MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmovrcl Structured version   Visualization version   GIF version

Theorem ndmovrcl 7598
Description: Reverse closure law, when an operation's domain doesn't contain the empty set. (Contributed by NM, 3-Feb-1996.)
Hypotheses
Ref Expression
ndmov.1 dom 𝐹 = (𝑆 × 𝑆)
ndmovrcl.3 ¬ ∅ ∈ 𝑆
Assertion
Ref Expression
ndmovrcl ((𝐴𝐹𝐵) ∈ 𝑆 → (𝐴𝑆𝐵𝑆))

Proof of Theorem ndmovrcl
StepHypRef Expression
1 ndmovrcl.3 . . 3 ¬ ∅ ∈ 𝑆
2 ndmov.1 . . . . 5 dom 𝐹 = (𝑆 × 𝑆)
32ndmov 7596 . . . 4 (¬ (𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) = ∅)
43eleq1d 2820 . . 3 (¬ (𝐴𝑆𝐵𝑆) → ((𝐴𝐹𝐵) ∈ 𝑆 ↔ ∅ ∈ 𝑆))
51, 4mtbiri 327 . 2 (¬ (𝐴𝑆𝐵𝑆) → ¬ (𝐴𝐹𝐵) ∈ 𝑆)
65con4i 114 1 ((𝐴𝐹𝐵) ∈ 𝑆 → (𝐴𝑆𝐵𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  c0 4313   × cxp 5657  dom cdm 5659  (class class class)co 7410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-xp 5665  df-dm 5669  df-iota 6489  df-fv 6544  df-ov 7413
This theorem is referenced by:  ndmovass  7600  ndmovdistr  7601  ndmovord  7602  ndmovordi  7603  caovmo  7649  brecop2  8830  eceqoveq  8841  addcanpi  10918  mulcanpi  10919  ordpipq  10961  recmulnq  10983  recclnq  10985  ltexnq  10994  nsmallnq  10996  ltbtwnnq  10997  prlem934  11052  ltaddpr  11053  ltaddpr2  11054  ltexprlem2  11056  ltexprlem3  11057  ltexprlem4  11058  ltexprlem6  11060  ltexprlem7  11061  addcanpr  11065  prlem936  11066  mappsrpr  11127
  Copyright terms: Public domain W3C validator