![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ndmovrcl | Structured version Visualization version GIF version |
Description: Reverse closure law, when an operation's domain doesn't contain the empty set. (Contributed by NM, 3-Feb-1996.) |
Ref | Expression |
---|---|
ndmov.1 | ⊢ dom 𝐹 = (𝑆 × 𝑆) |
ndmovrcl.3 | ⊢ ¬ ∅ ∈ 𝑆 |
Ref | Expression |
---|---|
ndmovrcl | ⊢ ((𝐴𝐹𝐵) ∈ 𝑆 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ndmovrcl.3 | . . 3 ⊢ ¬ ∅ ∈ 𝑆 | |
2 | ndmov.1 | . . . . 5 ⊢ dom 𝐹 = (𝑆 × 𝑆) | |
3 | 2 | ndmov 7634 | . . . 4 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) = ∅) |
4 | 3 | eleq1d 2829 | . . 3 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵) ∈ 𝑆 ↔ ∅ ∈ 𝑆)) |
5 | 1, 4 | mtbiri 327 | . 2 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ¬ (𝐴𝐹𝐵) ∈ 𝑆) |
6 | 5 | con4i 114 | 1 ⊢ ((𝐴𝐹𝐵) ∈ 𝑆 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∅c0 4352 × cxp 5698 dom cdm 5700 (class class class)co 7448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-dm 5710 df-iota 6525 df-fv 6581 df-ov 7451 |
This theorem is referenced by: ndmovass 7638 ndmovdistr 7639 ndmovord 7640 ndmovordi 7641 caovmo 7687 brecop2 8869 eceqoveq 8880 addcanpi 10968 mulcanpi 10969 ordpipq 11011 recmulnq 11033 recclnq 11035 ltexnq 11044 nsmallnq 11046 ltbtwnnq 11047 prlem934 11102 ltaddpr 11103 ltaddpr2 11104 ltexprlem2 11106 ltexprlem3 11107 ltexprlem4 11108 ltexprlem6 11110 ltexprlem7 11111 addcanpr 11115 prlem936 11116 mappsrpr 11177 |
Copyright terms: Public domain | W3C validator |