MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmovcl Structured version   Visualization version   GIF version

Theorem ndmovcl 7537
Description: The closure of an operation outside its domain, when the domain includes the empty set. This technical lemma can make the operation more convenient to work in some cases. It is dependent on our particular definitions of operation value, function value, and ordered pair. (Contributed by NM, 24-Sep-2004.)
Hypotheses
Ref Expression
ndmov.1 dom 𝐹 = (𝑆 × 𝑆)
ndmovcl.2 ((𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝑆)
ndmovcl.3 ∅ ∈ 𝑆
Assertion
Ref Expression
ndmovcl (𝐴𝐹𝐵) ∈ 𝑆

Proof of Theorem ndmovcl
StepHypRef Expression
1 ndmovcl.2 . 2 ((𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝑆)
2 ndmov.1 . . . 4 dom 𝐹 = (𝑆 × 𝑆)
32ndmov 7536 . . 3 (¬ (𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) = ∅)
4 ndmovcl.3 . . 3 ∅ ∈ 𝑆
53, 4eqeltrdi 2839 . 2 (¬ (𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝑆)
61, 5pm2.61i 182 1 (𝐴𝐹𝐵) ∈ 𝑆
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  c0 4282   × cxp 5617  dom cdm 5619  (class class class)co 7352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-xp 5625  df-dm 5629  df-iota 6443  df-fv 6495  df-ov 7355
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator