MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmovcl Structured version   Visualization version   GIF version

Theorem ndmovcl 7619
Description: The closure of an operation outside its domain, when the domain includes the empty set. This technical lemma can make the operation more convenient to work in some cases. It is dependent on our particular definitions of operation value, function value, and ordered pair. (Contributed by NM, 24-Sep-2004.)
Hypotheses
Ref Expression
ndmov.1 dom 𝐹 = (𝑆 × 𝑆)
ndmovcl.2 ((𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝑆)
ndmovcl.3 ∅ ∈ 𝑆
Assertion
Ref Expression
ndmovcl (𝐴𝐹𝐵) ∈ 𝑆

Proof of Theorem ndmovcl
StepHypRef Expression
1 ndmovcl.2 . 2 ((𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝑆)
2 ndmov.1 . . . 4 dom 𝐹 = (𝑆 × 𝑆)
32ndmov 7618 . . 3 (¬ (𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) = ∅)
4 ndmovcl.3 . . 3 ∅ ∈ 𝑆
53, 4eqeltrdi 2848 . 2 (¬ (𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝑆)
61, 5pm2.61i 182 1 (𝐴𝐹𝐵) ∈ 𝑆
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2107  c0 4332   × cxp 5682  dom cdm 5684  (class class class)co 7432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-xp 5690  df-dm 5694  df-iota 6513  df-fv 6568  df-ov 7435
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator