Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. 2
⊢
(Base‘(𝐺
↾s (𝑇
⊕
𝑈))) = (Base‘(𝐺 ↾s (𝑇 ⊕ 𝑈))) |
2 | | eqid 2738 |
. 2
⊢
(Base‘𝐺) =
(Base‘𝐺) |
3 | | ovex 7308 |
. . 3
⊢ (𝑇 ⊕ 𝑈) ∈ V |
4 | | eqid 2738 |
. . . 4
⊢ (𝐺 ↾s (𝑇 ⊕ 𝑈)) = (𝐺 ↾s (𝑇 ⊕ 𝑈)) |
5 | | pj1eu.a |
. . . 4
⊢ + =
(+g‘𝐺) |
6 | 4, 5 | ressplusg 17000 |
. . 3
⊢ ((𝑇 ⊕ 𝑈) ∈ V → + =
(+g‘(𝐺
↾s (𝑇
⊕
𝑈)))) |
7 | 3, 6 | ax-mp 5 |
. 2
⊢ + =
(+g‘(𝐺
↾s (𝑇
⊕
𝑈))) |
8 | | pj1eu.2 |
. . . 4
⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
9 | | pj1eu.3 |
. . . 4
⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
10 | | pj1eu.5 |
. . . 4
⊢ (𝜑 → 𝑇 ⊆ (𝑍‘𝑈)) |
11 | | pj1eu.s |
. . . . 5
⊢ ⊕ =
(LSSum‘𝐺) |
12 | | pj1eu.z |
. . . . 5
⊢ 𝑍 = (Cntz‘𝐺) |
13 | 11, 12 | lsmsubg 19259 |
. . . 4
⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍‘𝑈)) → (𝑇 ⊕ 𝑈) ∈ (SubGrp‘𝐺)) |
14 | 8, 9, 10, 13 | syl3anc 1370 |
. . 3
⊢ (𝜑 → (𝑇 ⊕ 𝑈) ∈ (SubGrp‘𝐺)) |
15 | 4 | subggrp 18758 |
. . 3
⊢ ((𝑇 ⊕ 𝑈) ∈ (SubGrp‘𝐺) → (𝐺 ↾s (𝑇 ⊕ 𝑈)) ∈ Grp) |
16 | 14, 15 | syl 17 |
. 2
⊢ (𝜑 → (𝐺 ↾s (𝑇 ⊕ 𝑈)) ∈ Grp) |
17 | | subgrcl 18760 |
. . 3
⊢ (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
18 | 8, 17 | syl 17 |
. 2
⊢ (𝜑 → 𝐺 ∈ Grp) |
19 | | pj1eu.o |
. . . . 5
⊢ 0 =
(0g‘𝐺) |
20 | | pj1eu.4 |
. . . . 5
⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) |
21 | | pj1f.p |
. . . . 5
⊢ 𝑃 = (proj1‘𝐺) |
22 | 5, 11, 19, 12, 8, 9, 20, 10, 21 | pj1f 19303 |
. . . 4
⊢ (𝜑 → (𝑇𝑃𝑈):(𝑇 ⊕ 𝑈)⟶𝑇) |
23 | 2 | subgss 18756 |
. . . . 5
⊢ (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺)) |
24 | 8, 23 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑇 ⊆ (Base‘𝐺)) |
25 | 22, 24 | fssd 6618 |
. . 3
⊢ (𝜑 → (𝑇𝑃𝑈):(𝑇 ⊕ 𝑈)⟶(Base‘𝐺)) |
26 | 4 | subgbas 18759 |
. . . . 5
⊢ ((𝑇 ⊕ 𝑈) ∈ (SubGrp‘𝐺) → (𝑇 ⊕ 𝑈) = (Base‘(𝐺 ↾s (𝑇 ⊕ 𝑈)))) |
27 | 14, 26 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑇 ⊕ 𝑈) = (Base‘(𝐺 ↾s (𝑇 ⊕ 𝑈)))) |
28 | 27 | feq2d 6586 |
. . 3
⊢ (𝜑 → ((𝑇𝑃𝑈):(𝑇 ⊕ 𝑈)⟶(Base‘𝐺) ↔ (𝑇𝑃𝑈):(Base‘(𝐺 ↾s (𝑇 ⊕ 𝑈)))⟶(Base‘𝐺))) |
29 | 25, 28 | mpbid 231 |
. 2
⊢ (𝜑 → (𝑇𝑃𝑈):(Base‘(𝐺 ↾s (𝑇 ⊕ 𝑈)))⟶(Base‘𝐺)) |
30 | 27 | eleq2d 2824 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (𝑇 ⊕ 𝑈) ↔ 𝑥 ∈ (Base‘(𝐺 ↾s (𝑇 ⊕ 𝑈))))) |
31 | 27 | eleq2d 2824 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ (𝑇 ⊕ 𝑈) ↔ 𝑦 ∈ (Base‘(𝐺 ↾s (𝑇 ⊕ 𝑈))))) |
32 | 30, 31 | anbi12d 631 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ (𝑇 ⊕ 𝑈) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈)) ↔ (𝑥 ∈ (Base‘(𝐺 ↾s (𝑇 ⊕ 𝑈))) ∧ 𝑦 ∈ (Base‘(𝐺 ↾s (𝑇 ⊕ 𝑈)))))) |
33 | 32 | biimpar 478 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐺 ↾s (𝑇 ⊕ 𝑈))) ∧ 𝑦 ∈ (Base‘(𝐺 ↾s (𝑇 ⊕ 𝑈))))) → (𝑥 ∈ (𝑇 ⊕ 𝑈) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) |
34 | 5, 11, 19, 12, 8, 9, 20, 10, 21 | pj1id 19305 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝑇 ⊕ 𝑈)) → 𝑥 = (((𝑇𝑃𝑈)‘𝑥) + ((𝑈𝑃𝑇)‘𝑥))) |
35 | 34 | adantrr 714 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑇 ⊕ 𝑈) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → 𝑥 = (((𝑇𝑃𝑈)‘𝑥) + ((𝑈𝑃𝑇)‘𝑥))) |
36 | 5, 11, 19, 12, 8, 9, 20, 10, 21 | pj1id 19305 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈)) → 𝑦 = (((𝑇𝑃𝑈)‘𝑦) + ((𝑈𝑃𝑇)‘𝑦))) |
37 | 36 | adantrl 713 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑇 ⊕ 𝑈) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → 𝑦 = (((𝑇𝑃𝑈)‘𝑦) + ((𝑈𝑃𝑇)‘𝑦))) |
38 | 35, 37 | oveq12d 7293 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑇 ⊕ 𝑈) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → (𝑥 + 𝑦) = ((((𝑇𝑃𝑈)‘𝑥) + ((𝑈𝑃𝑇)‘𝑥)) + (((𝑇𝑃𝑈)‘𝑦) + ((𝑈𝑃𝑇)‘𝑦)))) |
39 | 8 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑇 ⊕ 𝑈) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → 𝑇 ∈ (SubGrp‘𝐺)) |
40 | | grpmnd 18584 |
. . . . . . . 8
⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
41 | 39, 17, 40 | 3syl 18 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑇 ⊕ 𝑈) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → 𝐺 ∈ Mnd) |
42 | 39, 23 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑇 ⊕ 𝑈) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → 𝑇 ⊆ (Base‘𝐺)) |
43 | | simpl 483 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (𝑇 ⊕ 𝑈) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈)) → 𝑥 ∈ (𝑇 ⊕ 𝑈)) |
44 | | ffvelrn 6959 |
. . . . . . . . 9
⊢ (((𝑇𝑃𝑈):(𝑇 ⊕ 𝑈)⟶𝑇 ∧ 𝑥 ∈ (𝑇 ⊕ 𝑈)) → ((𝑇𝑃𝑈)‘𝑥) ∈ 𝑇) |
45 | 22, 43, 44 | syl2an 596 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑇 ⊕ 𝑈) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → ((𝑇𝑃𝑈)‘𝑥) ∈ 𝑇) |
46 | 42, 45 | sseldd 3922 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑇 ⊕ 𝑈) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → ((𝑇𝑃𝑈)‘𝑥) ∈ (Base‘𝐺)) |
47 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (𝑇 ⊕ 𝑈) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈)) → 𝑦 ∈ (𝑇 ⊕ 𝑈)) |
48 | | ffvelrn 6959 |
. . . . . . . . 9
⊢ (((𝑇𝑃𝑈):(𝑇 ⊕ 𝑈)⟶𝑇 ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈)) → ((𝑇𝑃𝑈)‘𝑦) ∈ 𝑇) |
49 | 22, 47, 48 | syl2an 596 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑇 ⊕ 𝑈) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → ((𝑇𝑃𝑈)‘𝑦) ∈ 𝑇) |
50 | 42, 49 | sseldd 3922 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑇 ⊕ 𝑈) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → ((𝑇𝑃𝑈)‘𝑦) ∈ (Base‘𝐺)) |
51 | 9 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑇 ⊕ 𝑈) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → 𝑈 ∈ (SubGrp‘𝐺)) |
52 | 2 | subgss 18756 |
. . . . . . . . 9
⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺)) |
53 | 51, 52 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑇 ⊕ 𝑈) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → 𝑈 ⊆ (Base‘𝐺)) |
54 | 5, 11, 19, 12, 8, 9, 20, 10, 21 | pj2f 19304 |
. . . . . . . . 9
⊢ (𝜑 → (𝑈𝑃𝑇):(𝑇 ⊕ 𝑈)⟶𝑈) |
55 | | ffvelrn 6959 |
. . . . . . . . 9
⊢ (((𝑈𝑃𝑇):(𝑇 ⊕ 𝑈)⟶𝑈 ∧ 𝑥 ∈ (𝑇 ⊕ 𝑈)) → ((𝑈𝑃𝑇)‘𝑥) ∈ 𝑈) |
56 | 54, 43, 55 | syl2an 596 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑇 ⊕ 𝑈) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → ((𝑈𝑃𝑇)‘𝑥) ∈ 𝑈) |
57 | 53, 56 | sseldd 3922 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑇 ⊕ 𝑈) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → ((𝑈𝑃𝑇)‘𝑥) ∈ (Base‘𝐺)) |
58 | | ffvelrn 6959 |
. . . . . . . . 9
⊢ (((𝑈𝑃𝑇):(𝑇 ⊕ 𝑈)⟶𝑈 ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈)) → ((𝑈𝑃𝑇)‘𝑦) ∈ 𝑈) |
59 | 54, 47, 58 | syl2an 596 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑇 ⊕ 𝑈) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → ((𝑈𝑃𝑇)‘𝑦) ∈ 𝑈) |
60 | 53, 59 | sseldd 3922 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑇 ⊕ 𝑈) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → ((𝑈𝑃𝑇)‘𝑦) ∈ (Base‘𝐺)) |
61 | 10 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑇 ⊕ 𝑈) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → 𝑇 ⊆ (𝑍‘𝑈)) |
62 | 61, 49 | sseldd 3922 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑇 ⊕ 𝑈) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → ((𝑇𝑃𝑈)‘𝑦) ∈ (𝑍‘𝑈)) |
63 | 5, 12 | cntzi 18935 |
. . . . . . . 8
⊢ ((((𝑇𝑃𝑈)‘𝑦) ∈ (𝑍‘𝑈) ∧ ((𝑈𝑃𝑇)‘𝑥) ∈ 𝑈) → (((𝑇𝑃𝑈)‘𝑦) + ((𝑈𝑃𝑇)‘𝑥)) = (((𝑈𝑃𝑇)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦))) |
64 | 62, 56, 63 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑇 ⊕ 𝑈) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → (((𝑇𝑃𝑈)‘𝑦) + ((𝑈𝑃𝑇)‘𝑥)) = (((𝑈𝑃𝑇)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦))) |
65 | 2, 5, 41, 46, 50, 57, 60, 64 | mnd4g 18399 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑇 ⊕ 𝑈) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → ((((𝑇𝑃𝑈)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)) + (((𝑈𝑃𝑇)‘𝑥) + ((𝑈𝑃𝑇)‘𝑦))) = ((((𝑇𝑃𝑈)‘𝑥) + ((𝑈𝑃𝑇)‘𝑥)) + (((𝑇𝑃𝑈)‘𝑦) + ((𝑈𝑃𝑇)‘𝑦)))) |
66 | 38, 65 | eqtr4d 2781 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑇 ⊕ 𝑈) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → (𝑥 + 𝑦) = ((((𝑇𝑃𝑈)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)) + (((𝑈𝑃𝑇)‘𝑥) + ((𝑈𝑃𝑇)‘𝑦)))) |
67 | 20 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑇 ⊕ 𝑈) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → (𝑇 ∩ 𝑈) = { 0 }) |
68 | 5 | subgcl 18765 |
. . . . . . . 8
⊢ (((𝑇 ⊕ 𝑈) ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ (𝑇 ⊕ 𝑈) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈)) → (𝑥 + 𝑦) ∈ (𝑇 ⊕ 𝑈)) |
69 | 68 | 3expb 1119 |
. . . . . . 7
⊢ (((𝑇 ⊕ 𝑈) ∈ (SubGrp‘𝐺) ∧ (𝑥 ∈ (𝑇 ⊕ 𝑈) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → (𝑥 + 𝑦) ∈ (𝑇 ⊕ 𝑈)) |
70 | 14, 69 | sylan 580 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑇 ⊕ 𝑈) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → (𝑥 + 𝑦) ∈ (𝑇 ⊕ 𝑈)) |
71 | 5 | subgcl 18765 |
. . . . . . 7
⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ ((𝑇𝑃𝑈)‘𝑥) ∈ 𝑇 ∧ ((𝑇𝑃𝑈)‘𝑦) ∈ 𝑇) → (((𝑇𝑃𝑈)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)) ∈ 𝑇) |
72 | 39, 45, 49, 71 | syl3anc 1370 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑇 ⊕ 𝑈) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → (((𝑇𝑃𝑈)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)) ∈ 𝑇) |
73 | 5 | subgcl 18765 |
. . . . . . 7
⊢ ((𝑈 ∈ (SubGrp‘𝐺) ∧ ((𝑈𝑃𝑇)‘𝑥) ∈ 𝑈 ∧ ((𝑈𝑃𝑇)‘𝑦) ∈ 𝑈) → (((𝑈𝑃𝑇)‘𝑥) + ((𝑈𝑃𝑇)‘𝑦)) ∈ 𝑈) |
74 | 51, 56, 59, 73 | syl3anc 1370 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑇 ⊕ 𝑈) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → (((𝑈𝑃𝑇)‘𝑥) + ((𝑈𝑃𝑇)‘𝑦)) ∈ 𝑈) |
75 | 5, 11, 19, 12, 39, 51, 67, 61, 21, 70, 72, 74 | pj1eq 19306 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑇 ⊕ 𝑈) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → ((𝑥 + 𝑦) = ((((𝑇𝑃𝑈)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)) + (((𝑈𝑃𝑇)‘𝑥) + ((𝑈𝑃𝑇)‘𝑦))) ↔ (((𝑇𝑃𝑈)‘(𝑥 + 𝑦)) = (((𝑇𝑃𝑈)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)) ∧ ((𝑈𝑃𝑇)‘(𝑥 + 𝑦)) = (((𝑈𝑃𝑇)‘𝑥) + ((𝑈𝑃𝑇)‘𝑦))))) |
76 | 66, 75 | mpbid 231 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑇 ⊕ 𝑈) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → (((𝑇𝑃𝑈)‘(𝑥 + 𝑦)) = (((𝑇𝑃𝑈)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦)) ∧ ((𝑈𝑃𝑇)‘(𝑥 + 𝑦)) = (((𝑈𝑃𝑇)‘𝑥) + ((𝑈𝑃𝑇)‘𝑦)))) |
77 | 76 | simpld 495 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ (𝑇 ⊕ 𝑈) ∧ 𝑦 ∈ (𝑇 ⊕ 𝑈))) → ((𝑇𝑃𝑈)‘(𝑥 + 𝑦)) = (((𝑇𝑃𝑈)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦))) |
78 | 33, 77 | syldan 591 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘(𝐺 ↾s (𝑇 ⊕ 𝑈))) ∧ 𝑦 ∈ (Base‘(𝐺 ↾s (𝑇 ⊕ 𝑈))))) → ((𝑇𝑃𝑈)‘(𝑥 + 𝑦)) = (((𝑇𝑃𝑈)‘𝑥) + ((𝑇𝑃𝑈)‘𝑦))) |
79 | 1, 2, 7, 5, 16, 18, 29, 78 | isghmd 18843 |
1
⊢ (𝜑 → (𝑇𝑃𝑈) ∈ ((𝐺 ↾s (𝑇 ⊕ 𝑈)) GrpHom 𝐺)) |