MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmovcl Structured version   Visualization version   GIF version

Theorem ndmovcl 7526
Description: The closure of an operation outside its domain, when the domain includes the empty set. This technical lemma can make the operation more convenient to work in some cases. It is dependent on our particular definitions of operation value, function value, and ordered pair. (Contributed by NM, 24-Sep-2004.)
Hypotheses
Ref Expression
ndmov.1 dom 𝐹 = (𝑆 × 𝑆)
ndmovcl.2 ((𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝑆)
ndmovcl.3 ∅ ∈ 𝑆
Assertion
Ref Expression
ndmovcl (𝐴𝐹𝐵) ∈ 𝑆

Proof of Theorem ndmovcl
StepHypRef Expression
1 ndmovcl.2 . 2 ((𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝑆)
2 ndmov.1 . . . 4 dom 𝐹 = (𝑆 × 𝑆)
32ndmov 7525 . . 3 (¬ (𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) = ∅)
4 ndmovcl.3 . . 3 ∅ ∈ 𝑆
53, 4eqeltrdi 2837 . 2 (¬ (𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝑆)
61, 5pm2.61i 182 1 (𝐴𝐹𝐵) ∈ 𝑆
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2110  c0 4281   × cxp 5612  dom cdm 5614  (class class class)co 7341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-xp 5620  df-dm 5624  df-iota 6433  df-fv 6485  df-ov 7344
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator