Step | Hyp | Ref
| Expression |
1 | | gsumzadd.g |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ Mnd) |
2 | | gsumzadd.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐺) |
3 | | gsumzadd.0 |
. . . . . . . 8
⊢ 0 =
(0g‘𝐺) |
4 | 2, 3 | mndidcl 18400 |
. . . . . . 7
⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
5 | 1, 4 | syl 17 |
. . . . . 6
⊢ (𝜑 → 0 ∈ 𝐵) |
6 | | gsumzadd.p |
. . . . . . 7
⊢ + =
(+g‘𝐺) |
7 | 2, 6, 3 | mndlid 18405 |
. . . . . 6
⊢ ((𝐺 ∈ Mnd ∧ 0 ∈ 𝐵) → ( 0 + 0 ) = 0 ) |
8 | 1, 5, 7 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → ( 0 + 0 ) = 0 ) |
9 | 8 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑊 = ∅) → ( 0 + 0 ) = 0 ) |
10 | | gsumzaddlem.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
11 | | gsumzadd.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
12 | 3 | fvexi 6788 |
. . . . . . . . 9
⊢ 0 ∈
V |
13 | 12 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈ V) |
14 | | gsumzaddlem.h |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐻:𝐴⟶𝐵) |
15 | 14, 11 | fexd 7103 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐻 ∈ V) |
16 | 15 | suppun 8000 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹 supp 0 ) ⊆ ((𝐹 ∪ 𝐻) supp 0 )) |
17 | | gsumzaddlem.w |
. . . . . . . . 9
⊢ 𝑊 = ((𝐹 ∪ 𝐻) supp 0 ) |
18 | 16, 17 | sseqtrrdi 3972 |
. . . . . . . 8
⊢ (𝜑 → (𝐹 supp 0 ) ⊆ 𝑊) |
19 | 10, 11, 13, 18 | gsumcllem 19509 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑊 = ∅) → 𝐹 = (𝑥 ∈ 𝐴 ↦ 0 )) |
20 | 19 | oveq2d 7291 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑊 = ∅) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 0 ))) |
21 | 3 | gsumz 18474 |
. . . . . . . 8
⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 0 )) = 0 ) |
22 | 1, 11, 21 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 0 )) = 0 ) |
23 | 22 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑊 = ∅) → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 0 )) = 0 ) |
24 | 20, 23 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ 𝑊 = ∅) → (𝐺 Σg 𝐹) = 0 ) |
25 | 10, 11 | fexd 7103 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ V) |
26 | 25 | suppun 8000 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐻 supp 0 ) ⊆ ((𝐻 ∪ 𝐹) supp 0 )) |
27 | | uncom 4087 |
. . . . . . . . . . 11
⊢ (𝐹 ∪ 𝐻) = (𝐻 ∪ 𝐹) |
28 | 27 | oveq1i 7285 |
. . . . . . . . . 10
⊢ ((𝐹 ∪ 𝐻) supp 0 ) = ((𝐻 ∪ 𝐹) supp 0 ) |
29 | 26, 28 | sseqtrrdi 3972 |
. . . . . . . . 9
⊢ (𝜑 → (𝐻 supp 0 ) ⊆ ((𝐹 ∪ 𝐻) supp 0 )) |
30 | 29, 17 | sseqtrrdi 3972 |
. . . . . . . 8
⊢ (𝜑 → (𝐻 supp 0 ) ⊆ 𝑊) |
31 | 14, 11, 13, 30 | gsumcllem 19509 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑊 = ∅) → 𝐻 = (𝑥 ∈ 𝐴 ↦ 0 )) |
32 | 31 | oveq2d 7291 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑊 = ∅) → (𝐺 Σg 𝐻) = (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 0 ))) |
33 | 32, 23 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ 𝑊 = ∅) → (𝐺 Σg 𝐻) = 0 ) |
34 | 24, 33 | oveq12d 7293 |
. . . 4
⊢ ((𝜑 ∧ 𝑊 = ∅) → ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)) = ( 0 + 0 )) |
35 | 11 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑊 = ∅) → 𝐴 ∈ 𝑉) |
36 | 5 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑊 = ∅) ∧ 𝑥 ∈ 𝐴) → 0 ∈ 𝐵) |
37 | 35, 36, 36, 19, 31 | offval2 7553 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑊 = ∅) → (𝐹 ∘f + 𝐻) = (𝑥 ∈ 𝐴 ↦ ( 0 + 0 ))) |
38 | 9 | mpteq2dv 5176 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑊 = ∅) → (𝑥 ∈ 𝐴 ↦ ( 0 + 0 )) = (𝑥 ∈ 𝐴 ↦ 0 )) |
39 | 37, 38 | eqtrd 2778 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑊 = ∅) → (𝐹 ∘f + 𝐻) = (𝑥 ∈ 𝐴 ↦ 0 )) |
40 | 39 | oveq2d 7291 |
. . . . 5
⊢ ((𝜑 ∧ 𝑊 = ∅) → (𝐺 Σg (𝐹 ∘f + 𝐻)) = (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 0 ))) |
41 | 40, 23 | eqtrd 2778 |
. . . 4
⊢ ((𝜑 ∧ 𝑊 = ∅) → (𝐺 Σg (𝐹 ∘f + 𝐻)) = 0 ) |
42 | 9, 34, 41 | 3eqtr4rd 2789 |
. . 3
⊢ ((𝜑 ∧ 𝑊 = ∅) → (𝐺 Σg (𝐹 ∘f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))) |
43 | 42 | ex 413 |
. 2
⊢ (𝜑 → (𝑊 = ∅ → (𝐺 Σg (𝐹 ∘f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))) |
44 | 1 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) → 𝐺 ∈ Mnd) |
45 | 2, 6 | mndcl 18393 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Mnd ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) → (𝑧 + 𝑤) ∈ 𝐵) |
46 | 45 | 3expb 1119 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Mnd ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑧 + 𝑤) ∈ 𝐵) |
47 | 44, 46 | sylan 580 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑧 + 𝑤) ∈ 𝐵) |
48 | 47 | caovclg 7464 |
. . . . . . 7
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) ∈ 𝐵) |
49 | | simprl 768 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) → (♯‘𝑊) ∈
ℕ) |
50 | | nnuz 12621 |
. . . . . . . 8
⊢ ℕ =
(ℤ≥‘1) |
51 | 49, 50 | eleqtrdi 2849 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) → (♯‘𝑊) ∈
(ℤ≥‘1)) |
52 | 10 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) → 𝐹:𝐴⟶𝐵) |
53 | | f1of1 6715 |
. . . . . . . . . . . 12
⊢ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 → 𝑓:(1...(♯‘𝑊))–1-1→𝑊) |
54 | 53 | ad2antll 726 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) → 𝑓:(1...(♯‘𝑊))–1-1→𝑊) |
55 | | suppssdm 7993 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 ∪ 𝐻) supp 0 ) ⊆ dom (𝐹 ∪ 𝐻) |
56 | 55 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝐹 ∪ 𝐻) supp 0 ) ⊆ dom (𝐹 ∪ 𝐻)) |
57 | 17 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑊 = ((𝐹 ∪ 𝐻) supp 0 )) |
58 | | dmun 5819 |
. . . . . . . . . . . . . 14
⊢ dom
(𝐹 ∪ 𝐻) = (dom 𝐹 ∪ dom 𝐻) |
59 | 10 | fdmd 6611 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → dom 𝐹 = 𝐴) |
60 | 14 | fdmd 6611 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → dom 𝐻 = 𝐴) |
61 | 59, 60 | uneq12d 4098 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (dom 𝐹 ∪ dom 𝐻) = (𝐴 ∪ 𝐴)) |
62 | | unidm 4086 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∪ 𝐴) = 𝐴 |
63 | 61, 62 | eqtrdi 2794 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (dom 𝐹 ∪ dom 𝐻) = 𝐴) |
64 | 58, 63 | eqtr2id 2791 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 = dom (𝐹 ∪ 𝐻)) |
65 | 56, 57, 64 | 3sstr4d 3968 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑊 ⊆ 𝐴) |
66 | 65 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) → 𝑊 ⊆ 𝐴) |
67 | | f1ss 6676 |
. . . . . . . . . . 11
⊢ ((𝑓:(1...(♯‘𝑊))–1-1→𝑊 ∧ 𝑊 ⊆ 𝐴) → 𝑓:(1...(♯‘𝑊))–1-1→𝐴) |
68 | 54, 66, 67 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) → 𝑓:(1...(♯‘𝑊))–1-1→𝐴) |
69 | | f1f 6670 |
. . . . . . . . . 10
⊢ (𝑓:(1...(♯‘𝑊))–1-1→𝐴 → 𝑓:(1...(♯‘𝑊))⟶𝐴) |
70 | 68, 69 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) → 𝑓:(1...(♯‘𝑊))⟶𝐴) |
71 | | fco 6624 |
. . . . . . . . 9
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑓:(1...(♯‘𝑊))⟶𝐴) → (𝐹 ∘ 𝑓):(1...(♯‘𝑊))⟶𝐵) |
72 | 52, 70, 71 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) → (𝐹 ∘ 𝑓):(1...(♯‘𝑊))⟶𝐵) |
73 | 72 | ffvelrnda 6961 |
. . . . . . 7
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → ((𝐹 ∘ 𝑓)‘𝑘) ∈ 𝐵) |
74 | 14 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) → 𝐻:𝐴⟶𝐵) |
75 | | fco 6624 |
. . . . . . . . 9
⊢ ((𝐻:𝐴⟶𝐵 ∧ 𝑓:(1...(♯‘𝑊))⟶𝐴) → (𝐻 ∘ 𝑓):(1...(♯‘𝑊))⟶𝐵) |
76 | 74, 70, 75 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) → (𝐻 ∘ 𝑓):(1...(♯‘𝑊))⟶𝐵) |
77 | 76 | ffvelrnda 6961 |
. . . . . . 7
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → ((𝐻 ∘ 𝑓)‘𝑘) ∈ 𝐵) |
78 | 52 | ffnd 6601 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) → 𝐹 Fn 𝐴) |
79 | 74 | ffnd 6601 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) → 𝐻 Fn 𝐴) |
80 | 11 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) → 𝐴 ∈ 𝑉) |
81 | | ovexd 7310 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) →
(1...(♯‘𝑊))
∈ V) |
82 | | inidm 4152 |
. . . . . . . . . . 11
⊢ (𝐴 ∩ 𝐴) = 𝐴 |
83 | 78, 79, 70, 80, 80, 81, 82 | ofco 7556 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) → ((𝐹 ∘f + 𝐻) ∘ 𝑓) = ((𝐹 ∘ 𝑓) ∘f + (𝐻 ∘ 𝑓))) |
84 | 83 | fveq1d 6776 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) → (((𝐹 ∘f + 𝐻) ∘ 𝑓)‘𝑘) = (((𝐹 ∘ 𝑓) ∘f + (𝐻 ∘ 𝑓))‘𝑘)) |
85 | 84 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → (((𝐹 ∘f + 𝐻) ∘ 𝑓)‘𝑘) = (((𝐹 ∘ 𝑓) ∘f + (𝐻 ∘ 𝑓))‘𝑘)) |
86 | | fnfco 6639 |
. . . . . . . . . 10
⊢ ((𝐹 Fn 𝐴 ∧ 𝑓:(1...(♯‘𝑊))⟶𝐴) → (𝐹 ∘ 𝑓) Fn (1...(♯‘𝑊))) |
87 | 78, 70, 86 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) → (𝐹 ∘ 𝑓) Fn (1...(♯‘𝑊))) |
88 | | fnfco 6639 |
. . . . . . . . . 10
⊢ ((𝐻 Fn 𝐴 ∧ 𝑓:(1...(♯‘𝑊))⟶𝐴) → (𝐻 ∘ 𝑓) Fn (1...(♯‘𝑊))) |
89 | 79, 70, 88 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) → (𝐻 ∘ 𝑓) Fn (1...(♯‘𝑊))) |
90 | | inidm 4152 |
. . . . . . . . 9
⊢
((1...(♯‘𝑊)) ∩ (1...(♯‘𝑊))) = (1...(♯‘𝑊)) |
91 | | eqidd 2739 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → ((𝐹 ∘ 𝑓)‘𝑘) = ((𝐹 ∘ 𝑓)‘𝑘)) |
92 | | eqidd 2739 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → ((𝐻 ∘ 𝑓)‘𝑘) = ((𝐻 ∘ 𝑓)‘𝑘)) |
93 | 87, 89, 81, 81, 90, 91, 92 | ofval 7544 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → (((𝐹 ∘ 𝑓) ∘f + (𝐻 ∘ 𝑓))‘𝑘) = (((𝐹 ∘ 𝑓)‘𝑘) + ((𝐻 ∘ 𝑓)‘𝑘))) |
94 | 85, 93 | eqtrd 2778 |
. . . . . . 7
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → (((𝐹 ∘f + 𝐻) ∘ 𝑓)‘𝑘) = (((𝐹 ∘ 𝑓)‘𝑘) + ((𝐻 ∘ 𝑓)‘𝑘))) |
95 | 1 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → 𝐺 ∈ Mnd) |
96 | | elfzouz 13391 |
. . . . . . . . . 10
⊢ (𝑛 ∈
(1..^(♯‘𝑊))
→ 𝑛 ∈
(ℤ≥‘1)) |
97 | 96 | adantl 482 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → 𝑛 ∈
(ℤ≥‘1)) |
98 | | elfzouz2 13402 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈
(1..^(♯‘𝑊))
→ (♯‘𝑊)
∈ (ℤ≥‘𝑛)) |
99 | 98 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (♯‘𝑊) ∈ (ℤ≥‘𝑛)) |
100 | | fzss2 13296 |
. . . . . . . . . . . 12
⊢
((♯‘𝑊)
∈ (ℤ≥‘𝑛) → (1...𝑛) ⊆ (1...(♯‘𝑊))) |
101 | 99, 100 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (1...𝑛) ⊆ (1...(♯‘𝑊))) |
102 | 101 | sselda 3921 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) ∧ 𝑘 ∈ (1...𝑛)) → 𝑘 ∈ (1...(♯‘𝑊))) |
103 | 73 | adantlr 712 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → ((𝐹 ∘ 𝑓)‘𝑘) ∈ 𝐵) |
104 | 102, 103 | syldan 591 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) ∧ 𝑘 ∈ (1...𝑛)) → ((𝐹 ∘ 𝑓)‘𝑘) ∈ 𝐵) |
105 | 2, 6 | mndcl 18393 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Mnd ∧ 𝑘 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑘 + 𝑥) ∈ 𝐵) |
106 | 105 | 3expb 1119 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Mnd ∧ (𝑘 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑘 + 𝑥) ∈ 𝐵) |
107 | 95, 106 | sylan 580 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) ∧ (𝑘 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑘 + 𝑥) ∈ 𝐵) |
108 | 97, 104, 107 | seqcl 13743 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (seq1( + , (𝐹 ∘ 𝑓))‘𝑛) ∈ 𝐵) |
109 | 77 | adantlr 712 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) ∧ 𝑘 ∈ (1...(♯‘𝑊))) → ((𝐻 ∘ 𝑓)‘𝑘) ∈ 𝐵) |
110 | 102, 109 | syldan 591 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) ∧ 𝑘 ∈ (1...𝑛)) → ((𝐻 ∘ 𝑓)‘𝑘) ∈ 𝐵) |
111 | 97, 110, 107 | seqcl 13743 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (seq1( + , (𝐻 ∘ 𝑓))‘𝑛) ∈ 𝐵) |
112 | | fzofzp1 13484 |
. . . . . . . . 9
⊢ (𝑛 ∈
(1..^(♯‘𝑊))
→ (𝑛 + 1) ∈
(1...(♯‘𝑊))) |
113 | | ffvelrn 6959 |
. . . . . . . . 9
⊢ (((𝐹 ∘ 𝑓):(1...(♯‘𝑊))⟶𝐵 ∧ (𝑛 + 1) ∈ (1...(♯‘𝑊))) → ((𝐹 ∘ 𝑓)‘(𝑛 + 1)) ∈ 𝐵) |
114 | 72, 112, 113 | syl2an 596 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → ((𝐹 ∘ 𝑓)‘(𝑛 + 1)) ∈ 𝐵) |
115 | | ffvelrn 6959 |
. . . . . . . . 9
⊢ (((𝐻 ∘ 𝑓):(1...(♯‘𝑊))⟶𝐵 ∧ (𝑛 + 1) ∈ (1...(♯‘𝑊))) → ((𝐻 ∘ 𝑓)‘(𝑛 + 1)) ∈ 𝐵) |
116 | 76, 112, 115 | syl2an 596 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → ((𝐻 ∘ 𝑓)‘(𝑛 + 1)) ∈ 𝐵) |
117 | | fvco3 6867 |
. . . . . . . . . . . 12
⊢ ((𝑓:(1...(♯‘𝑊))⟶𝐴 ∧ (𝑛 + 1) ∈ (1...(♯‘𝑊))) → ((𝐹 ∘ 𝑓)‘(𝑛 + 1)) = (𝐹‘(𝑓‘(𝑛 + 1)))) |
118 | 70, 112, 117 | syl2an 596 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → ((𝐹 ∘ 𝑓)‘(𝑛 + 1)) = (𝐹‘(𝑓‘(𝑛 + 1)))) |
119 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑓‘(𝑛 + 1)) → (𝐹‘𝑘) = (𝐹‘(𝑓‘(𝑛 + 1)))) |
120 | 119 | eleq1d 2823 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑓‘(𝑛 + 1)) → ((𝐹‘𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))}) ↔ (𝐹‘(𝑓‘(𝑛 + 1))) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))}))) |
121 | | gsumzaddlem.4 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ (𝐴 ∖ 𝑥))) → (𝐹‘𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ 𝑥))})) |
122 | 121 | expr 457 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐴) → (𝑘 ∈ (𝐴 ∖ 𝑥) → (𝐹‘𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ 𝑥))}))) |
123 | 122 | ralrimiv 3102 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ⊆ 𝐴) → ∀𝑘 ∈ (𝐴 ∖ 𝑥)(𝐹‘𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ 𝑥))})) |
124 | 123 | ex 413 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑥 ⊆ 𝐴 → ∀𝑘 ∈ (𝐴 ∖ 𝑥)(𝐹‘𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ 𝑥))}))) |
125 | 124 | alrimiv 1930 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑥(𝑥 ⊆ 𝐴 → ∀𝑘 ∈ (𝐴 ∖ 𝑥)(𝐹‘𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ 𝑥))}))) |
126 | 125 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → ∀𝑥(𝑥 ⊆ 𝐴 → ∀𝑘 ∈ (𝐴 ∖ 𝑥)(𝐹‘𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ 𝑥))}))) |
127 | | imassrn 5980 |
. . . . . . . . . . . . . 14
⊢ (𝑓 “ (1...𝑛)) ⊆ ran 𝑓 |
128 | 70 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → 𝑓:(1...(♯‘𝑊))⟶𝐴) |
129 | 128 | frnd 6608 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → ran 𝑓 ⊆ 𝐴) |
130 | 127, 129 | sstrid 3932 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (𝑓 “ (1...𝑛)) ⊆ 𝐴) |
131 | | vex 3436 |
. . . . . . . . . . . . . . 15
⊢ 𝑓 ∈ V |
132 | 131 | imaex 7763 |
. . . . . . . . . . . . . 14
⊢ (𝑓 “ (1...𝑛)) ∈ V |
133 | | sseq1 3946 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑓 “ (1...𝑛)) → (𝑥 ⊆ 𝐴 ↔ (𝑓 “ (1...𝑛)) ⊆ 𝐴)) |
134 | | difeq2 4051 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝑓 “ (1...𝑛)) → (𝐴 ∖ 𝑥) = (𝐴 ∖ (𝑓 “ (1...𝑛)))) |
135 | | reseq2 5886 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = (𝑓 “ (1...𝑛)) → (𝐻 ↾ 𝑥) = (𝐻 ↾ (𝑓 “ (1...𝑛)))) |
136 | 135 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = (𝑓 “ (1...𝑛)) → (𝐺 Σg (𝐻 ↾ 𝑥)) = (𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))) |
137 | 136 | sneqd 4573 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = (𝑓 “ (1...𝑛)) → {(𝐺 Σg (𝐻 ↾ 𝑥))} = {(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))}) |
138 | 137 | fveq2d 6778 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = (𝑓 “ (1...𝑛)) → (𝑍‘{(𝐺 Σg (𝐻 ↾ 𝑥))}) = (𝑍‘{(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))})) |
139 | 138 | eleq2d 2824 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝑓 “ (1...𝑛)) → ((𝐹‘𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ 𝑥))}) ↔ (𝐹‘𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))}))) |
140 | 134, 139 | raleqbidv 3336 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑓 “ (1...𝑛)) → (∀𝑘 ∈ (𝐴 ∖ 𝑥)(𝐹‘𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ 𝑥))}) ↔ ∀𝑘 ∈ (𝐴 ∖ (𝑓 “ (1...𝑛)))(𝐹‘𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))}))) |
141 | 133, 140 | imbi12d 345 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑓 “ (1...𝑛)) → ((𝑥 ⊆ 𝐴 → ∀𝑘 ∈ (𝐴 ∖ 𝑥)(𝐹‘𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ 𝑥))})) ↔ ((𝑓 “ (1...𝑛)) ⊆ 𝐴 → ∀𝑘 ∈ (𝐴 ∖ (𝑓 “ (1...𝑛)))(𝐹‘𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))})))) |
142 | 132, 141 | spcv 3544 |
. . . . . . . . . . . . 13
⊢
(∀𝑥(𝑥 ⊆ 𝐴 → ∀𝑘 ∈ (𝐴 ∖ 𝑥)(𝐹‘𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ 𝑥))})) → ((𝑓 “ (1...𝑛)) ⊆ 𝐴 → ∀𝑘 ∈ (𝐴 ∖ (𝑓 “ (1...𝑛)))(𝐹‘𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))}))) |
143 | 126, 130,
142 | sylc 65 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → ∀𝑘 ∈ (𝐴 ∖ (𝑓 “ (1...𝑛)))(𝐹‘𝑘) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))})) |
144 | | ffvelrn 6959 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:(1...(♯‘𝑊))⟶𝐴 ∧ (𝑛 + 1) ∈ (1...(♯‘𝑊))) → (𝑓‘(𝑛 + 1)) ∈ 𝐴) |
145 | 70, 112, 144 | syl2an 596 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (𝑓‘(𝑛 + 1)) ∈ 𝐴) |
146 | | fzp1nel 13340 |
. . . . . . . . . . . . . 14
⊢ ¬
(𝑛 + 1) ∈ (1...𝑛) |
147 | 68 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → 𝑓:(1...(♯‘𝑊))–1-1→𝐴) |
148 | 112 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (𝑛 + 1) ∈ (1...(♯‘𝑊))) |
149 | | f1elima 7136 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:(1...(♯‘𝑊))–1-1→𝐴 ∧ (𝑛 + 1) ∈ (1...(♯‘𝑊)) ∧ (1...𝑛) ⊆ (1...(♯‘𝑊))) → ((𝑓‘(𝑛 + 1)) ∈ (𝑓 “ (1...𝑛)) ↔ (𝑛 + 1) ∈ (1...𝑛))) |
150 | 147, 148,
101, 149 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → ((𝑓‘(𝑛 + 1)) ∈ (𝑓 “ (1...𝑛)) ↔ (𝑛 + 1) ∈ (1...𝑛))) |
151 | 146, 150 | mtbiri 327 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → ¬ (𝑓‘(𝑛 + 1)) ∈ (𝑓 “ (1...𝑛))) |
152 | 145, 151 | eldifd 3898 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (𝑓‘(𝑛 + 1)) ∈ (𝐴 ∖ (𝑓 “ (1...𝑛)))) |
153 | 120, 143,
152 | rspcdva 3562 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (𝐹‘(𝑓‘(𝑛 + 1))) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))})) |
154 | 118, 153 | eqeltrd 2839 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → ((𝐹 ∘ 𝑓)‘(𝑛 + 1)) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))})) |
155 | | gsumzadd.z |
. . . . . . . . . . . . 13
⊢ 𝑍 = (Cntz‘𝐺) |
156 | 132 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (𝑓 “ (1...𝑛)) ∈ V) |
157 | 14 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → 𝐻:𝐴⟶𝐵) |
158 | 157, 130 | fssresd 6641 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (𝐻 ↾ (𝑓 “ (1...𝑛))):(𝑓 “ (1...𝑛))⟶𝐵) |
159 | | gsumzaddlem.2 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ran 𝐻 ⊆ (𝑍‘ran 𝐻)) |
160 | 159 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → ran 𝐻 ⊆ (𝑍‘ran 𝐻)) |
161 | | resss 5916 |
. . . . . . . . . . . . . . 15
⊢ (𝐻 ↾ (𝑓 “ (1...𝑛))) ⊆ 𝐻 |
162 | 161 | rnssi 5849 |
. . . . . . . . . . . . . 14
⊢ ran
(𝐻 ↾ (𝑓 “ (1...𝑛))) ⊆ ran 𝐻 |
163 | 155 | cntzidss 18944 |
. . . . . . . . . . . . . 14
⊢ ((ran
𝐻 ⊆ (𝑍‘ran 𝐻) ∧ ran (𝐻 ↾ (𝑓 “ (1...𝑛))) ⊆ ran 𝐻) → ran (𝐻 ↾ (𝑓 “ (1...𝑛))) ⊆ (𝑍‘ran (𝐻 ↾ (𝑓 “ (1...𝑛))))) |
164 | 160, 162,
163 | sylancl 586 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → ran (𝐻 ↾ (𝑓 “ (1...𝑛))) ⊆ (𝑍‘ran (𝐻 ↾ (𝑓 “ (1...𝑛))))) |
165 | 97, 50 | eleqtrrdi 2850 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → 𝑛 ∈ ℕ) |
166 | | f1ores 6730 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓:(1...(♯‘𝑊))–1-1→𝐴 ∧ (1...𝑛) ⊆ (1...(♯‘𝑊))) → (𝑓 ↾ (1...𝑛)):(1...𝑛)–1-1-onto→(𝑓 “ (1...𝑛))) |
167 | 147, 101,
166 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (𝑓 ↾ (1...𝑛)):(1...𝑛)–1-1-onto→(𝑓 “ (1...𝑛))) |
168 | | f1of1 6715 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ↾ (1...𝑛)):(1...𝑛)–1-1-onto→(𝑓 “ (1...𝑛)) → (𝑓 ↾ (1...𝑛)):(1...𝑛)–1-1→(𝑓 “ (1...𝑛))) |
169 | 167, 168 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (𝑓 ↾ (1...𝑛)):(1...𝑛)–1-1→(𝑓 “ (1...𝑛))) |
170 | | suppssdm 7993 |
. . . . . . . . . . . . . . 15
⊢ ((𝐻 ↾ (𝑓 “ (1...𝑛))) supp 0 ) ⊆ dom (𝐻 ↾ (𝑓 “ (1...𝑛))) |
171 | | dmres 5913 |
. . . . . . . . . . . . . . . 16
⊢ dom
(𝐻 ↾ (𝑓 “ (1...𝑛))) = ((𝑓 “ (1...𝑛)) ∩ dom 𝐻) |
172 | 171 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → dom (𝐻 ↾ (𝑓 “ (1...𝑛))) = ((𝑓 “ (1...𝑛)) ∩ dom 𝐻)) |
173 | 170, 172 | sseqtrid 3973 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → ((𝐻 ↾ (𝑓 “ (1...𝑛))) supp 0 ) ⊆ ((𝑓 “ (1...𝑛)) ∩ dom 𝐻)) |
174 | | inss1 4162 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 “ (1...𝑛)) ∩ dom 𝐻) ⊆ (𝑓 “ (1...𝑛)) |
175 | | df-ima 5602 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 “ (1...𝑛)) = ran (𝑓 ↾ (1...𝑛)) |
176 | 175 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (𝑓 “ (1...𝑛)) = ran (𝑓 ↾ (1...𝑛))) |
177 | 174, 176 | sseqtrid 3973 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → ((𝑓 “ (1...𝑛)) ∩ dom 𝐻) ⊆ ran (𝑓 ↾ (1...𝑛))) |
178 | 173, 177 | sstrd 3931 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → ((𝐻 ↾ (𝑓 “ (1...𝑛))) supp 0 ) ⊆ ran (𝑓 ↾ (1...𝑛))) |
179 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ (((𝐻 ↾ (𝑓 “ (1...𝑛))) ∘ (𝑓 ↾ (1...𝑛))) supp 0 ) = (((𝐻 ↾ (𝑓 “ (1...𝑛))) ∘ (𝑓 ↾ (1...𝑛))) supp 0 ) |
180 | 2, 3, 6, 155, 95, 156, 158, 164, 165, 169, 178, 179 | gsumval3 19508 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛)))) = (seq1( + , ((𝐻 ↾ (𝑓 “ (1...𝑛))) ∘ (𝑓 ↾ (1...𝑛))))‘𝑛)) |
181 | 175 | eqimss2i 3980 |
. . . . . . . . . . . . . . . . . 18
⊢ ran
(𝑓 ↾ (1...𝑛)) ⊆ (𝑓 “ (1...𝑛)) |
182 | | cores 6153 |
. . . . . . . . . . . . . . . . . 18
⊢ (ran
(𝑓 ↾ (1...𝑛)) ⊆ (𝑓 “ (1...𝑛)) → ((𝐻 ↾ (𝑓 “ (1...𝑛))) ∘ (𝑓 ↾ (1...𝑛))) = (𝐻 ∘ (𝑓 ↾ (1...𝑛)))) |
183 | 181, 182 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐻 ↾ (𝑓 “ (1...𝑛))) ∘ (𝑓 ↾ (1...𝑛))) = (𝐻 ∘ (𝑓 ↾ (1...𝑛))) |
184 | | resco 6154 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐻 ∘ 𝑓) ↾ (1...𝑛)) = (𝐻 ∘ (𝑓 ↾ (1...𝑛))) |
185 | 183, 184 | eqtr4i 2769 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐻 ↾ (𝑓 “ (1...𝑛))) ∘ (𝑓 ↾ (1...𝑛))) = ((𝐻 ∘ 𝑓) ↾ (1...𝑛)) |
186 | 185 | fveq1i 6775 |
. . . . . . . . . . . . . . 15
⊢ (((𝐻 ↾ (𝑓 “ (1...𝑛))) ∘ (𝑓 ↾ (1...𝑛)))‘𝑘) = (((𝐻 ∘ 𝑓) ↾ (1...𝑛))‘𝑘) |
187 | | fvres 6793 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (1...𝑛) → (((𝐻 ∘ 𝑓) ↾ (1...𝑛))‘𝑘) = ((𝐻 ∘ 𝑓)‘𝑘)) |
188 | 186, 187 | eqtrid 2790 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (1...𝑛) → (((𝐻 ↾ (𝑓 “ (1...𝑛))) ∘ (𝑓 ↾ (1...𝑛)))‘𝑘) = ((𝐻 ∘ 𝑓)‘𝑘)) |
189 | 188 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) ∧ 𝑘 ∈ (1...𝑛)) → (((𝐻 ↾ (𝑓 “ (1...𝑛))) ∘ (𝑓 ↾ (1...𝑛)))‘𝑘) = ((𝐻 ∘ 𝑓)‘𝑘)) |
190 | 97, 189 | seqfveq 13747 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (seq1( + , ((𝐻 ↾ (𝑓 “ (1...𝑛))) ∘ (𝑓 ↾ (1...𝑛))))‘𝑛) = (seq1( + , (𝐻 ∘ 𝑓))‘𝑛)) |
191 | 180, 190 | eqtr2d 2779 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (seq1( + , (𝐻 ∘ 𝑓))‘𝑛) = (𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))) |
192 | | fvex 6787 |
. . . . . . . . . . . 12
⊢ (seq1(
+ ,
(𝐻 ∘ 𝑓))‘𝑛) ∈ V |
193 | 192 | elsn 4576 |
. . . . . . . . . . 11
⊢ ((seq1(
+ ,
(𝐻 ∘ 𝑓))‘𝑛) ∈ {(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))} ↔ (seq1( + , (𝐻 ∘ 𝑓))‘𝑛) = (𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))) |
194 | 191, 193 | sylibr 233 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (seq1( + , (𝐻 ∘ 𝑓))‘𝑛) ∈ {(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))}) |
195 | 6, 155 | cntzi 18935 |
. . . . . . . . . 10
⊢ ((((𝐹 ∘ 𝑓)‘(𝑛 + 1)) ∈ (𝑍‘{(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))}) ∧ (seq1( + , (𝐻 ∘ 𝑓))‘𝑛) ∈ {(𝐺 Σg (𝐻 ↾ (𝑓 “ (1...𝑛))))}) → (((𝐹 ∘ 𝑓)‘(𝑛 + 1)) + (seq1( + , (𝐻 ∘ 𝑓))‘𝑛)) = ((seq1( + , (𝐻 ∘ 𝑓))‘𝑛) + ((𝐹 ∘ 𝑓)‘(𝑛 + 1)))) |
196 | 154, 194,
195 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (((𝐹 ∘ 𝑓)‘(𝑛 + 1)) + (seq1( + , (𝐻 ∘ 𝑓))‘𝑛)) = ((seq1( + , (𝐻 ∘ 𝑓))‘𝑛) + ((𝐹 ∘ 𝑓)‘(𝑛 + 1)))) |
197 | 196 | eqcomd 2744 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → ((seq1( + , (𝐻 ∘ 𝑓))‘𝑛) + ((𝐹 ∘ 𝑓)‘(𝑛 + 1))) = (((𝐹 ∘ 𝑓)‘(𝑛 + 1)) + (seq1( + , (𝐻 ∘ 𝑓))‘𝑛))) |
198 | 2, 6, 95, 108, 111, 114, 116, 197 | mnd4g 18399 |
. . . . . . 7
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑛 ∈ (1..^(♯‘𝑊))) → (((seq1( + , (𝐹 ∘ 𝑓))‘𝑛) + (seq1( + , (𝐻 ∘ 𝑓))‘𝑛)) + (((𝐹 ∘ 𝑓)‘(𝑛 + 1)) + ((𝐻 ∘ 𝑓)‘(𝑛 + 1)))) = (((seq1( + , (𝐹 ∘ 𝑓))‘𝑛) + ((𝐹 ∘ 𝑓)‘(𝑛 + 1))) + ((seq1( + , (𝐻 ∘ 𝑓))‘𝑛) + ((𝐻 ∘ 𝑓)‘(𝑛 + 1))))) |
199 | 48, 48, 51, 73, 77, 94, 198 | seqcaopr3 13758 |
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) → (seq1( + , ((𝐹 ∘f + 𝐻) ∘ 𝑓))‘(♯‘𝑊)) = ((seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊)) + (seq1( + , (𝐻 ∘ 𝑓))‘(♯‘𝑊)))) |
200 | 47, 52, 74, 80, 80, 82 | off 7551 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) → (𝐹 ∘f + 𝐻):𝐴⟶𝐵) |
201 | | gsumzaddlem.3 |
. . . . . . . 8
⊢ (𝜑 → ran (𝐹 ∘f + 𝐻) ⊆ (𝑍‘ran (𝐹 ∘f + 𝐻))) |
202 | 201 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) → ran (𝐹 ∘f + 𝐻) ⊆ (𝑍‘ran (𝐹 ∘f + 𝐻))) |
203 | 44, 106 | sylan 580 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ (𝑘 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → (𝑘 + 𝑥) ∈ 𝐵) |
204 | 203, 52, 74, 80, 80, 82 | off 7551 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) → (𝐹 ∘f + 𝐻):𝐴⟶𝐵) |
205 | | eldifi 4061 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝐴 ∖ ran 𝑓) → 𝑥 ∈ 𝐴) |
206 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐹‘𝑥)) |
207 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑥 ∈ 𝐴) → (𝐻‘𝑥) = (𝐻‘𝑥)) |
208 | 78, 79, 80, 80, 82, 206, 207 | ofval 7544 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑥 ∈ 𝐴) → ((𝐹 ∘f + 𝐻)‘𝑥) = ((𝐹‘𝑥) + (𝐻‘𝑥))) |
209 | 205, 208 | sylan2 593 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑥 ∈ (𝐴 ∖ ran 𝑓)) → ((𝐹 ∘f + 𝐻)‘𝑥) = ((𝐹‘𝑥) + (𝐻‘𝑥))) |
210 | 16 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) → (𝐹 supp 0 ) ⊆ ((𝐹 ∪ 𝐻) supp 0 )) |
211 | | f1ofo 6723 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 → 𝑓:(1...(♯‘𝑊))–onto→𝑊) |
212 | | forn 6691 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓:(1...(♯‘𝑊))–onto→𝑊 → ran 𝑓 = 𝑊) |
213 | 211, 212 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 → ran 𝑓 = 𝑊) |
214 | 213, 17 | eqtrdi 2794 |
. . . . . . . . . . . . . 14
⊢ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 → ran 𝑓 = ((𝐹 ∪ 𝐻) supp 0 )) |
215 | 214 | sseq2d 3953 |
. . . . . . . . . . . . 13
⊢ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 → ((𝐹 supp 0 ) ⊆ ran 𝑓 ↔ (𝐹 supp 0 ) ⊆ ((𝐹 ∪ 𝐻) supp 0 ))) |
216 | 215 | ad2antll 726 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) → ((𝐹 supp 0 ) ⊆ ran 𝑓 ↔ (𝐹 supp 0 ) ⊆ ((𝐹 ∪ 𝐻) supp 0 ))) |
217 | 210, 216 | mpbird 256 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) → (𝐹 supp 0 ) ⊆ ran 𝑓) |
218 | 12 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) → 0 ∈ V) |
219 | 52, 217, 80, 218 | suppssr 8012 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑥 ∈ (𝐴 ∖ ran 𝑓)) → (𝐹‘𝑥) = 0 ) |
220 | 26 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) → (𝐻 supp 0 ) ⊆ ((𝐻 ∪ 𝐹) supp 0 )) |
221 | 220, 28 | sseqtrrdi 3972 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) → (𝐻 supp 0 ) ⊆ ((𝐹 ∪ 𝐻) supp 0 )) |
222 | 214 | sseq2d 3953 |
. . . . . . . . . . . . 13
⊢ (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 → ((𝐻 supp 0 ) ⊆ ran 𝑓 ↔ (𝐻 supp 0 ) ⊆ ((𝐹 ∪ 𝐻) supp 0 ))) |
223 | 222 | ad2antll 726 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) → ((𝐻 supp 0 ) ⊆ ran 𝑓 ↔ (𝐻 supp 0 ) ⊆ ((𝐹 ∪ 𝐻) supp 0 ))) |
224 | 221, 223 | mpbird 256 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) → (𝐻 supp 0 ) ⊆ ran 𝑓) |
225 | 74, 224, 80, 218 | suppssr 8012 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑥 ∈ (𝐴 ∖ ran 𝑓)) → (𝐻‘𝑥) = 0 ) |
226 | 219, 225 | oveq12d 7293 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑥 ∈ (𝐴 ∖ ran 𝑓)) → ((𝐹‘𝑥) + (𝐻‘𝑥)) = ( 0 + 0 )) |
227 | 8 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑥 ∈ (𝐴 ∖ ran 𝑓)) → ( 0 + 0 ) = 0 ) |
228 | 209, 226,
227 | 3eqtrd 2782 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) ∧ 𝑥 ∈ (𝐴 ∖ ran 𝑓)) → ((𝐹 ∘f + 𝐻)‘𝑥) = 0 ) |
229 | 204, 228 | suppss 8010 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) → ((𝐹 ∘f + 𝐻) supp 0 ) ⊆ ran 𝑓) |
230 | | ovex 7308 |
. . . . . . . . 9
⊢ (𝐹 ∘f + 𝐻) ∈ V |
231 | 230, 131 | coex 7777 |
. . . . . . . 8
⊢ ((𝐹 ∘f + 𝐻) ∘ 𝑓) ∈ V |
232 | | suppimacnv 7990 |
. . . . . . . . 9
⊢ ((((𝐹 ∘f + 𝐻) ∘ 𝑓) ∈ V ∧ 0 ∈ V) → (((𝐹 ∘f + 𝐻) ∘ 𝑓) supp 0 ) = (◡((𝐹 ∘f + 𝐻) ∘ 𝑓) “ (V ∖ { 0 }))) |
233 | 232 | eqcomd 2744 |
. . . . . . . 8
⊢ ((((𝐹 ∘f + 𝐻) ∘ 𝑓) ∈ V ∧ 0 ∈ V) → (◡((𝐹 ∘f + 𝐻) ∘ 𝑓) “ (V ∖ { 0 })) = (((𝐹 ∘f + 𝐻) ∘ 𝑓) supp 0 )) |
234 | 231, 12, 233 | mp2an 689 |
. . . . . . 7
⊢ (◡((𝐹 ∘f + 𝐻) ∘ 𝑓) “ (V ∖ { 0 })) = (((𝐹 ∘f + 𝐻) ∘ 𝑓) supp 0 ) |
235 | 2, 3, 6, 155, 44, 80, 200, 202, 49, 68, 229, 234 | gsumval3 19508 |
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) → (𝐺 Σg (𝐹 ∘f + 𝐻)) = (seq1( + , ((𝐹 ∘f + 𝐻) ∘ 𝑓))‘(♯‘𝑊))) |
236 | | gsumzaddlem.1 |
. . . . . . . . 9
⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
237 | 236 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
238 | | eqid 2738 |
. . . . . . . 8
⊢ ((𝐹 ∘ 𝑓) supp 0 ) = ((𝐹 ∘ 𝑓) supp 0 ) |
239 | 2, 3, 6, 155, 44, 80, 52, 237, 49, 68, 217, 238 | gsumval3 19508 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) → (𝐺 Σg 𝐹) = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))) |
240 | 159 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) → ran 𝐻 ⊆ (𝑍‘ran 𝐻)) |
241 | | eqid 2738 |
. . . . . . . 8
⊢ ((𝐻 ∘ 𝑓) supp 0 ) = ((𝐻 ∘ 𝑓) supp 0 ) |
242 | 2, 3, 6, 155, 44, 80, 74, 240, 49, 68, 224, 241 | gsumval3 19508 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) → (𝐺 Σg 𝐻) = (seq1( + , (𝐻 ∘ 𝑓))‘(♯‘𝑊))) |
243 | 239, 242 | oveq12d 7293 |
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) → ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)) = ((seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊)) + (seq1( + , (𝐻 ∘ 𝑓))‘(♯‘𝑊)))) |
244 | 199, 235,
243 | 3eqtr4d 2788 |
. . . . 5
⊢ ((𝜑 ∧ ((♯‘𝑊) ∈ ℕ ∧ 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊)) → (𝐺 Σg (𝐹 ∘f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))) |
245 | 244 | expr 457 |
. . . 4
⊢ ((𝜑 ∧ (♯‘𝑊) ∈ ℕ) → (𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 → (𝐺 Σg (𝐹 ∘f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))) |
246 | 245 | exlimdv 1936 |
. . 3
⊢ ((𝜑 ∧ (♯‘𝑊) ∈ ℕ) →
(∃𝑓 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 → (𝐺 Σg (𝐹 ∘f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))) |
247 | 246 | expimpd 454 |
. 2
⊢ (𝜑 → (((♯‘𝑊) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊) → (𝐺 Σg (𝐹 ∘f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))) |
248 | | gsumzadd.fn |
. . . . 5
⊢ (𝜑 → 𝐹 finSupp 0 ) |
249 | | gsumzadd.hn |
. . . . 5
⊢ (𝜑 → 𝐻 finSupp 0 ) |
250 | 248, 249 | fsuppun 9147 |
. . . 4
⊢ (𝜑 → ((𝐹 ∪ 𝐻) supp 0 ) ∈
Fin) |
251 | 17, 250 | eqeltrid 2843 |
. . 3
⊢ (𝜑 → 𝑊 ∈ Fin) |
252 | | fz1f1o 15422 |
. . 3
⊢ (𝑊 ∈ Fin → (𝑊 = ∅ ∨
((♯‘𝑊) ∈
ℕ ∧ ∃𝑓
𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊))) |
253 | 251, 252 | syl 17 |
. 2
⊢ (𝜑 → (𝑊 = ∅ ∨ ((♯‘𝑊) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊))) |
254 | 43, 247, 253 | mpjaod 857 |
1
⊢ (𝜑 → (𝐺 Σg (𝐹 ∘f + 𝐻)) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻))) |