Proof of Theorem mulgnn0ass
Step | Hyp | Ref
| Expression |
1 | | mndsgrp 17983 |
. . . . . . . 8
⊢ (𝐺 ∈ Mnd → 𝐺 ∈ Smgrp) |
2 | 1 | adantr 484 |
. . . . . . 7
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) → 𝐺 ∈ Smgrp) |
3 | 2 | adantr 484 |
. . . . . 6
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → 𝐺 ∈ Smgrp) |
4 | | simprl 770 |
. . . . . 6
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → 𝑀 ∈
ℕ) |
5 | | simprr 772 |
. . . . . 6
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → 𝑁 ∈
ℕ) |
6 | | simpr3 1193 |
. . . . . . 7
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) → 𝑋 ∈ 𝐵) |
7 | 6 | adantr 484 |
. . . . . 6
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → 𝑋 ∈ 𝐵) |
8 | | mulgass.b |
. . . . . . 7
⊢ 𝐵 = (Base‘𝐺) |
9 | | mulgass.t |
. . . . . . 7
⊢ · =
(.g‘𝐺) |
10 | 8, 9 | mulgnnass 18329 |
. . . . . 6
⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))) |
11 | 3, 4, 5, 7, 10 | syl13anc 1369 |
. . . . 5
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))) |
12 | 11 | expr 460 |
. . . 4
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑁 ∈ ℕ → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))) |
13 | | eqid 2758 |
. . . . . . . . 9
⊢
(0g‘𝐺) = (0g‘𝐺) |
14 | 8, 13, 9 | mulg0 18298 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = (0g‘𝐺)) |
15 | 6, 14 | syl 17 |
. . . . . . 7
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) → (0 · 𝑋) = (0g‘𝐺)) |
16 | | simpr1 1191 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) → 𝑀 ∈
ℕ0) |
17 | 16 | nn0cnd 11996 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) → 𝑀 ∈
ℂ) |
18 | 17 | mul01d 10877 |
. . . . . . . 8
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) → (𝑀 · 0) =
0) |
19 | 18 | oveq1d 7165 |
. . . . . . 7
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) → ((𝑀 · 0) · 𝑋) = (0 · 𝑋)) |
20 | 15 | oveq2d 7166 |
. . . . . . . 8
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) → (𝑀 · (0 · 𝑋)) = (𝑀 ·
(0g‘𝐺))) |
21 | 8, 9, 13 | mulgnn0z 18321 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Mnd ∧ 𝑀 ∈ ℕ0)
→ (𝑀 ·
(0g‘𝐺)) =
(0g‘𝐺)) |
22 | 21 | 3ad2antr1 1185 |
. . . . . . . 8
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) → (𝑀 ·
(0g‘𝐺)) =
(0g‘𝐺)) |
23 | 20, 22 | eqtrd 2793 |
. . . . . . 7
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) → (𝑀 · (0 · 𝑋)) = (0g‘𝐺)) |
24 | 15, 19, 23 | 3eqtr4d 2803 |
. . . . . 6
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) → ((𝑀 · 0) · 𝑋) = (𝑀 · (0 · 𝑋))) |
25 | 24 | adantr 484 |
. . . . 5
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ 𝑀 ∈ ℕ) → ((𝑀 · 0) · 𝑋) = (𝑀 · (0 · 𝑋))) |
26 | | oveq2 7158 |
. . . . . . 7
⊢ (𝑁 = 0 → (𝑀 · 𝑁) = (𝑀 · 0)) |
27 | 26 | oveq1d 7165 |
. . . . . 6
⊢ (𝑁 = 0 → ((𝑀 · 𝑁) · 𝑋) = ((𝑀 · 0) · 𝑋)) |
28 | | oveq1 7157 |
. . . . . . 7
⊢ (𝑁 = 0 → (𝑁 · 𝑋) = (0 · 𝑋)) |
29 | 28 | oveq2d 7166 |
. . . . . 6
⊢ (𝑁 = 0 → (𝑀 · (𝑁 · 𝑋)) = (𝑀 · (0 · 𝑋))) |
30 | 27, 29 | eqeq12d 2774 |
. . . . 5
⊢ (𝑁 = 0 → (((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)) ↔ ((𝑀 · 0) · 𝑋) = (𝑀 · (0 · 𝑋)))) |
31 | 25, 30 | syl5ibrcom 250 |
. . . 4
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑁 = 0 → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))) |
32 | | simpr2 1192 |
. . . . . 6
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) → 𝑁 ∈
ℕ0) |
33 | | elnn0 11936 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
↔ (𝑁 ∈ ℕ
∨ 𝑁 =
0)) |
34 | 32, 33 | sylib 221 |
. . . . 5
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) → (𝑁 ∈ ℕ ∨ 𝑁 = 0)) |
35 | 34 | adantr 484 |
. . . 4
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑁 ∈ ℕ ∨ 𝑁 = 0)) |
36 | 12, 31, 35 | mpjaod 857 |
. . 3
⊢ (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) ∧ 𝑀 ∈ ℕ) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))) |
37 | 36 | ex 416 |
. 2
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) → (𝑀 ∈ ℕ → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))) |
38 | 32 | nn0cnd 11996 |
. . . . . 6
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) → 𝑁 ∈
ℂ) |
39 | 38 | mul02d 10876 |
. . . . 5
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) → (0
· 𝑁) =
0) |
40 | 39 | oveq1d 7165 |
. . . 4
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) → ((0
· 𝑁) · 𝑋) = (0 · 𝑋)) |
41 | 8, 9 | mulgnn0cl 18311 |
. . . . . 6
⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0
∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) ∈ 𝐵) |
42 | 41 | 3adant3r1 1179 |
. . . . 5
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) → (𝑁 · 𝑋) ∈ 𝐵) |
43 | 8, 13, 9 | mulg0 18298 |
. . . . 5
⊢ ((𝑁 · 𝑋) ∈ 𝐵 → (0 · (𝑁 · 𝑋)) = (0g‘𝐺)) |
44 | 42, 43 | syl 17 |
. . . 4
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) → (0 · (𝑁 · 𝑋)) = (0g‘𝐺)) |
45 | 15, 40, 44 | 3eqtr4d 2803 |
. . 3
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) → ((0
· 𝑁) · 𝑋) = (0 · (𝑁 · 𝑋))) |
46 | | oveq1 7157 |
. . . . 5
⊢ (𝑀 = 0 → (𝑀 · 𝑁) = (0 · 𝑁)) |
47 | 46 | oveq1d 7165 |
. . . 4
⊢ (𝑀 = 0 → ((𝑀 · 𝑁) · 𝑋) = ((0 · 𝑁) · 𝑋)) |
48 | | oveq1 7157 |
. . . 4
⊢ (𝑀 = 0 → (𝑀 · (𝑁 · 𝑋)) = (0 · (𝑁 · 𝑋))) |
49 | 47, 48 | eqeq12d 2774 |
. . 3
⊢ (𝑀 = 0 → (((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)) ↔ ((0 · 𝑁) · 𝑋) = (0 · (𝑁 · 𝑋)))) |
50 | 45, 49 | syl5ibrcom 250 |
. 2
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) → (𝑀 = 0 → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋)))) |
51 | | elnn0 11936 |
. . 3
⊢ (𝑀 ∈ ℕ0
↔ (𝑀 ∈ ℕ
∨ 𝑀 =
0)) |
52 | 16, 51 | sylib 221 |
. 2
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) → (𝑀 ∈ ℕ ∨ 𝑀 = 0)) |
53 | 37, 50, 52 | mpjaod 857 |
1
⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑋
∈ 𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))) |