Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ndmov | Structured version Visualization version GIF version |
Description: The value of an operation outside its domain. (Contributed by NM, 24-Aug-1995.) |
Ref | Expression |
---|---|
ndmov.1 | ⊢ dom 𝐹 = (𝑆 × 𝑆) |
Ref | Expression |
---|---|
ndmov | ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ndmov.1 | . 2 ⊢ dom 𝐹 = (𝑆 × 𝑆) | |
2 | ndmovg 7433 | . 2 ⊢ ((dom 𝐹 = (𝑆 × 𝑆) ∧ ¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → (𝐴𝐹𝐵) = ∅) | |
3 | 1, 2 | mpan 686 | 1 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∅c0 4253 × cxp 5578 dom cdm 5580 (class class class)co 7255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-dm 5590 df-iota 6376 df-fv 6426 df-ov 7258 |
This theorem is referenced by: ndmovcl 7435 ndmovrcl 7436 ndmovcom 7437 ndmovass 7438 ndmovdistr 7439 om0x 8311 oaabs2 8439 omabs 8441 eceqoveq 8569 elpmi 8592 elmapex 8594 pmresg 8616 pmsspw 8623 addnidpi 10588 adderpq 10643 mulerpq 10644 elixx3g 13021 ndmioo 13035 elfz2 13175 fz0 13200 elfzoel1 13314 elfzoel2 13315 fzoval 13317 fzofi 13622 restsspw 17059 fucbas 17593 fuchom 17594 fuchomOLD 17595 xpcbas 17811 xpchomfval 17812 xpccofval 17815 restrcl 22216 ssrest 22235 resstopn 22245 iocpnfordt 22274 icomnfordt 22275 nghmfval 23792 isnghm 23793 topnfbey 28734 cvmtop1 33122 cvmtop2 33123 ndmico 42994 |
Copyright terms: Public domain | W3C validator |