MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmovcl Structured version   Visualization version   GIF version

Theorem ndmovcl 7554
Description: The closure of an operation outside its domain, when the domain includes the empty set. This technical lemma can make the operation more convenient to work in some cases. It is dependent on our particular definitions of operation value, function value, and ordered pair. (Contributed by NM, 24-Sep-2004.)
Hypotheses
Ref Expression
ndmov.1 dom 𝐹 = (𝑆 × 𝑆)
ndmovcl.2 ((𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝑆)
ndmovcl.3 ∅ ∈ 𝑆
Assertion
Ref Expression
ndmovcl (𝐴𝐹𝐵) ∈ 𝑆

Proof of Theorem ndmovcl
StepHypRef Expression
1 ndmovcl.2 . 2 ((𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝑆)
2 ndmov.1 . . . 4 dom 𝐹 = (𝑆 × 𝑆)
32ndmov 7553 . . 3 (¬ (𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) = ∅)
4 ndmovcl.3 . . 3 ∅ ∈ 𝑆
53, 4eqeltrdi 2836 . 2 (¬ (𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝑆)
61, 5pm2.61i 182 1 (𝐴𝐹𝐵) ∈ 𝑆
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  c0 4292   × cxp 5629  dom cdm 5631  (class class class)co 7369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-xp 5637  df-dm 5641  df-iota 6452  df-fv 6507  df-ov 7372
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator