . . . . . . . . . . . . . . 16 dom (𝐻 ↾ (𝑓 “ (1...𝑛))) = ((𝑓 “ (1...𝑛)) ∩ dom 𝐻)
172171a1i 11 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → dom (𝐻 ↾ (𝑓 “ (1...𝑛))) = ((𝑓 “ (1...𝑛)) ∩ dom 𝐻))
173170, 172sseqtrid 3992 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → ((𝐻 ↾ (𝑓 “ (1...𝑛))) supp 0 ) ⊆ ((𝑓 “ (1...𝑛)) ∩ dom 𝐻))
174 inss1 4203 . . . . . . . . . . . . . . 15 ((𝑓 “ (1...𝑛)) ∩ dom 𝐻) ⊆ (𝑓 “ (1...𝑛))
175 df-ima 5654 . . . . . . . . . . . . . . . 16 (𝑓 “ (1...𝑛)) = ran (𝑓 ↾ (1...𝑛))
176175a1i 11 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (𝑓 “ (1...𝑛)) = ran (𝑓 ↾ (1...𝑛)))
177174, 176sseqtrid 3992 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → ((𝑓 “ (1...𝑛)) ∩ dom 𝐻) ⊆ ran (𝑓 ↾ (1...𝑛)))
178173, 177sstrd 3960 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → ((𝐻 ↾ (𝑓 “ (1...𝑛))) supp 0 ) ⊆ ran (𝑓 ↾ (1...𝑛)))
179 eqid 2730 . . . . . . . . . . . . 13 (((𝐻 ↾ (𝑓 “ (1...𝑛))) ∘ (𝑓 ↾ (1...𝑛))) supp 0 ) = (((𝐻 ↾ (𝑓 “ (1...𝑛))) ∘ (𝑓 ↾ (1...𝑛))) supp 0 )
1802, 3, 6, 155, 95, 156, 158, 164, 165, 169, 178, 179gsumval3 19844 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛)))) = (seq1( + , ((𝐻 ↾ (𝑓 “ (1...𝑛))) ∘ (𝑓 ↾ (1...𝑛))))‘𝑛))
181175eqimss2i 4011 . . . . . . . . . . . . . . . . . 18 ran (𝑓 ↾ (1...𝑛)) ⊆ (𝑓 “ (1...𝑛))
182 cores 6225 . . . . . . . . . . . . . . . . . 18 (ran (𝑓 ↾ (1...𝑛)) ⊆ (𝑓 “ (1...𝑛)) → ((𝐻 ↾ (𝑓 “ (1...𝑛))) ∘ (𝑓 ↾ (1...𝑛))) = (𝐻 ∘ (𝑓 ↾ (1...𝑛))))
183181, 182ax-mp 5 . . . . . . . . . . . . . . . . 17 ((𝐻 ↾ (𝑓 “ (1...𝑛))) ∘ (𝑓 ↾ (1...𝑛))) = (𝐻 ∘ (𝑓 ↾ (1...𝑛)))
184 resco 6226 . . . . . . . . . . . . . . . . 17 ((𝐻𝑓) ↾ (1...𝑛)) = (𝐻 ∘ (𝑓 ↾ (1...𝑛)))
185183, 184eqtr4i 2756 . . . . . . . . . . . . . . . 16 ((𝐻 ↾ (𝑓 “ (1...𝑛))) ∘ (𝑓 ↾ (1...𝑛))) = ((𝐻𝑓) ↾ (1...𝑛))
186185fveq1i 6862 . . . . . . . . . . . . . . 15 (((𝐻 ↾ (𝑓 “ (1...𝑛))) ∘ (𝑓 ↾ (1...𝑛)))‘𝑘) = (((𝐻𝑓) ↾ (1...𝑛))‘𝑘)
187 fvres 6880 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1...𝑛) → (((𝐻𝑓) ↾ (1...𝑛))‘𝑘) = ((𝐻𝑓)‘𝑘))
188186, 187eqtrid 2777 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...𝑛) → (((𝐻 ↾ (𝑓 “ (1...𝑛))) ∘ (𝑓 ↾ (1...𝑛)))‘𝑘) = ((𝐻𝑓)‘𝑘))
189188adantl 481 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) ∧ 𝑘 ∈ (1...𝑛)) → (((𝐻 ↾ (𝑓 “ (1...𝑛))) ∘ (𝑓 ↾ (1...𝑛)))‘𝑘) = ((𝐻𝑓)‘𝑘))
19097, 189seqfveq 13998 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (seq1( + , ((𝐻 ↾ (𝑓 “ (1...𝑛))) ∘ (𝑓 ↾ (1...𝑛))))‘𝑛) = (seq1( + , (𝐻𝑓))‘𝑛))
191180, 190eqtr2d 2766 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (seq1( + , (𝐻𝑓))‘𝑛) = (𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛)))))
192 fvex 6874 . . . . . . . . . . . 12 (seq1( + , (𝐻𝑓))‘𝑛) ∈ V
193192elsn 4607 . . . . . . . . . . 11 ((seq1( + , (𝐻𝑓))‘𝑛) ∈ {(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))} ↔ (seq1( + , (𝐻𝑓))‘𝑛) = (𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛)))))
194191, 193sylibr 234 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (seq1( + , (𝐻𝑓))‘𝑛) ∈ {(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))})
1956, 155cntzi 19268 . . . . . . . . . 10 ((((𝐹𝑓)‘(𝑛 + 1)) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))}) ∧ (seq1( + , (𝐻𝑓))‘𝑛) ∈ {(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))}) → (((𝐹𝑓)‘(𝑛 + 1)) + (seq1( + , (𝐻𝑓))‘𝑛)) = ((seq1( + , (𝐻𝑓))‘𝑛) + ((𝐹𝑓)‘(𝑛 + 1))))
196154, 194, 195syl2anc 584 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (((𝐹𝑓)‘(𝑛 + 1)) + (seq1( + , (𝐻𝑓))‘𝑛)) = ((seq1( + , (𝐻𝑓))‘𝑛) + ((𝐹𝑓)‘(𝑛 + 1))))
197196eqcomd 2736 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → ((seq1( + , (𝐻𝑓))‘𝑛) + ((𝐹𝑓)‘(𝑛 + 1))) = (((𝐹𝑓)‘(𝑛 + 1)) + (seq1( + , (𝐻𝑓))‘𝑛)))
1982, 6, 95, 108, 111, 114, 116, 197mnd4g 18682 . . . . . . 7 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (((seq1( + , (𝐹𝑓))‘𝑛) + (seq1( + , (𝐻𝑓))‘𝑛)) + (((𝐹𝑓)‘(𝑛 + 1)) + ((𝐻𝑓)‘(𝑛 + 1)))) = (((seq1( + , (𝐹𝑓))‘𝑛) + ((𝐹𝑓)‘(𝑛 + 1))) + ((seq1( + , (𝐻𝑓))‘𝑛) + ((𝐻𝑓)‘(𝑛 + 1)))))
19948, 48, 51, 73, 77, 94, 198seqcaopr3 14009 . . . . . 6 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → (seq1( + , ((𝐹f + 𝐻) ∘ 𝑓))‘(♯‘𝑊)) = ((seq1( + , (𝐹𝑓))‘(♯‘𝑊)) + (seq1( + , (𝐻𝑓))‘(♯‘𝑊))))
20047, 52, 74, 80, 80, 82off 7674 . . . . . . 7 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → (𝐹f + 𝐻):𝐴𝐵)
201 gsumzaddlem.3 . . . . . . . 8 (𝜑 → ran (𝐹f + 𝐻) ⊆ (𝑍‘ran (𝐹f + 𝐻)))
202201adantr 480 . . . . . . 7 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → ran (𝐹f + 𝐻) ⊆ (𝑍‘ran (𝐹f + 𝐻)))
20344, 106sylan 580 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ (𝑘𝐵𝑥𝐵)) → (𝑘 + 𝑥) ∈ 𝐵)
204203, 52, 74, 80, 80, 82off 7674 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → (𝐹f + 𝐻):𝐴𝐵)
205 eldifi 4097 . . . . . . . . . 10 (𝑥 ∈ (𝐴 ∖ ran 𝑓) → 𝑥𝐴)
206 eqidd 2731 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑥𝐴) → (𝐹𝑥) = (𝐹𝑥))
207 eqidd 2731 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑥𝐴) → (𝐻𝑥) = (𝐻𝑥))
20878, 79, 80, 80, 82, 206, 207ofval 7667 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑥𝐴) → ((𝐹f + 𝐻)‘𝑥) = ((𝐹𝑥) + (𝐻𝑥)))
209205, 208sylan2 593 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑥 ∈ (𝐴 ∖ ran 𝑓)) → ((𝐹f + 𝐻)‘𝑥) = ((𝐹𝑥) + (𝐻𝑥)))
21016adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → (𝐹 supp 0 ) ⊆ ((𝐹𝐻) supp 0 ))
211 f1ofo 6810 . . . . . . . . . . . . . . . 16 (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑓:(1...(♯‘𝑊))–onto𝑊)
212 forn 6778 . . . . . . . . . . . . . . . 16 (𝑓:(1...(♯‘𝑊))–onto𝑊 → ran 𝑓 = 𝑊)
213211, 212syl 17 . . . . . . . . . . . . . . 15 (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊 → ran 𝑓 = 𝑊)
214213, 17eqtrdi 2781 . . . . . . . . . . . . . 14 (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊 → ran 𝑓 = ((𝐹𝐻) supp 0 ))
215214sseq2d 3982 . . . . . . . . . . . . 13 (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊 → ((𝐹 supp 0 ) ⊆ ran 𝑓 ↔ (𝐹 supp 0 ) ⊆ ((𝐹𝐻) supp 0 )))
216215ad2antll 729 . . . . . . . . . . . 12 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → ((𝐹 supp 0 ) ⊆ ran 𝑓 ↔ (𝐹 supp 0 ) ⊆ ((𝐹𝐻) supp 0 )))
217210, 216mpbird 257 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → (𝐹 supp 0 ) ⊆ ran 𝑓)
21812a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → 0 ∈ V)
21952, 217, 80, 218suppssr 8177 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑥 ∈ (𝐴 ∖ ran 𝑓)) → (𝐹𝑥) = 0 )
22026adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → (𝐻 supp 0 ) ⊆ ((𝐻𝐹) supp 0 ))
221220, 28sseqtrrdi 3991 . . . . . . . . . . . 12 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → (𝐻 supp 0 ) ⊆ ((𝐹𝐻) supp 0 ))
222214sseq2d 3982 . . . . . . . . . . . . 13 (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊 → ((𝐻 supp 0 ) ⊆ ran 𝑓 ↔ (𝐻 supp 0 ) ⊆ ((𝐹𝐻) supp 0 )))
223222ad2antll 729 . . . . . . . . . . . 12 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → ((𝐻 supp 0 ) ⊆ ran 𝑓 ↔ (𝐻 supp 0 ) ⊆ ((𝐹𝐻) supp 0 )))
224221, 223mpbird 257 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → (𝐻 supp 0 ) ⊆ ran 𝑓)
22574, 224, 80, 218suppssr 8177 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑥 ∈ (𝐴 ∖ ran 𝑓)) → (𝐻𝑥) = 0 )
226219, 225oveq12d 7408 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑥 ∈ (𝐴 ∖ ran 𝑓)) → ((𝐹𝑥) + (𝐻𝑥)) = ( 0 + 0 ))
2278ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑥 ∈ (𝐴 ∖ ran 𝑓)) → ( 0 + 0 ) = 0 )
228209, 226, 2273eqtrd 2769 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) ∧ 𝑥 ∈ (𝐴 ∖ ran 𝑓)) → ((𝐹f + 𝐻)‘𝑥) = 0 )
229204, 228suppss 8176 . . . . . . 7 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → ((𝐹f + 𝐻) supp 0 ) ⊆ ran 𝑓)
230 ovex 7423 . . . . . . . . 9 (𝐹f + 𝐻) ∈ V
231230, 131coex 7909 . . . . . . . 8 ((𝐹f + 𝐻) ∘ 𝑓) ∈ V
232 suppimacnv 8156 . . . . . . . . 9 ((((𝐹f + 𝐻) ∘ 𝑓) ∈ V ∧ 0 ∈ V) → (((𝐹f + 𝐻) ∘ 𝑓) supp 0 ) = (((𝐹f + 𝐻) ∘ 𝑓) “ (V ∖ { 0 })))
233232eqcomd 2736 . . . . . . . 8 ((((𝐹f + 𝐻) ∘ 𝑓) ∈ V ∧ 0 ∈ V) → (((𝐹f + 𝐻) ∘ 𝑓) “ (V ∖ { 0 })) = (((𝐹f + 𝐻) ∘ 𝑓) supp 0 ))
234231, 12, 233mp2an 692 . . . . . . 7 (((𝐹f + 𝐻) ∘ 𝑓) “ (V ∖ { 0 })) = (((𝐹f + 𝐻) ∘ 𝑓) supp 0 )
2352, 3, 6, 155, 44, 80, 200, 202, 49, 68, 229, 234gsumval3 19844 . . . . . 6 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → (𝐺 Σg (𝐹f + 𝐻)) = (seq1( + , ((𝐹f + 𝐻) ∘ 𝑓))‘(♯‘𝑊)))
236 gsumzaddlem.1 . . . . . . . . 9 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
237236adantr 480 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
238 eqid 2730 . . . . . . . 8 ((𝐹𝑓) supp 0 ) = ((𝐹𝑓) supp 0 )
2392, 3, 6, 155, 44, 80, 52, 237, 49, 68, 217, 238gsumval3 19844 . . . . . . 7 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → (𝐺 Σg 𝐹) = (seq1( + , (𝐹𝑓))‘(♯‘𝑊)))
240159adantr 480 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → ran 𝐻 ⊆ (𝑍‘ran 𝐻))
241 eqid 2730 . . . . . . . 8 ((𝐻𝑓) supp 0 ) = ((𝐻𝑓) supp 0 )
2422, 3, 6, 155, 44, 80, 74, 240, 49, 68, 224, 241gsumval3 19844 . . . . . . 7 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → (𝐺 Σg 𝐻) = (seq1( + , (𝐻𝑓))‘(♯‘𝑊)))
243239, 242oveq12d 7408 . . . . . 6 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)) = ((seq1( + , (𝐹𝑓))‘(♯‘𝑊)) + (seq1( + , (𝐻𝑓))‘(♯‘𝑊))))
244199, 235, 2433eqtr4d 2775 . . . . 5 ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)) → (𝐺 Σg (𝐹f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))
245244expr 456 . . . 4 ((𝜑 ∧ (♯‘𝑊) ∈ ℕ) → (𝑓:(1...(♯‘𝑊))–1-1-onto𝑊 → (𝐺 Σg (𝐹f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))))
246245exlimdv 1933 . . 3 ((𝜑 ∧ (♯‘𝑊) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊 → (𝐺 Σg (𝐹f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))))
247246expimpd 453 . 2 (𝜑 → (((♯‘𝑊) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊) → (𝐺 Σg (𝐹f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))))
248 gsumzadd.fn . . . . 5 (𝜑𝐹 finSupp 0 )
249 gsumzadd.hn . . . . 5 (𝜑𝐻 finSupp 0 )
250248, 249fsuppun 9345 . . . 4 (𝜑 → ((𝐹𝐻) supp 0 ) ∈ Fin)
25117, 250eqeltrid 2833 . . 3 (𝜑𝑊 ∈ Fin)
252 fz1f1o 15683 . . 3 (𝑊 ∈ Fin → (𝑊 = ∅ ∨ ((♯‘𝑊) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)))
253251, 252syl 17 . 2 (𝜑 → (𝑊 = ∅ ∨ ((♯‘𝑊) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝑊))–1-1-onto𝑊)))
25443, 247, 253mpjaod 860 1 (𝜑 → (𝐺 Σg (𝐹f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  wal 1538   = wceq 1540  wex 1779  wcel 2109  wral 3045  Vcvv 3450  cdif 3914  cun 3915  cin 3916  wss 3917  c0 4299  {csn 4592   class class class wbr 5110  cmpt 5191  ccnv 5640  dom cdm 5641  ran crn 5642  cres 5643  cima 5644  ccom 5645   Fn wfn 6509  wf 6510  1-1wf1 6511  ontowfo 6512  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  f cof 7654   supp csupp 8142  Fincfn 8921   finSupp cfsupp 9319  1c1 11076   + caddc 11078  cn 12193  cuz 12800  ...cfz 13475  ..^cfzo 13622  seqcseq 13973  chash 14302  Basecbs 17186  +gcplusg 17227  0gc0g 17409   Σg cgsu 17410  Mndcmnd 18668  Cntzccntz 19254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-0g 17411  df-gsum 17412  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-cntz 19256
This theorem is referenced by:  gsumzadd  19859  dprdfadd  19959
  Copyright terms: Public domain W3C validator