MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmov Structured version   Visualization version   GIF version

Theorem ndmov 7634
Description: The value of an operation outside its domain. (Contributed by NM, 24-Aug-1995.)
Hypothesis
Ref Expression
ndmov.1 dom 𝐹 = (𝑆 × 𝑆)
Assertion
Ref Expression
ndmov (¬ (𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) = ∅)

Proof of Theorem ndmov
StepHypRef Expression
1 ndmov.1 . 2 dom 𝐹 = (𝑆 × 𝑆)
2 ndmovg 7633 . 2 ((dom 𝐹 = (𝑆 × 𝑆) ∧ ¬ (𝐴𝑆𝐵𝑆)) → (𝐴𝐹𝐵) = ∅)
31, 2mpan 689 1 (¬ (𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  c0 4352   × cxp 5698  dom cdm 5700  (class class class)co 7448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-dm 5710  df-iota 6525  df-fv 6581  df-ov 7451
This theorem is referenced by:  ndmovcl  7635  ndmovrcl  7636  ndmovcom  7637  ndmovass  7638  ndmovdistr  7639  om0x  8575  oaabs2  8705  omabs  8707  eceqoveq  8880  elpmi  8904  elmapex  8906  pmresg  8928  pmsspw  8935  addnidpi  10970  adderpq  11025  mulerpq  11026  elixx3g  13420  ndmioo  13434  elfz2  13574  fz0  13599  elfzoel1  13714  elfzoel2  13715  fzoval  13717  fzofi  14025  restsspw  17491  fucbas  18029  fuchom  18030  fuchomOLD  18031  xpcbas  18247  xpchomfval  18248  xpccofval  18251  restrcl  23186  ssrest  23205  resstopn  23215  iocpnfordt  23244  icomnfordt  23245  nghmfval  24764  isnghm  24765  topnfbey  30501  cvmtop1  35228  cvmtop2  35229  ndmico  45484
  Copyright terms: Public domain W3C validator