Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ecex2 | Structured version Visualization version GIF version |
Description: Condition for a coset to be a set. (Contributed by Peter Mazsa, 4-May-2019.) |
Ref | Expression |
---|---|
ecex2 | ⊢ ((𝑅 ↾ 𝐴) ∈ 𝑉 → (𝐵 ∈ 𝐴 → [𝐵]𝑅 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecexg 8565 | . 2 ⊢ ((𝑅 ↾ 𝐴) ∈ 𝑉 → [𝐵](𝑅 ↾ 𝐴) ∈ V) | |
2 | ecres2 36537 | . . 3 ⊢ (𝐵 ∈ 𝐴 → [𝐵](𝑅 ↾ 𝐴) = [𝐵]𝑅) | |
3 | 2 | eleq1d 2821 | . 2 ⊢ (𝐵 ∈ 𝐴 → ([𝐵](𝑅 ↾ 𝐴) ∈ V ↔ [𝐵]𝑅 ∈ V)) |
4 | 1, 3 | syl5ibcom 244 | 1 ⊢ ((𝑅 ↾ 𝐴) ∈ 𝑉 → (𝐵 ∈ 𝐴 → [𝐵]𝑅 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 Vcvv 3441 ↾ cres 5616 [cec 8559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pr 5369 ax-un 7642 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ec 8563 |
This theorem is referenced by: uniqsALTV 36588 |
Copyright terms: Public domain | W3C validator |