| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ndmovrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure law, when an operation's domain doesn't contain the empty set. (Contributed by NM, 3-Feb-1996.) |
| Ref | Expression |
|---|---|
| ndmov.1 | ⊢ dom 𝐹 = (𝑆 × 𝑆) |
| ndmovrcl.3 | ⊢ ¬ ∅ ∈ 𝑆 |
| Ref | Expression |
|---|---|
| ndmovrcl | ⊢ ((𝐴𝐹𝐵) ∈ 𝑆 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndmovrcl.3 | . . 3 ⊢ ¬ ∅ ∈ 𝑆 | |
| 2 | ndmov.1 | . . . . 5 ⊢ dom 𝐹 = (𝑆 × 𝑆) | |
| 3 | 2 | ndmov 7536 | . . . 4 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) = ∅) |
| 4 | 3 | eleq1d 2816 | . . 3 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵) ∈ 𝑆 ↔ ∅ ∈ 𝑆)) |
| 5 | 1, 4 | mtbiri 327 | . 2 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ¬ (𝐴𝐹𝐵) ∈ 𝑆) |
| 6 | 5 | con4i 114 | 1 ⊢ ((𝐴𝐹𝐵) ∈ 𝑆 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∅c0 4282 × cxp 5617 dom cdm 5619 (class class class)co 7352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-xp 5625 df-dm 5629 df-iota 6443 df-fv 6495 df-ov 7355 |
| This theorem is referenced by: ndmovass 7540 ndmovdistr 7541 ndmovord 7542 ndmovordi 7543 caovmo 7589 brecop2 8741 eceqoveq 8752 addcanpi 10796 mulcanpi 10797 ordpipq 10839 recmulnq 10861 recclnq 10863 ltexnq 10872 nsmallnq 10874 ltbtwnnq 10875 prlem934 10930 ltaddpr 10931 ltaddpr2 10932 ltexprlem2 10934 ltexprlem3 10935 ltexprlem4 10936 ltexprlem6 10938 ltexprlem7 10939 addcanpr 10943 prlem936 10944 mappsrpr 11005 |
| Copyright terms: Public domain | W3C validator |