MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnn0ass Structured version   Visualization version   GIF version

Theorem mulgnn0ass 18266
Description: Product of group multiples, generalized to 0. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgass.b 𝐵 = (Base‘𝐺)
mulgass.t · = (.g𝐺)
Assertion
Ref Expression
mulgnn0ass ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))

Proof of Theorem mulgnn0ass
StepHypRef Expression
1 mndsgrp 17920 . . . . . . . 8 (𝐺 ∈ Mnd → 𝐺 ∈ Smgrp)
21adantr 483 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → 𝐺 ∈ Smgrp)
32adantr 483 . . . . . 6 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → 𝐺 ∈ Smgrp)
4 simprl 769 . . . . . 6 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → 𝑀 ∈ ℕ)
5 simprr 771 . . . . . 6 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → 𝑁 ∈ ℕ)
6 simpr3 1192 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → 𝑋𝐵)
76adantr 483 . . . . . 6 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → 𝑋𝐵)
8 mulgass.b . . . . . . 7 𝐵 = (Base‘𝐺)
9 mulgass.t . . . . . . 7 · = (.g𝐺)
108, 9mulgnnass 18265 . . . . . 6 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
113, 4, 5, 7, 10syl13anc 1368 . . . . 5 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
1211expr 459 . . . 4 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑁 ∈ ℕ → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
13 eqid 2824 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
148, 13, 9mulg0 18234 . . . . . . . 8 (𝑋𝐵 → (0 · 𝑋) = (0g𝐺))
156, 14syl 17 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (0 · 𝑋) = (0g𝐺))
16 simpr1 1190 . . . . . . . . . 10 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → 𝑀 ∈ ℕ0)
1716nn0cnd 11960 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → 𝑀 ∈ ℂ)
1817mul01d 10842 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (𝑀 · 0) = 0)
1918oveq1d 7174 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((𝑀 · 0) · 𝑋) = (0 · 𝑋))
2015oveq2d 7175 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (𝑀 · (0 · 𝑋)) = (𝑀 · (0g𝐺)))
218, 9, 13mulgnn0z 18257 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℕ0) → (𝑀 · (0g𝐺)) = (0g𝐺))
22213ad2antr1 1184 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (𝑀 · (0g𝐺)) = (0g𝐺))
2320, 22eqtrd 2859 . . . . . . 7 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (𝑀 · (0 · 𝑋)) = (0g𝐺))
2415, 19, 233eqtr4d 2869 . . . . . 6 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((𝑀 · 0) · 𝑋) = (𝑀 · (0 · 𝑋)))
2524adantr 483 . . . . 5 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) → ((𝑀 · 0) · 𝑋) = (𝑀 · (0 · 𝑋)))
26 oveq2 7167 . . . . . . 7 (𝑁 = 0 → (𝑀 · 𝑁) = (𝑀 · 0))
2726oveq1d 7174 . . . . . 6 (𝑁 = 0 → ((𝑀 · 𝑁) · 𝑋) = ((𝑀 · 0) · 𝑋))
28 oveq1 7166 . . . . . . 7 (𝑁 = 0 → (𝑁 · 𝑋) = (0 · 𝑋))
2928oveq2d 7175 . . . . . 6 (𝑁 = 0 → (𝑀 · (𝑁 · 𝑋)) = (𝑀 · (0 · 𝑋)))
3027, 29eqeq12d 2840 . . . . 5 (𝑁 = 0 → (((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)) ↔ ((𝑀 · 0) · 𝑋) = (𝑀 · (0 · 𝑋))))
3125, 30syl5ibrcom 249 . . . 4 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑁 = 0 → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
32 simpr2 1191 . . . . . 6 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → 𝑁 ∈ ℕ0)
33 elnn0 11902 . . . . . 6 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
3432, 33sylib 220 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
3534adantr 483 . . . 4 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
3612, 31, 35mpjaod 856 . . 3 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
3736ex 415 . 2 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (𝑀 ∈ ℕ → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
3832nn0cnd 11960 . . . . . 6 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → 𝑁 ∈ ℂ)
3938mul02d 10841 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (0 · 𝑁) = 0)
4039oveq1d 7174 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((0 · 𝑁) · 𝑋) = (0 · 𝑋))
418, 9mulgnn0cl 18247 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
42413adant3r1 1178 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (𝑁 · 𝑋) ∈ 𝐵)
438, 13, 9mulg0 18234 . . . . 5 ((𝑁 · 𝑋) ∈ 𝐵 → (0 · (𝑁 · 𝑋)) = (0g𝐺))
4442, 43syl 17 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (0 · (𝑁 · 𝑋)) = (0g𝐺))
4515, 40, 443eqtr4d 2869 . . 3 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((0 · 𝑁) · 𝑋) = (0 · (𝑁 · 𝑋)))
46 oveq1 7166 . . . . 5 (𝑀 = 0 → (𝑀 · 𝑁) = (0 · 𝑁))
4746oveq1d 7174 . . . 4 (𝑀 = 0 → ((𝑀 · 𝑁) · 𝑋) = ((0 · 𝑁) · 𝑋))
48 oveq1 7166 . . . 4 (𝑀 = 0 → (𝑀 · (𝑁 · 𝑋)) = (0 · (𝑁 · 𝑋)))
4947, 48eqeq12d 2840 . . 3 (𝑀 = 0 → (((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)) ↔ ((0 · 𝑁) · 𝑋) = (0 · (𝑁 · 𝑋))))
5045, 49syl5ibrcom 249 . 2 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (𝑀 = 0 → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))))
51 elnn0 11902 . . 3 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0))
5216, 51sylib 220 . 2 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (𝑀 ∈ ℕ ∨ 𝑀 = 0))
5337, 50, 52mpjaod 856 1 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843  w3a 1083   = wceq 1536  wcel 2113  cfv 6358  (class class class)co 7159  0cc0 10540   · cmul 10545  cn 11641  0cn0 11900  Basecbs 16486  0gc0g 16716  Smgrpcsgrp 17903  Mndcmnd 17914  .gcmg 18227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-seq 13373  df-0g 16718  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-mulg 18228
This theorem is referenced by:  mulgass  18267  odmodnn0  18671
  Copyright terms: Public domain W3C validator