![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ndmov | Structured version Visualization version GIF version |
Description: The value of an operation outside its domain. (Contributed by NM, 24-Aug-1995.) |
Ref | Expression |
---|---|
ndmov.1 | ⊢ dom 𝐹 = (𝑆 × 𝑆) |
Ref | Expression |
---|---|
ndmov | ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ndmov.1 | . 2 ⊢ dom 𝐹 = (𝑆 × 𝑆) | |
2 | ndmovg 7633 | . 2 ⊢ ((dom 𝐹 = (𝑆 × 𝑆) ∧ ¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → (𝐴𝐹𝐵) = ∅) | |
3 | 1, 2 | mpan 689 | 1 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∅c0 4352 × cxp 5698 dom cdm 5700 (class class class)co 7448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-dm 5710 df-iota 6525 df-fv 6581 df-ov 7451 |
This theorem is referenced by: ndmovcl 7635 ndmovrcl 7636 ndmovcom 7637 ndmovass 7638 ndmovdistr 7639 om0x 8575 oaabs2 8705 omabs 8707 eceqoveq 8880 elpmi 8904 elmapex 8906 pmresg 8928 pmsspw 8935 addnidpi 10970 adderpq 11025 mulerpq 11026 elixx3g 13420 ndmioo 13434 elfz2 13574 fz0 13599 elfzoel1 13714 elfzoel2 13715 fzoval 13717 fzofi 14025 restsspw 17491 fucbas 18029 fuchom 18030 fuchomOLD 18031 xpcbas 18247 xpchomfval 18248 xpccofval 18251 restrcl 23186 ssrest 23205 resstopn 23215 iocpnfordt 23244 icomnfordt 23245 nghmfval 24764 isnghm 24765 topnfbey 30501 cvmtop1 35228 cvmtop2 35229 ndmico 45484 |
Copyright terms: Public domain | W3C validator |