MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pj1ghm Structured version   Visualization version   GIF version

Theorem pj1ghm 19224
Description: The left projection function is a group homomorphism. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
pj1eu.a + = (+g𝐺)
pj1eu.s = (LSSum‘𝐺)
pj1eu.o 0 = (0g𝐺)
pj1eu.z 𝑍 = (Cntz‘𝐺)
pj1eu.2 (𝜑𝑇 ∈ (SubGrp‘𝐺))
pj1eu.3 (𝜑𝑈 ∈ (SubGrp‘𝐺))
pj1eu.4 (𝜑 → (𝑇𝑈) = { 0 })
pj1eu.5 (𝜑𝑇 ⊆ (𝑍𝑈))
pj1f.p 𝑃 = (proj1𝐺)
Assertion
Ref Expression
pj1ghm (𝜑 → (𝑇𝑃𝑈) ∈ ((𝐺s (𝑇 𝑈)) GrpHom 𝐺))

Proof of Theorem pj1ghm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . 2 (Base‘(𝐺s (𝑇 𝑈))) = (Base‘(𝐺s (𝑇 𝑈)))
2 eqid 2738 . 2 (Base‘𝐺) = (Base‘𝐺)
3 ovex 7288 . . 3 (𝑇 𝑈) ∈ V
4 eqid 2738 . . . 4 (𝐺s (𝑇 𝑈)) = (𝐺s (𝑇 𝑈))
5 pj1eu.a . . . 4 + = (+g𝐺)
64, 5ressplusg 16926 . . 3 ((𝑇 𝑈) ∈ V → + = (+g‘(𝐺s (𝑇 𝑈))))
73, 6ax-mp 5 . 2 + = (+g‘(𝐺s (𝑇 𝑈)))
8 pj1eu.2 . . . 4 (𝜑𝑇 ∈ (SubGrp‘𝐺))
9 pj1eu.3 . . . 4 (𝜑𝑈 ∈ (SubGrp‘𝐺))
10 pj1eu.5 . . . 4 (𝜑𝑇 ⊆ (𝑍𝑈))
11 pj1eu.s . . . . 5 = (LSSum‘𝐺)
12 pj1eu.z . . . . 5 𝑍 = (Cntz‘𝐺)
1311, 12lsmsubg 19174 . . . 4 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑇 𝑈) ∈ (SubGrp‘𝐺))
148, 9, 10, 13syl3anc 1369 . . 3 (𝜑 → (𝑇 𝑈) ∈ (SubGrp‘𝐺))
154subggrp 18673 . . 3 ((𝑇 𝑈) ∈ (SubGrp‘𝐺) → (𝐺s (𝑇 𝑈)) ∈ Grp)
1614, 15syl 17 . 2 (𝜑 → (𝐺s (𝑇 𝑈)) ∈ Grp)
17 subgrcl 18675 . . 3 (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
188, 17syl 17 . 2 (𝜑𝐺 ∈ Grp)
19 pj1eu.o . . . . 5 0 = (0g𝐺)
20 pj1eu.4 . . . . 5 (𝜑 → (𝑇𝑈) = { 0 })
21 pj1f.p . . . . 5 𝑃 = (proj1𝐺)
225, 11, 19, 12, 8, 9, 20, 10, 21pj1f 19218 . . . 4 (𝜑 → (𝑇𝑃𝑈):(𝑇 𝑈)⟶𝑇)
232subgss 18671 . . . . 5 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
248, 23syl 17 . . . 4 (𝜑𝑇 ⊆ (Base‘𝐺))
2522, 24fssd 6602 . . 3 (𝜑 → (𝑇𝑃𝑈):(𝑇 𝑈)⟶(Base‘𝐺))
264subgbas 18674 . . . . 5 ((𝑇 𝑈) ∈ (SubGrp‘𝐺) → (𝑇 𝑈) = (Base‘(𝐺s (𝑇 𝑈))))
2714, 26syl 17 . . . 4 (𝜑 → (𝑇 𝑈) = (Base‘(𝐺s (𝑇 𝑈))))
2827feq2d 6570 . . 3 (𝜑 → ((𝑇𝑃𝑈):(𝑇 𝑈)⟶(Base‘𝐺) ↔ (𝑇𝑃𝑈):(Base‘(𝐺s (𝑇 𝑈)))⟶(Base‘𝐺)))
2925, 28mpbid 231 . 2 (𝜑 → (𝑇𝑃𝑈):(Base‘(𝐺s (𝑇 𝑈)))⟶(Base‘𝐺))
3027eleq2d 2824 . . . . 5 (𝜑 → (𝑥 ∈ (𝑇 𝑈) ↔ 𝑥 ∈ (Base‘(𝐺s (𝑇 𝑈)))))
3127eleq2d 2824 . . . . 5 (𝜑 → (𝑦 ∈ (𝑇 𝑈) ↔ 𝑦 ∈ (Base‘(𝐺s (𝑇 𝑈)))))
3230, 31anbi12d 630 . . . 4 (𝜑 → ((𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈)) ↔ (𝑥 ∈ (Base‘(𝐺s (𝑇 𝑈))) ∧ 𝑦 ∈ (Base‘(𝐺s (𝑇 𝑈))))))
3332biimpar 477 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐺s (𝑇 𝑈))) ∧ 𝑦 ∈ (Base‘(𝐺s (𝑇 𝑈))))) → (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈)))
345, 11, 19, 12, 8, 9, 20, 10, 21pj1id 19220 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑇 𝑈)) → 𝑥 = (((𝑇𝑃𝑈)‘𝑥) + ((𝑈𝑃𝑇)‘𝑥)))
3534adantrr 713 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑥 = (((𝑇𝑃𝑈)‘𝑥) + ((𝑈𝑃𝑇)‘𝑥)))
365, 11, 19, 12, 8, 9, 20, 10, 21pj1id 19220 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑇 𝑈)) → 𝑦 = (((𝑇𝑃𝑈)‘𝑦) + ((𝑈𝑃𝑇)‘𝑦)))
3736adantrl 712 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑦 = (((𝑇𝑃𝑈)‘𝑦) + ((𝑈𝑃𝑇)‘𝑦)))
3835, 37oveq12d 7273 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑥 + 𝑦) = ((((𝑇𝑃𝑈)‘𝑥) + ((𝑈𝑃𝑇)‘𝑥)) + (((𝑇𝑃𝑈)‘𝑦) + ((𝑈𝑃𝑇)‘𝑦))))
398adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑇 ∈ (SubGrp‘𝐺))
40 grpmnd 18499 . . . . . . . 8 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
4139, 17, 403syl 18 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝐺 ∈ Mnd)
4239, 23syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑇 ⊆ (Base‘𝐺))
43 simpl 482 . . . . . . . . 9 ((𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈)) → 𝑥 ∈ (𝑇 𝑈))
44 ffvelrn 6941 . . . . . . . . 9 (((𝑇𝑃𝑈):(𝑇 𝑈)⟶𝑇𝑥 ∈ (𝑇 𝑈)) → ((𝑇𝑃𝑈)‘𝑥) ∈ 𝑇)
4522, 43, 44syl2an 595 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑇𝑃𝑈)‘𝑥) ∈ 𝑇)
4642, 45sseldd 3918 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑇𝑃𝑈)‘𝑥) ∈ (Base‘𝐺))
47 simpr 484 . . . . . . . . 9 ((𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈)) → 𝑦 ∈ (𝑇 𝑈))
48 ffvelrn 6941 . . . . . . . . 9 (((𝑇𝑃𝑈):(𝑇 𝑈)⟶𝑇𝑦 ∈ (𝑇 𝑈)) → ((𝑇𝑃𝑈)‘𝑦) ∈ 𝑇)
4922, 47, 48syl2an 595 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑇𝑃𝑈)‘𝑦) ∈ 𝑇)
5042, 49sseldd 3918 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑇𝑃𝑈)‘𝑦) ∈ (Base‘𝐺))
519adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑈 ∈ (SubGrp‘𝐺))
522subgss 18671 . . . . . . . . 9 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
5351, 52syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑈 ⊆ (Base‘𝐺))
545, 11, 19, 12, 8, 9, 20, 10, 21pj2f 19219 . . . . . . . . 9 (𝜑 → (𝑈𝑃𝑇):(𝑇 𝑈)⟶𝑈)
55 ffvelrn 6941 . . . . . . . . 9 (((𝑈𝑃𝑇):(𝑇 𝑈)⟶𝑈𝑥 ∈ (𝑇 𝑈)) → ((𝑈𝑃𝑇)‘𝑥) ∈ 𝑈)
5654, 43, 55syl2an 595 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑈𝑃𝑇)‘𝑥) ∈ 𝑈)
5753, 56sseldd 3918 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑈𝑃𝑇)‘𝑥) ∈ (Base‘𝐺))
58 ffvelrn 6941 . . . . . . . . 9 (((𝑈𝑃𝑇):(𝑇 𝑈)⟶𝑈𝑦 ∈ (𝑇 𝑈)) → ((𝑈𝑃𝑇)‘𝑦) ∈ 𝑈)
5954, 47, 58syl2an 595 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑈𝑃𝑇)‘𝑦) ∈ 𝑈)
6053, 59sseldd 3918 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑈𝑃𝑇)‘𝑦) ∈ (Base‘𝐺))
6110adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑇 ⊆ (𝑍𝑈))
6261, 49sseldd 3918 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑇𝑃𝑈)‘𝑦) ∈ (𝑍𝑈))
635, 12cntzi 18850 . . . . . . . 8 ((((𝑇𝑃𝑈)‘𝑦) ∈ (𝑍𝑈) ∧ ((𝑈𝑃𝑇)‘𝑥) ∈ 𝑈) → (((𝑇𝑃𝑈)‘𝑦) + ((𝑈𝑃𝑇)‘𝑥)) = (((𝑈𝑃𝑇)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)))
6462, 56, 63syl2anc 583 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → (((𝑇𝑃𝑈)‘𝑦) + ((𝑈𝑃𝑇)‘𝑥)) = (((𝑈𝑃𝑇)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)))
652, 5, 41, 46, 50, 57, 60, 64mnd4g 18314 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((((𝑇𝑃𝑈)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)) + (((𝑈𝑃𝑇)‘𝑥) + ((𝑈𝑃𝑇)‘𝑦))) = ((((𝑇𝑃𝑈)‘𝑥) + ((𝑈𝑃𝑇)‘𝑥)) + (((𝑇𝑃𝑈)‘𝑦) + ((𝑈𝑃𝑇)‘𝑦))))
6638, 65eqtr4d 2781 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑥 + 𝑦) = ((((𝑇𝑃𝑈)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)) + (((𝑈𝑃𝑇)‘𝑥) + ((𝑈𝑃𝑇)‘𝑦))))
6720adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑇𝑈) = { 0 })
685subgcl 18680 . . . . . . . 8 (((𝑇 𝑈) ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈)) → (𝑥 + 𝑦) ∈ (𝑇 𝑈))
69683expb 1118 . . . . . . 7 (((𝑇 𝑈) ∈ (SubGrp‘𝐺) ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑥 + 𝑦) ∈ (𝑇 𝑈))
7014, 69sylan 579 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑥 + 𝑦) ∈ (𝑇 𝑈))
715subgcl 18680 . . . . . . 7 ((𝑇 ∈ (SubGrp‘𝐺) ∧ ((𝑇𝑃𝑈)‘𝑥) ∈ 𝑇 ∧ ((𝑇𝑃𝑈)‘𝑦) ∈ 𝑇) → (((𝑇𝑃𝑈)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)) ∈ 𝑇)
7239, 45, 49, 71syl3anc 1369 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → (((𝑇𝑃𝑈)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)) ∈ 𝑇)
735subgcl 18680 . . . . . . 7 ((𝑈 ∈ (SubGrp‘𝐺) ∧ ((𝑈𝑃𝑇)‘𝑥) ∈ 𝑈 ∧ ((𝑈𝑃𝑇)‘𝑦) ∈ 𝑈) → (((𝑈𝑃𝑇)‘𝑥) + ((𝑈𝑃𝑇)‘𝑦)) ∈ 𝑈)
7451, 56, 59, 73syl3anc 1369 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → (((𝑈𝑃𝑇)‘𝑥) + ((𝑈𝑃𝑇)‘𝑦)) ∈ 𝑈)
755, 11, 19, 12, 39, 51, 67, 61, 21, 70, 72, 74pj1eq 19221 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑥 + 𝑦) = ((((𝑇𝑃𝑈)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)) + (((𝑈𝑃𝑇)‘𝑥) + ((𝑈𝑃𝑇)‘𝑦))) ↔ (((𝑇𝑃𝑈)‘(𝑥 + 𝑦)) = (((𝑇𝑃𝑈)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)) ∧ ((𝑈𝑃𝑇)‘(𝑥 + 𝑦)) = (((𝑈𝑃𝑇)‘𝑥) + ((𝑈𝑃𝑇)‘𝑦)))))
7666, 75mpbid 231 . . . 4 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → (((𝑇𝑃𝑈)‘(𝑥 + 𝑦)) = (((𝑇𝑃𝑈)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)) ∧ ((𝑈𝑃𝑇)‘(𝑥 + 𝑦)) = (((𝑈𝑃𝑇)‘𝑥) + ((𝑈𝑃𝑇)‘𝑦))))
7776simpld 494 . . 3 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑇𝑃𝑈)‘(𝑥 + 𝑦)) = (((𝑇𝑃𝑈)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)))
7833, 77syldan 590 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐺s (𝑇 𝑈))) ∧ 𝑦 ∈ (Base‘(𝐺s (𝑇 𝑈))))) → ((𝑇𝑃𝑈)‘(𝑥 + 𝑦)) = (((𝑇𝑃𝑈)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)))
791, 2, 7, 5, 16, 18, 29, 78isghmd 18758 1 (𝜑 → (𝑇𝑃𝑈) ∈ ((𝐺s (𝑇 𝑈)) GrpHom 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cin 3882  wss 3883  {csn 4558  wf 6414  cfv 6418  (class class class)co 7255  Basecbs 16840  s cress 16867  +gcplusg 16888  0gc0g 17067  Mndcmnd 18300  Grpcgrp 18492  SubGrpcsubg 18664   GrpHom cghm 18746  Cntzccntz 18836  LSSumclsm 19154  proj1cpj1 19155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-ghm 18747  df-cntz 18838  df-lsm 19156  df-pj1 19157
This theorem is referenced by:  pj1ghm2  19225  dpjghm  19581  pj1lmhm  20277
  Copyright terms: Public domain W3C validator