MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnn0dir Structured version   Visualization version   GIF version

Theorem mulgnn0dir 19134
Description: Sum of group multiples, generalized to 0. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgnndir.b 𝐵 = (Base‘𝐺)
mulgnndir.t · = (.g𝐺)
mulgnndir.p + = (+g𝐺)
Assertion
Ref Expression
mulgnn0dir ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))

Proof of Theorem mulgnn0dir
StepHypRef Expression
1 mndsgrp 18765 . . . . . 6 (𝐺 ∈ Mnd → 𝐺 ∈ Smgrp)
21adantr 480 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → 𝐺 ∈ Smgrp)
32ad2antrr 726 . . . 4 ((((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ) → 𝐺 ∈ Smgrp)
4 simplr 769 . . . 4 ((((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℕ)
5 simpr 484 . . . 4 ((((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
6 simpr3 1195 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → 𝑋𝐵)
76ad2antrr 726 . . . 4 ((((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ) → 𝑋𝐵)
8 mulgnndir.b . . . . 5 𝐵 = (Base‘𝐺)
9 mulgnndir.t . . . . 5 · = (.g𝐺)
10 mulgnndir.p . . . . 5 + = (+g𝐺)
118, 9, 10mulgnndir 19133 . . . 4 ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
123, 4, 5, 7, 11syl13anc 1371 . . 3 ((((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
13 simpll 767 . . . . . 6 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → 𝐺 ∈ Mnd)
14 simpr1 1193 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → 𝑀 ∈ ℕ0)
1514adantr 480 . . . . . . 7 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → 𝑀 ∈ ℕ0)
16 simplr3 1216 . . . . . . 7 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → 𝑋𝐵)
178, 9, 13, 15, 16mulgnn0cld 19125 . . . . . 6 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → (𝑀 · 𝑋) ∈ 𝐵)
18 eqid 2734 . . . . . . 7 (0g𝐺) = (0g𝐺)
198, 10, 18mndrid 18780 . . . . . 6 ((𝐺 ∈ Mnd ∧ (𝑀 · 𝑋) ∈ 𝐵) → ((𝑀 · 𝑋) + (0g𝐺)) = (𝑀 · 𝑋))
2013, 17, 19syl2anc 584 . . . . 5 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → ((𝑀 · 𝑋) + (0g𝐺)) = (𝑀 · 𝑋))
21 simpr 484 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → 𝑁 = 0)
2221oveq1d 7445 . . . . . . 7 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → (𝑁 · 𝑋) = (0 · 𝑋))
238, 18, 9mulg0 19104 . . . . . . . 8 (𝑋𝐵 → (0 · 𝑋) = (0g𝐺))
2416, 23syl 17 . . . . . . 7 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → (0 · 𝑋) = (0g𝐺))
2522, 24eqtrd 2774 . . . . . 6 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → (𝑁 · 𝑋) = (0g𝐺))
2625oveq2d 7446 . . . . 5 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → ((𝑀 · 𝑋) + (𝑁 · 𝑋)) = ((𝑀 · 𝑋) + (0g𝐺)))
2721oveq2d 7446 . . . . . . 7 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → (𝑀 + 𝑁) = (𝑀 + 0))
2815nn0cnd 12586 . . . . . . . 8 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → 𝑀 ∈ ℂ)
2928addridd 11458 . . . . . . 7 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → (𝑀 + 0) = 𝑀)
3027, 29eqtrd 2774 . . . . . 6 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → (𝑀 + 𝑁) = 𝑀)
3130oveq1d 7445 . . . . 5 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → ((𝑀 + 𝑁) · 𝑋) = (𝑀 · 𝑋))
3220, 26, 313eqtr4rd 2785 . . . 4 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑁 = 0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
3332adantlr 715 . . 3 ((((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) ∧ 𝑁 = 0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
34 simpr2 1194 . . . . 5 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → 𝑁 ∈ ℕ0)
35 elnn0 12525 . . . . 5 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
3634, 35sylib 218 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
3736adantr 480 . . 3 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
3812, 33, 37mpjaodan 960 . 2 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 ∈ ℕ) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
39 simpll 767 . . . 4 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → 𝐺 ∈ Mnd)
40 simplr2 1215 . . . . 5 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → 𝑁 ∈ ℕ0)
41 simplr3 1216 . . . . 5 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → 𝑋𝐵)
428, 9, 39, 40, 41mulgnn0cld 19125 . . . 4 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → (𝑁 · 𝑋) ∈ 𝐵)
438, 10, 18mndlid 18779 . . . 4 ((𝐺 ∈ Mnd ∧ (𝑁 · 𝑋) ∈ 𝐵) → ((0g𝐺) + (𝑁 · 𝑋)) = (𝑁 · 𝑋))
4439, 42, 43syl2anc 584 . . 3 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → ((0g𝐺) + (𝑁 · 𝑋)) = (𝑁 · 𝑋))
45 simpr 484 . . . . . 6 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → 𝑀 = 0)
4645oveq1d 7445 . . . . 5 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → (𝑀 · 𝑋) = (0 · 𝑋))
4741, 23syl 17 . . . . 5 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → (0 · 𝑋) = (0g𝐺))
4846, 47eqtrd 2774 . . . 4 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → (𝑀 · 𝑋) = (0g𝐺))
4948oveq1d 7445 . . 3 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → ((𝑀 · 𝑋) + (𝑁 · 𝑋)) = ((0g𝐺) + (𝑁 · 𝑋)))
5045oveq1d 7445 . . . . 5 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → (𝑀 + 𝑁) = (0 + 𝑁))
5140nn0cnd 12586 . . . . . 6 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → 𝑁 ∈ ℂ)
5251addlidd 11459 . . . . 5 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → (0 + 𝑁) = 𝑁)
5350, 52eqtrd 2774 . . . 4 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → (𝑀 + 𝑁) = 𝑁)
5453oveq1d 7445 . . 3 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → ((𝑀 + 𝑁) · 𝑋) = (𝑁 · 𝑋))
5544, 49, 543eqtr4rd 2785 . 2 (((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) ∧ 𝑀 = 0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
56 elnn0 12525 . . 3 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0))
5714, 56sylib 218 . 2 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → (𝑀 ∈ ℕ ∨ 𝑀 = 0))
5838, 55, 57mpjaodan 960 1 ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑋𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1536  wcel 2105  cfv 6562  (class class class)co 7430  0cc0 11152   + caddc 11155  cn 12263  0cn0 12523  Basecbs 17244  +gcplusg 17297  0gc0g 17485  Smgrpcsgrp 18743  Mndcmnd 18759  .gcmg 19097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-n0 12524  df-z 12611  df-uz 12876  df-fz 13544  df-seq 14039  df-0g 17487  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-mulg 19098
This theorem is referenced by:  mulgdirlem  19135  cycsubm  19232  cycsubmcom  19234  odmodnn0  19572  mndodconglem  19573  srgbinomlem  20247  evlslem1  22123  psdmul  22187  cpmadugsumlemB  22895  omndmul2  33071  omndmul3  33072  aks6d1c2lem3  42107  aks6d1c5lem3  42118  mhphflem  42582
  Copyright terms: Public domain W3C validator