| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ndmov | Structured version Visualization version GIF version | ||
| Description: The value of an operation outside its domain. (Contributed by NM, 24-Aug-1995.) |
| Ref | Expression |
|---|---|
| ndmov.1 | ⊢ dom 𝐹 = (𝑆 × 𝑆) |
| Ref | Expression |
|---|---|
| ndmov | ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndmov.1 | . 2 ⊢ dom 𝐹 = (𝑆 × 𝑆) | |
| 2 | ndmovg 7572 | . 2 ⊢ ((dom 𝐹 = (𝑆 × 𝑆) ∧ ¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → (𝐴𝐹𝐵) = ∅) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∅c0 4296 × cxp 5636 dom cdm 5638 (class class class)co 7387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-dm 5648 df-iota 6464 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: ndmovcl 7574 ndmovrcl 7575 ndmovcom 7576 ndmovass 7577 ndmovdistr 7578 om0x 8483 oaabs2 8613 omabs 8615 eceqoveq 8795 elpmi 8819 elmapex 8821 pmresg 8843 pmsspw 8850 addnidpi 10854 adderpq 10909 mulerpq 10910 elixx3g 13319 ndmioo 13333 elfz2 13475 fz0 13500 elfzoel1 13618 elfzoel2 13619 fzoval 13621 fzofi 13939 restsspw 17394 fucbas 17925 fuchom 17926 xpcbas 18139 xpchomfval 18140 xpccofval 18143 restrcl 23044 ssrest 23063 resstopn 23073 iocpnfordt 23102 icomnfordt 23103 nghmfval 24610 isnghm 24611 topnfbey 30398 cvmtop1 35247 cvmtop2 35248 ndmico 45562 |
| Copyright terms: Public domain | W3C validator |