MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmovrcl Structured version   Visualization version   GIF version

Theorem ndmovrcl 7450
Description: Reverse closure law, when an operation's domain doesn't contain the empty set. (Contributed by NM, 3-Feb-1996.)
Hypotheses
Ref Expression
ndmov.1 dom 𝐹 = (𝑆 × 𝑆)
ndmovrcl.3 ¬ ∅ ∈ 𝑆
Assertion
Ref Expression
ndmovrcl ((𝐴𝐹𝐵) ∈ 𝑆 → (𝐴𝑆𝐵𝑆))

Proof of Theorem ndmovrcl
StepHypRef Expression
1 ndmovrcl.3 . . 3 ¬ ∅ ∈ 𝑆
2 ndmov.1 . . . . 5 dom 𝐹 = (𝑆 × 𝑆)
32ndmov 7448 . . . 4 (¬ (𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) = ∅)
43eleq1d 2825 . . 3 (¬ (𝐴𝑆𝐵𝑆) → ((𝐴𝐹𝐵) ∈ 𝑆 ↔ ∅ ∈ 𝑆))
51, 4mtbiri 327 . 2 (¬ (𝐴𝑆𝐵𝑆) → ¬ (𝐴𝐹𝐵) ∈ 𝑆)
65con4i 114 1 ((𝐴𝐹𝐵) ∈ 𝑆 → (𝐴𝑆𝐵𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1542  wcel 2110  c0 4262   × cxp 5587  dom cdm 5589  (class class class)co 7269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-ne 2946  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-xp 5595  df-dm 5599  df-iota 6389  df-fv 6439  df-ov 7272
This theorem is referenced by:  ndmovass  7452  ndmovdistr  7453  ndmovord  7454  ndmovordi  7455  caovmo  7501  brecop2  8575  eceqoveq  8586  addcanpi  10648  mulcanpi  10649  ordpipq  10691  recmulnq  10713  recclnq  10715  ltexnq  10724  nsmallnq  10726  ltbtwnnq  10727  prlem934  10782  ltaddpr  10783  ltaddpr2  10784  ltexprlem2  10786  ltexprlem3  10787  ltexprlem4  10788  ltexprlem6  10790  ltexprlem7  10791  addcanpr  10795  prlem936  10796  mappsrpr  10857
  Copyright terms: Public domain W3C validator