| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ndmov | Structured version Visualization version GIF version | ||
| Description: The value of an operation outside its domain. (Contributed by NM, 24-Aug-1995.) |
| Ref | Expression |
|---|---|
| ndmov.1 | ⊢ dom 𝐹 = (𝑆 × 𝑆) |
| Ref | Expression |
|---|---|
| ndmov | ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndmov.1 | . 2 ⊢ dom 𝐹 = (𝑆 × 𝑆) | |
| 2 | ndmovg 7590 | . 2 ⊢ ((dom 𝐹 = (𝑆 × 𝑆) ∧ ¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → (𝐴𝐹𝐵) = ∅) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∅c0 4308 × cxp 5652 dom cdm 5654 (class class class)co 7405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-dm 5664 df-iota 6484 df-fv 6539 df-ov 7408 |
| This theorem is referenced by: ndmovcl 7592 ndmovrcl 7593 ndmovcom 7594 ndmovass 7595 ndmovdistr 7596 om0x 8531 oaabs2 8661 omabs 8663 eceqoveq 8836 elpmi 8860 elmapex 8862 pmresg 8884 pmsspw 8891 addnidpi 10915 adderpq 10970 mulerpq 10971 elixx3g 13375 ndmioo 13389 elfz2 13531 fz0 13556 elfzoel1 13674 elfzoel2 13675 fzoval 13677 fzofi 13992 restsspw 17445 fucbas 17976 fuchom 17977 xpcbas 18190 xpchomfval 18191 xpccofval 18194 restrcl 23095 ssrest 23114 resstopn 23124 iocpnfordt 23153 icomnfordt 23154 nghmfval 24661 isnghm 24662 topnfbey 30450 cvmtop1 35282 cvmtop2 35283 ndmico 45593 |
| Copyright terms: Public domain | W3C validator |