Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ndmovrcl | Structured version Visualization version GIF version |
Description: Reverse closure law, when an operation's domain doesn't contain the empty set. (Contributed by NM, 3-Feb-1996.) |
Ref | Expression |
---|---|
ndmov.1 | ⊢ dom 𝐹 = (𝑆 × 𝑆) |
ndmovrcl.3 | ⊢ ¬ ∅ ∈ 𝑆 |
Ref | Expression |
---|---|
ndmovrcl | ⊢ ((𝐴𝐹𝐵) ∈ 𝑆 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ndmovrcl.3 | . . 3 ⊢ ¬ ∅ ∈ 𝑆 | |
2 | ndmov.1 | . . . . 5 ⊢ dom 𝐹 = (𝑆 × 𝑆) | |
3 | 2 | ndmov 7434 | . . . 4 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) = ∅) |
4 | 3 | eleq1d 2823 | . . 3 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵) ∈ 𝑆 ↔ ∅ ∈ 𝑆)) |
5 | 1, 4 | mtbiri 326 | . 2 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ¬ (𝐴𝐹𝐵) ∈ 𝑆) |
6 | 5 | con4i 114 | 1 ⊢ ((𝐴𝐹𝐵) ∈ 𝑆 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∅c0 4253 × cxp 5578 dom cdm 5580 (class class class)co 7255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-dm 5590 df-iota 6376 df-fv 6426 df-ov 7258 |
This theorem is referenced by: ndmovass 7438 ndmovdistr 7439 ndmovord 7440 ndmovordi 7441 caovmo 7487 brecop2 8558 eceqoveq 8569 addcanpi 10586 mulcanpi 10587 ordpipq 10629 recmulnq 10651 recclnq 10653 ltexnq 10662 nsmallnq 10664 ltbtwnnq 10665 prlem934 10720 ltaddpr 10721 ltaddpr2 10722 ltexprlem2 10724 ltexprlem3 10725 ltexprlem4 10726 ltexprlem6 10728 ltexprlem7 10729 addcanpr 10733 prlem936 10734 mappsrpr 10795 |
Copyright terms: Public domain | W3C validator |