MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmovrcl Structured version   Visualization version   GIF version

Theorem ndmovrcl 7538
Description: Reverse closure law, when an operation's domain doesn't contain the empty set. (Contributed by NM, 3-Feb-1996.)
Hypotheses
Ref Expression
ndmov.1 dom 𝐹 = (𝑆 × 𝑆)
ndmovrcl.3 ¬ ∅ ∈ 𝑆
Assertion
Ref Expression
ndmovrcl ((𝐴𝐹𝐵) ∈ 𝑆 → (𝐴𝑆𝐵𝑆))

Proof of Theorem ndmovrcl
StepHypRef Expression
1 ndmovrcl.3 . . 3 ¬ ∅ ∈ 𝑆
2 ndmov.1 . . . . 5 dom 𝐹 = (𝑆 × 𝑆)
32ndmov 7536 . . . 4 (¬ (𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) = ∅)
43eleq1d 2816 . . 3 (¬ (𝐴𝑆𝐵𝑆) → ((𝐴𝐹𝐵) ∈ 𝑆 ↔ ∅ ∈ 𝑆))
51, 4mtbiri 327 . 2 (¬ (𝐴𝑆𝐵𝑆) → ¬ (𝐴𝐹𝐵) ∈ 𝑆)
65con4i 114 1 ((𝐴𝐹𝐵) ∈ 𝑆 → (𝐴𝑆𝐵𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  c0 4282   × cxp 5617  dom cdm 5619  (class class class)co 7352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-xp 5625  df-dm 5629  df-iota 6443  df-fv 6495  df-ov 7355
This theorem is referenced by:  ndmovass  7540  ndmovdistr  7541  ndmovord  7542  ndmovordi  7543  caovmo  7589  brecop2  8741  eceqoveq  8752  addcanpi  10796  mulcanpi  10797  ordpipq  10839  recmulnq  10861  recclnq  10863  ltexnq  10872  nsmallnq  10874  ltbtwnnq  10875  prlem934  10930  ltaddpr  10931  ltaddpr2  10932  ltexprlem2  10934  ltexprlem3  10935  ltexprlem4  10936  ltexprlem6  10938  ltexprlem7  10939  addcanpr  10943  prlem936  10944  mappsrpr  11005
  Copyright terms: Public domain W3C validator