| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ndmov | Structured version Visualization version GIF version | ||
| Description: The value of an operation outside its domain. (Contributed by NM, 24-Aug-1995.) |
| Ref | Expression |
|---|---|
| ndmov.1 | ⊢ dom 𝐹 = (𝑆 × 𝑆) |
| Ref | Expression |
|---|---|
| ndmov | ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndmov.1 | . 2 ⊢ dom 𝐹 = (𝑆 × 𝑆) | |
| 2 | ndmovg 7552 | . 2 ⊢ ((dom 𝐹 = (𝑆 × 𝑆) ∧ ¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → (𝐴𝐹𝐵) = ∅) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∅c0 4292 × cxp 5629 dom cdm 5631 (class class class)co 7369 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-xp 5637 df-dm 5641 df-iota 6452 df-fv 6507 df-ov 7372 |
| This theorem is referenced by: ndmovcl 7554 ndmovrcl 7555 ndmovcom 7556 ndmovass 7557 ndmovdistr 7558 om0x 8460 oaabs2 8590 omabs 8592 eceqoveq 8772 elpmi 8796 elmapex 8798 pmresg 8820 pmsspw 8827 addnidpi 10830 adderpq 10885 mulerpq 10886 elixx3g 13295 ndmioo 13309 elfz2 13451 fz0 13476 elfzoel1 13594 elfzoel2 13595 fzoval 13597 fzofi 13915 restsspw 17370 fucbas 17905 fuchom 17906 xpcbas 18119 xpchomfval 18120 xpccofval 18123 restrcl 23077 ssrest 23096 resstopn 23106 iocpnfordt 23135 icomnfordt 23136 nghmfval 24643 isnghm 24644 topnfbey 30448 cvmtop1 35240 cvmtop2 35241 ndmico 45555 |
| Copyright terms: Public domain | W3C validator |