| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ndmovrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure law, when an operation's domain doesn't contain the empty set. (Contributed by NM, 3-Feb-1996.) |
| Ref | Expression |
|---|---|
| ndmov.1 | ⊢ dom 𝐹 = (𝑆 × 𝑆) |
| ndmovrcl.3 | ⊢ ¬ ∅ ∈ 𝑆 |
| Ref | Expression |
|---|---|
| ndmovrcl | ⊢ ((𝐴𝐹𝐵) ∈ 𝑆 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndmovrcl.3 | . . 3 ⊢ ¬ ∅ ∈ 𝑆 | |
| 2 | ndmov.1 | . . . . 5 ⊢ dom 𝐹 = (𝑆 × 𝑆) | |
| 3 | 2 | ndmov 7554 | . . . 4 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) = ∅) |
| 4 | 3 | eleq1d 2813 | . . 3 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ((𝐴𝐹𝐵) ∈ 𝑆 ↔ ∅ ∈ 𝑆)) |
| 5 | 1, 4 | mtbiri 327 | . 2 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ¬ (𝐴𝐹𝐵) ∈ 𝑆) |
| 6 | 5 | con4i 114 | 1 ⊢ ((𝐴𝐹𝐵) ∈ 𝑆 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∅c0 4292 × cxp 5629 dom cdm 5631 (class class class)co 7370 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-xp 5637 df-dm 5641 df-iota 6453 df-fv 6508 df-ov 7373 |
| This theorem is referenced by: ndmovass 7558 ndmovdistr 7559 ndmovord 7560 ndmovordi 7561 caovmo 7607 brecop2 8762 eceqoveq 8773 addcanpi 10831 mulcanpi 10832 ordpipq 10874 recmulnq 10896 recclnq 10898 ltexnq 10907 nsmallnq 10909 ltbtwnnq 10910 prlem934 10965 ltaddpr 10966 ltaddpr2 10967 ltexprlem2 10969 ltexprlem3 10970 ltexprlem4 10971 ltexprlem6 10973 ltexprlem7 10974 addcanpr 10978 prlem936 10979 mappsrpr 11040 |
| Copyright terms: Public domain | W3C validator |