| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ndmovrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure law, when an operation's domain doesn't contain the empty set. (Contributed by NM, 3-Feb-1996.) |
| Ref | Expression |
|---|---|
| ndmov.1 | ⊢ dom 𝐹 = (𝑆 × 𝑆) |
| ndmovrcl.3 | ⊢ ¬ ∅ ∈ 𝑆 |
| Ref | Expression |
|---|---|
| ndmovrcl | ⊢ ((𝐴𝐹𝐵) ∈ 𝑆 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndmovrcl.3 | . . 3 ⊢ ¬ ∅ ∈ 𝑆 | |
| 2 | ndmov.1 | . . . . 5 ⊢ dom 𝐹 = (𝑆 × 𝑆) | |
| 3 | 2 | ndmov 7596 | . . . 4 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) = ∅) |
| 4 | 3 | eleq1d 2820 | . . 3 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵) ∈ 𝑆 ↔ ∅ ∈ 𝑆)) |
| 5 | 1, 4 | mtbiri 327 | . 2 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ¬ (𝐴𝐹𝐵) ∈ 𝑆) |
| 6 | 5 | con4i 114 | 1 ⊢ ((𝐴𝐹𝐵) ∈ 𝑆 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∅c0 4313 × cxp 5657 dom cdm 5659 (class class class)co 7410 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-xp 5665 df-dm 5669 df-iota 6489 df-fv 6544 df-ov 7413 |
| This theorem is referenced by: ndmovass 7600 ndmovdistr 7601 ndmovord 7602 ndmovordi 7603 caovmo 7649 brecop2 8830 eceqoveq 8841 addcanpi 10918 mulcanpi 10919 ordpipq 10961 recmulnq 10983 recclnq 10985 ltexnq 10994 nsmallnq 10996 ltbtwnnq 10997 prlem934 11052 ltaddpr 11053 ltaddpr2 11054 ltexprlem2 11056 ltexprlem3 11057 ltexprlem4 11058 ltexprlem6 11060 ltexprlem7 11061 addcanpr 11065 prlem936 11066 mappsrpr 11127 |
| Copyright terms: Public domain | W3C validator |