Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ecex2 Structured version   Visualization version   GIF version

Theorem ecex2 38284
Description: Condition for a coset to be a set. (Contributed by Peter Mazsa, 4-May-2019.)
Assertion
Ref Expression
ecex2 ((𝑅𝐴) ∈ 𝑉 → (𝐵𝐴 → [𝐵]𝑅 ∈ V))

Proof of Theorem ecex2
StepHypRef Expression
1 ecexg 8767 . 2 ((𝑅𝐴) ∈ 𝑉 → [𝐵](𝑅𝐴) ∈ V)
2 ecres2 38235 . . 3 (𝐵𝐴 → [𝐵](𝑅𝐴) = [𝐵]𝑅)
32eleq1d 2829 . 2 (𝐵𝐴 → ([𝐵](𝑅𝐴) ∈ V ↔ [𝐵]𝑅 ∈ V))
41, 3syl5ibcom 245 1 ((𝑅𝐴) ∈ 𝑉 → (𝐵𝐴 → [𝐵]𝑅 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3488  cres 5702  [cec 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ec 8765
This theorem is referenced by:  uniqsALTV  38285
  Copyright terms: Public domain W3C validator