MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pj1ghm Structured version   Visualization version   GIF version

Theorem pj1ghm 18829
Description: The left projection function is a group homomorphism. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
pj1eu.a + = (+g𝐺)
pj1eu.s = (LSSum‘𝐺)
pj1eu.o 0 = (0g𝐺)
pj1eu.z 𝑍 = (Cntz‘𝐺)
pj1eu.2 (𝜑𝑇 ∈ (SubGrp‘𝐺))
pj1eu.3 (𝜑𝑈 ∈ (SubGrp‘𝐺))
pj1eu.4 (𝜑 → (𝑇𝑈) = { 0 })
pj1eu.5 (𝜑𝑇 ⊆ (𝑍𝑈))
pj1f.p 𝑃 = (proj1𝐺)
Assertion
Ref Expression
pj1ghm (𝜑 → (𝑇𝑃𝑈) ∈ ((𝐺s (𝑇 𝑈)) GrpHom 𝐺))

Proof of Theorem pj1ghm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . 2 (Base‘(𝐺s (𝑇 𝑈))) = (Base‘(𝐺s (𝑇 𝑈)))
2 eqid 2821 . 2 (Base‘𝐺) = (Base‘𝐺)
3 ovex 7189 . . 3 (𝑇 𝑈) ∈ V
4 eqid 2821 . . . 4 (𝐺s (𝑇 𝑈)) = (𝐺s (𝑇 𝑈))
5 pj1eu.a . . . 4 + = (+g𝐺)
64, 5ressplusg 16612 . . 3 ((𝑇 𝑈) ∈ V → + = (+g‘(𝐺s (𝑇 𝑈))))
73, 6ax-mp 5 . 2 + = (+g‘(𝐺s (𝑇 𝑈)))
8 pj1eu.2 . . . 4 (𝜑𝑇 ∈ (SubGrp‘𝐺))
9 pj1eu.3 . . . 4 (𝜑𝑈 ∈ (SubGrp‘𝐺))
10 pj1eu.5 . . . 4 (𝜑𝑇 ⊆ (𝑍𝑈))
11 pj1eu.s . . . . 5 = (LSSum‘𝐺)
12 pj1eu.z . . . . 5 𝑍 = (Cntz‘𝐺)
1311, 12lsmsubg 18779 . . . 4 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑇 𝑈) ∈ (SubGrp‘𝐺))
148, 9, 10, 13syl3anc 1367 . . 3 (𝜑 → (𝑇 𝑈) ∈ (SubGrp‘𝐺))
154subggrp 18282 . . 3 ((𝑇 𝑈) ∈ (SubGrp‘𝐺) → (𝐺s (𝑇 𝑈)) ∈ Grp)
1614, 15syl 17 . 2 (𝜑 → (𝐺s (𝑇 𝑈)) ∈ Grp)
17 subgrcl 18284 . . 3 (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
188, 17syl 17 . 2 (𝜑𝐺 ∈ Grp)
19 pj1eu.o . . . . 5 0 = (0g𝐺)
20 pj1eu.4 . . . . 5 (𝜑 → (𝑇𝑈) = { 0 })
21 pj1f.p . . . . 5 𝑃 = (proj1𝐺)
225, 11, 19, 12, 8, 9, 20, 10, 21pj1f 18823 . . . 4 (𝜑 → (𝑇𝑃𝑈):(𝑇 𝑈)⟶𝑇)
232subgss 18280 . . . . 5 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
248, 23syl 17 . . . 4 (𝜑𝑇 ⊆ (Base‘𝐺))
2522, 24fssd 6528 . . 3 (𝜑 → (𝑇𝑃𝑈):(𝑇 𝑈)⟶(Base‘𝐺))
264subgbas 18283 . . . . 5 ((𝑇 𝑈) ∈ (SubGrp‘𝐺) → (𝑇 𝑈) = (Base‘(𝐺s (𝑇 𝑈))))
2714, 26syl 17 . . . 4 (𝜑 → (𝑇 𝑈) = (Base‘(𝐺s (𝑇 𝑈))))
2827feq2d 6500 . . 3 (𝜑 → ((𝑇𝑃𝑈):(𝑇 𝑈)⟶(Base‘𝐺) ↔ (𝑇𝑃𝑈):(Base‘(𝐺s (𝑇 𝑈)))⟶(Base‘𝐺)))
2925, 28mpbid 234 . 2 (𝜑 → (𝑇𝑃𝑈):(Base‘(𝐺s (𝑇 𝑈)))⟶(Base‘𝐺))
3027eleq2d 2898 . . . . 5 (𝜑 → (𝑥 ∈ (𝑇 𝑈) ↔ 𝑥 ∈ (Base‘(𝐺s (𝑇 𝑈)))))
3127eleq2d 2898 . . . . 5 (𝜑 → (𝑦 ∈ (𝑇 𝑈) ↔ 𝑦 ∈ (Base‘(𝐺s (𝑇 𝑈)))))
3230, 31anbi12d 632 . . . 4 (𝜑 → ((𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈)) ↔ (𝑥 ∈ (Base‘(𝐺s (𝑇 𝑈))) ∧ 𝑦 ∈ (Base‘(𝐺s (𝑇 𝑈))))))
3332biimpar 480 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐺s (𝑇 𝑈))) ∧ 𝑦 ∈ (Base‘(𝐺s (𝑇 𝑈))))) → (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈)))
345, 11, 19, 12, 8, 9, 20, 10, 21pj1id 18825 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑇 𝑈)) → 𝑥 = (((𝑇𝑃𝑈)‘𝑥) + ((𝑈𝑃𝑇)‘𝑥)))
3534adantrr 715 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑥 = (((𝑇𝑃𝑈)‘𝑥) + ((𝑈𝑃𝑇)‘𝑥)))
365, 11, 19, 12, 8, 9, 20, 10, 21pj1id 18825 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑇 𝑈)) → 𝑦 = (((𝑇𝑃𝑈)‘𝑦) + ((𝑈𝑃𝑇)‘𝑦)))
3736adantrl 714 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑦 = (((𝑇𝑃𝑈)‘𝑦) + ((𝑈𝑃𝑇)‘𝑦)))
3835, 37oveq12d 7174 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑥 + 𝑦) = ((((𝑇𝑃𝑈)‘𝑥) + ((𝑈𝑃𝑇)‘𝑥)) + (((𝑇𝑃𝑈)‘𝑦) + ((𝑈𝑃𝑇)‘𝑦))))
398adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑇 ∈ (SubGrp‘𝐺))
40 grpmnd 18110 . . . . . . . 8 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
4139, 17, 403syl 18 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝐺 ∈ Mnd)
4239, 23syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑇 ⊆ (Base‘𝐺))
43 simpl 485 . . . . . . . . 9 ((𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈)) → 𝑥 ∈ (𝑇 𝑈))
44 ffvelrn 6849 . . . . . . . . 9 (((𝑇𝑃𝑈):(𝑇 𝑈)⟶𝑇𝑥 ∈ (𝑇 𝑈)) → ((𝑇𝑃𝑈)‘𝑥) ∈ 𝑇)
4522, 43, 44syl2an 597 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑇𝑃𝑈)‘𝑥) ∈ 𝑇)
4642, 45sseldd 3968 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑇𝑃𝑈)‘𝑥) ∈ (Base‘𝐺))
47 simpr 487 . . . . . . . . 9 ((𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈)) → 𝑦 ∈ (𝑇 𝑈))
48 ffvelrn 6849 . . . . . . . . 9 (((𝑇𝑃𝑈):(𝑇 𝑈)⟶𝑇𝑦 ∈ (𝑇 𝑈)) → ((𝑇𝑃𝑈)‘𝑦) ∈ 𝑇)
4922, 47, 48syl2an 597 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑇𝑃𝑈)‘𝑦) ∈ 𝑇)
5042, 49sseldd 3968 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑇𝑃𝑈)‘𝑦) ∈ (Base‘𝐺))
519adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑈 ∈ (SubGrp‘𝐺))
522subgss 18280 . . . . . . . . 9 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
5351, 52syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑈 ⊆ (Base‘𝐺))
545, 11, 19, 12, 8, 9, 20, 10, 21pj2f 18824 . . . . . . . . 9 (𝜑 → (𝑈𝑃𝑇):(𝑇 𝑈)⟶𝑈)
55 ffvelrn 6849 . . . . . . . . 9 (((𝑈𝑃𝑇):(𝑇 𝑈)⟶𝑈𝑥 ∈ (𝑇 𝑈)) → ((𝑈𝑃𝑇)‘𝑥) ∈ 𝑈)
5654, 43, 55syl2an 597 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑈𝑃𝑇)‘𝑥) ∈ 𝑈)
5753, 56sseldd 3968 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑈𝑃𝑇)‘𝑥) ∈ (Base‘𝐺))
58 ffvelrn 6849 . . . . . . . . 9 (((𝑈𝑃𝑇):(𝑇 𝑈)⟶𝑈𝑦 ∈ (𝑇 𝑈)) → ((𝑈𝑃𝑇)‘𝑦) ∈ 𝑈)
5954, 47, 58syl2an 597 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑈𝑃𝑇)‘𝑦) ∈ 𝑈)
6053, 59sseldd 3968 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑈𝑃𝑇)‘𝑦) ∈ (Base‘𝐺))
6110adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → 𝑇 ⊆ (𝑍𝑈))
6261, 49sseldd 3968 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑇𝑃𝑈)‘𝑦) ∈ (𝑍𝑈))
635, 12cntzi 18459 . . . . . . . 8 ((((𝑇𝑃𝑈)‘𝑦) ∈ (𝑍𝑈) ∧ ((𝑈𝑃𝑇)‘𝑥) ∈ 𝑈) → (((𝑇𝑃𝑈)‘𝑦) + ((𝑈𝑃𝑇)‘𝑥)) = (((𝑈𝑃𝑇)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)))
6462, 56, 63syl2anc 586 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → (((𝑇𝑃𝑈)‘𝑦) + ((𝑈𝑃𝑇)‘𝑥)) = (((𝑈𝑃𝑇)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)))
652, 5, 41, 46, 50, 57, 60, 64mnd4g 17925 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((((𝑇𝑃𝑈)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)) + (((𝑈𝑃𝑇)‘𝑥) + ((𝑈𝑃𝑇)‘𝑦))) = ((((𝑇𝑃𝑈)‘𝑥) + ((𝑈𝑃𝑇)‘𝑥)) + (((𝑇𝑃𝑈)‘𝑦) + ((𝑈𝑃𝑇)‘𝑦))))
6638, 65eqtr4d 2859 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑥 + 𝑦) = ((((𝑇𝑃𝑈)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)) + (((𝑈𝑃𝑇)‘𝑥) + ((𝑈𝑃𝑇)‘𝑦))))
6720adantr 483 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑇𝑈) = { 0 })
685subgcl 18289 . . . . . . . 8 (((𝑇 𝑈) ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈)) → (𝑥 + 𝑦) ∈ (𝑇 𝑈))
69683expb 1116 . . . . . . 7 (((𝑇 𝑈) ∈ (SubGrp‘𝐺) ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑥 + 𝑦) ∈ (𝑇 𝑈))
7014, 69sylan 582 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → (𝑥 + 𝑦) ∈ (𝑇 𝑈))
715subgcl 18289 . . . . . . 7 ((𝑇 ∈ (SubGrp‘𝐺) ∧ ((𝑇𝑃𝑈)‘𝑥) ∈ 𝑇 ∧ ((𝑇𝑃𝑈)‘𝑦) ∈ 𝑇) → (((𝑇𝑃𝑈)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)) ∈ 𝑇)
7239, 45, 49, 71syl3anc 1367 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → (((𝑇𝑃𝑈)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)) ∈ 𝑇)
735subgcl 18289 . . . . . . 7 ((𝑈 ∈ (SubGrp‘𝐺) ∧ ((𝑈𝑃𝑇)‘𝑥) ∈ 𝑈 ∧ ((𝑈𝑃𝑇)‘𝑦) ∈ 𝑈) → (((𝑈𝑃𝑇)‘𝑥) + ((𝑈𝑃𝑇)‘𝑦)) ∈ 𝑈)
7451, 56, 59, 73syl3anc 1367 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → (((𝑈𝑃𝑇)‘𝑥) + ((𝑈𝑃𝑇)‘𝑦)) ∈ 𝑈)
755, 11, 19, 12, 39, 51, 67, 61, 21, 70, 72, 74pj1eq 18826 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑥 + 𝑦) = ((((𝑇𝑃𝑈)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)) + (((𝑈𝑃𝑇)‘𝑥) + ((𝑈𝑃𝑇)‘𝑦))) ↔ (((𝑇𝑃𝑈)‘(𝑥 + 𝑦)) = (((𝑇𝑃𝑈)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)) ∧ ((𝑈𝑃𝑇)‘(𝑥 + 𝑦)) = (((𝑈𝑃𝑇)‘𝑥) + ((𝑈𝑃𝑇)‘𝑦)))))
7666, 75mpbid 234 . . . 4 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → (((𝑇𝑃𝑈)‘(𝑥 + 𝑦)) = (((𝑇𝑃𝑈)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)) ∧ ((𝑈𝑃𝑇)‘(𝑥 + 𝑦)) = (((𝑈𝑃𝑇)‘𝑥) + ((𝑈𝑃𝑇)‘𝑦))))
7776simpld 497 . . 3 ((𝜑 ∧ (𝑥 ∈ (𝑇 𝑈) ∧ 𝑦 ∈ (𝑇 𝑈))) → ((𝑇𝑃𝑈)‘(𝑥 + 𝑦)) = (((𝑇𝑃𝑈)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)))
7833, 77syldan 593 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐺s (𝑇 𝑈))) ∧ 𝑦 ∈ (Base‘(𝐺s (𝑇 𝑈))))) → ((𝑇𝑃𝑈)‘(𝑥 + 𝑦)) = (((𝑇𝑃𝑈)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)))
791, 2, 7, 5, 16, 18, 29, 78isghmd 18367 1 (𝜑 → (𝑇𝑃𝑈) ∈ ((𝐺s (𝑇 𝑈)) GrpHom 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  Vcvv 3494  cin 3935  wss 3936  {csn 4567  wf 6351  cfv 6355  (class class class)co 7156  Basecbs 16483  s cress 16484  +gcplusg 16565  0gc0g 16713  Mndcmnd 17911  Grpcgrp 18103  SubGrpcsubg 18273   GrpHom cghm 18355  Cntzccntz 18445  LSSumclsm 18759  proj1cpj1 18760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-subg 18276  df-ghm 18356  df-cntz 18447  df-lsm 18761  df-pj1 18762
This theorem is referenced by:  pj1ghm2  18830  dpjghm  19185  pj1lmhm  19872
  Copyright terms: Public domain W3C validator