MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnn0dir Structured version   Visualization version   GIF version

Theorem mulgnn0dir 19067
Description: Sum of group multiples, generalized to 0. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgnndir.b 𝐵 = (Base‘𝐺)
mulgnndir.t · = (.g𝐺)
mulgnndir.p + = (+g𝐺)
Assertion
Ref Expression
mulgnn0dir ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))

Proof of Theorem mulgnn0dir
StepHypRef Expression
1 mndsgrp 18703 . . . . . 6 (𝐺 ∈ Mnd → 𝐺 ∈ Smgrp)
21adantr 479 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → 𝐺 ∈ Smgrp)
32ad2antrr 724 . . . 4 ((((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ) → 𝐺 ∈ Smgrp)
4 simplr 767 . . . 4 ((((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℕ)
5 simpr 483 . . . 4 ((((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
6 simpr3 1193 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → 𝑋𝐵)
76ad2antrr 724 . . . 4 ((((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ) → 𝑋𝐵)
8 mulgnndir.b . . . . 5 𝐵 = (Base‘𝐺)
9 mulgnndir.t . . . . 5 · = (.g𝐺)
10 mulgnndir.p . . . . 5 + = (+g𝐺)
118, 9, 10mulgnndir 19066 . . . 4 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
123, 4, 5, 7, 11syl13anc 1369 . . 3 ((((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
13 simpll 765 . . . . . 6 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → 𝐺 ∈ Mnd)
14 simpr1 1191 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → 𝑀 ∈ ℕ0)
1514adantr 479 . . . . . . 7 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → 𝑀 ∈ ℕ0)
16 simplr3 1214 . . . . . . 7 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → 𝑋𝐵)
178, 9, 13, 15, 16mulgnn0cld 19058 . . . . . 6 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → (𝑀 · 𝑋) ∈ 𝐵)
18 eqid 2725 . . . . . . 7 (0g𝐺) = (0g𝐺)
198, 10, 18mndrid 18718 . . . . . 6 ((𝐺 ∈ Mnd ∧ (𝑀 · 𝑋) ∈ 𝐵) → ((𝑀 · 𝑋) + (0g𝐺)) = (𝑀 · 𝑋))
2013, 17, 19syl2anc 582 . . . . 5 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → ((𝑀 · 𝑋) + (0g𝐺)) = (𝑀 · 𝑋))
21 simpr 483 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → 𝑁 = 0)
2221oveq1d 7434 . . . . . . 7 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → (𝑁 · 𝑋) = (0 · 𝑋))
238, 18, 9mulg0 19038 . . . . . . . 8 (𝑋𝐵 → (0 · 𝑋) = (0g𝐺))
2416, 23syl 17 . . . . . . 7 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → (0 · 𝑋) = (0g𝐺))
2522, 24eqtrd 2765 . . . . . 6 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → (𝑁 · 𝑋) = (0g𝐺))
2625oveq2d 7435 . . . . 5 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → ((𝑀 · 𝑋) + (𝑁 · 𝑋)) = ((𝑀 · 𝑋) + (0g𝐺)))
2721oveq2d 7435 . . . . . . 7 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → (𝑀 + 𝑁) = (𝑀 + 0))
2815nn0cnd 12567 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → 𝑀 ∈ ℂ)
2928addridd 11446 . . . . . . 7 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → (𝑀 + 0) = 𝑀)
3027, 29eqtrd 2765 . . . . . 6 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → (𝑀 + 𝑁) = 𝑀)
3130oveq1d 7434 . . . . 5 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → ((𝑀 + 𝑁) · 𝑋) = (𝑀 · 𝑋))
3220, 26, 313eqtr4rd 2776 . . . 4 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
3332adantlr 713 . . 3 ((((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑁 = 0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
34 simpr2 1192 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → 𝑁 ∈ ℕ0)
35 elnn0 12507 . . . . 5 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
3634, 35sylib 217 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
3736adantr 479 . . 3 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
3812, 33, 37mpjaodan 956 . 2 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
39 simpll 765 . . . 4 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → 𝐺 ∈ Mnd)
40 simplr2 1213 . . . . 5 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → 𝑁 ∈ ℕ0)
41 simplr3 1214 . . . . 5 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → 𝑋𝐵)
428, 9, 39, 40, 41mulgnn0cld 19058 . . . 4 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → (𝑁 · 𝑋) ∈ 𝐵)
438, 10, 18mndlid 18717 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑁 · 𝑋) ∈ 𝐵) → ((0g𝐺) + (𝑁 · 𝑋)) = (𝑁 · 𝑋))
4439, 42, 43syl2anc 582 . . 3 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → ((0g𝐺) + (𝑁 · 𝑋)) = (𝑁 · 𝑋))
45 simpr 483 . . . . . 6 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → 𝑀 = 0)
4645oveq1d 7434 . . . . 5 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → (𝑀 · 𝑋) = (0 · 𝑋))
4741, 23syl 17 . . . . 5 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → (0 · 𝑋) = (0g𝐺))
4846, 47eqtrd 2765 . . . 4 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → (𝑀 · 𝑋) = (0g𝐺))
4948oveq1d 7434 . . 3 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → ((𝑀 · 𝑋) + (𝑁 · 𝑋)) = ((0g𝐺) + (𝑁 · 𝑋)))
5045oveq1d 7434 . . . . 5 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → (𝑀 + 𝑁) = (0 + 𝑁))
5140nn0cnd 12567 . . . . . 6 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → 𝑁 ∈ ℂ)
5251addlidd 11447 . . . . 5 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → (0 + 𝑁) = 𝑁)
5350, 52eqtrd 2765 . . . 4 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → (𝑀 + 𝑁) = 𝑁)
5453oveq1d 7434 . . 3 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → ((𝑀 + 𝑁) · 𝑋) = (𝑁 · 𝑋))
5544, 49, 543eqtr4rd 2776 . 2 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
56 elnn0 12507 . . 3 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0))
5714, 56sylib 217 . 2 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (𝑀 ∈ ℕ ∨ 𝑀 = 0))
5838, 55, 57mpjaodan 956 1 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wo 845  w3a 1084   = wceq 1533  wcel 2098  cfv 6549  (class class class)co 7419  0cc0 11140   + caddc 11143  cn 12245  0cn0 12505  Basecbs 17183  +gcplusg 17236  0gc0g 17424  Smgrpcsgrp 18681  Mndcmnd 18697  .gcmg 19031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-n0 12506  df-z 12592  df-uz 12856  df-fz 13520  df-seq 14003  df-0g 17426  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-mulg 19032
This theorem is referenced by:  mulgdirlem  19068  cycsubm  19165  cycsubmcom  19167  odmodnn0  19507  mndodconglem  19508  srgbinomlem  20182  evlslem1  22050  psdmul  22113  cpmadugsumlemB  22820  omndmul2  32882  omndmul3  32883  aks6d1c2lem3  41726  aks6d1c5lem3  41737  mhphflem  41961
  Copyright terms: Public domain W3C validator