MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmovrcl Structured version   Visualization version   GIF version

Theorem ndmovrcl 7336
Description: Reverse closure law, when an operation's domain doesn't contain the empty set. (Contributed by NM, 3-Feb-1996.)
Hypotheses
Ref Expression
ndmov.1 dom 𝐹 = (𝑆 × 𝑆)
ndmovrcl.3 ¬ ∅ ∈ 𝑆
Assertion
Ref Expression
ndmovrcl ((𝐴𝐹𝐵) ∈ 𝑆 → (𝐴𝑆𝐵𝑆))

Proof of Theorem ndmovrcl
StepHypRef Expression
1 ndmovrcl.3 . . 3 ¬ ∅ ∈ 𝑆
2 ndmov.1 . . . . 5 dom 𝐹 = (𝑆 × 𝑆)
32ndmov 7334 . . . 4 (¬ (𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) = ∅)
43eleq1d 2899 . . 3 (¬ (𝐴𝑆𝐵𝑆) → ((𝐴𝐹𝐵) ∈ 𝑆 ↔ ∅ ∈ 𝑆))
51, 4mtbiri 329 . 2 (¬ (𝐴𝑆𝐵𝑆) → ¬ (𝐴𝐹𝐵) ∈ 𝑆)
65con4i 114 1 ((𝐴𝐹𝐵) ∈ 𝑆 → (𝐴𝑆𝐵𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  c0 4293   × cxp 5555  dom cdm 5557  (class class class)co 7158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-xp 5563  df-dm 5567  df-iota 6316  df-fv 6365  df-ov 7161
This theorem is referenced by:  ndmovass  7338  ndmovdistr  7339  ndmovord  7340  ndmovordi  7341  caovmo  7387  brecop2  8393  eceqoveq  8404  addcanpi  10323  mulcanpi  10324  ordpipq  10366  recmulnq  10388  recclnq  10390  ltexnq  10399  nsmallnq  10401  ltbtwnnq  10402  prlem934  10457  ltaddpr  10458  ltaddpr2  10459  ltexprlem2  10461  ltexprlem3  10462  ltexprlem4  10463  ltexprlem6  10465  ltexprlem7  10466  addcanpr  10470  prlem936  10471  mappsrpr  10532
  Copyright terms: Public domain W3C validator