![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ndmov | Structured version Visualization version GIF version |
Description: The value of an operation outside its domain. (Contributed by NM, 24-Aug-1995.) |
Ref | Expression |
---|---|
ndmov.1 | ⊢ dom 𝐹 = (𝑆 × 𝑆) |
Ref | Expression |
---|---|
ndmov | ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ndmov.1 | . 2 ⊢ dom 𝐹 = (𝑆 × 𝑆) | |
2 | ndmovg 7616 | . 2 ⊢ ((dom 𝐹 = (𝑆 × 𝑆) ∧ ¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → (𝐴𝐹𝐵) = ∅) | |
3 | 1, 2 | mpan 690 | 1 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∅c0 4339 × cxp 5687 dom cdm 5689 (class class class)co 7431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-dm 5699 df-iota 6516 df-fv 6571 df-ov 7434 |
This theorem is referenced by: ndmovcl 7618 ndmovrcl 7619 ndmovcom 7620 ndmovass 7621 ndmovdistr 7622 om0x 8556 oaabs2 8686 omabs 8688 eceqoveq 8861 elpmi 8885 elmapex 8887 pmresg 8909 pmsspw 8916 addnidpi 10939 adderpq 10994 mulerpq 10995 elixx3g 13397 ndmioo 13411 elfz2 13551 fz0 13576 elfzoel1 13694 elfzoel2 13695 fzoval 13697 fzofi 14012 restsspw 17478 fucbas 18016 fuchom 18017 fuchomOLD 18018 xpcbas 18234 xpchomfval 18235 xpccofval 18238 restrcl 23181 ssrest 23200 resstopn 23210 iocpnfordt 23239 icomnfordt 23240 nghmfval 24759 isnghm 24760 topnfbey 30498 cvmtop1 35245 cvmtop2 35246 ndmico 45519 |
Copyright terms: Public domain | W3C validator |