Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  n0elqs2 Structured version   Visualization version   GIF version

Theorem n0elqs2 38322
Description: Two ways of expressing that the empty set is not an element of a quotient set. (Contributed by Peter Mazsa, 25-Jul-2021.)
Assertion
Ref Expression
n0elqs2 (¬ ∅ ∈ (𝐴 / 𝑅) ↔ dom (𝑅𝐴) = 𝐴)

Proof of Theorem n0elqs2
StepHypRef Expression
1 n0elqs 38321 . 2 (¬ ∅ ∈ (𝐴 / 𝑅) ↔ 𝐴 ⊆ dom 𝑅)
2 ssdmres 5987 . 2 (𝐴 ⊆ dom 𝑅 ↔ dom (𝑅𝐴) = 𝐴)
31, 2bitri 275 1 (¬ ∅ ∈ (𝐴 / 𝑅) ↔ dom (𝑅𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wcel 2109  wss 3917  c0 4299  dom cdm 5641  cres 5643   / cqs 8673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ec 8676  df-qs 8680
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator