Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ndmov | Structured version Visualization version GIF version |
Description: The value of an operation outside its domain. (Contributed by NM, 24-Aug-1995.) |
Ref | Expression |
---|---|
ndmov.1 | ⊢ dom 𝐹 = (𝑆 × 𝑆) |
Ref | Expression |
---|---|
ndmov | ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ndmov.1 | . 2 ⊢ dom 𝐹 = (𝑆 × 𝑆) | |
2 | ndmovg 7455 | . 2 ⊢ ((dom 𝐹 = (𝑆 × 𝑆) ∧ ¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → (𝐴𝐹𝐵) = ∅) | |
3 | 1, 2 | mpan 687 | 1 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∅c0 4256 × cxp 5587 dom cdm 5589 (class class class)co 7275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-dm 5599 df-iota 6391 df-fv 6441 df-ov 7278 |
This theorem is referenced by: ndmovcl 7457 ndmovrcl 7458 ndmovcom 7459 ndmovass 7460 ndmovdistr 7461 om0x 8349 oaabs2 8479 omabs 8481 eceqoveq 8611 elpmi 8634 elmapex 8636 pmresg 8658 pmsspw 8665 addnidpi 10657 adderpq 10712 mulerpq 10713 elixx3g 13092 ndmioo 13106 elfz2 13246 fz0 13271 elfzoel1 13385 elfzoel2 13386 fzoval 13388 fzofi 13694 restsspw 17142 fucbas 17677 fuchom 17678 fuchomOLD 17679 xpcbas 17895 xpchomfval 17896 xpccofval 17899 restrcl 22308 ssrest 22327 resstopn 22337 iocpnfordt 22366 icomnfordt 22367 nghmfval 23886 isnghm 23887 topnfbey 28833 cvmtop1 33222 cvmtop2 33223 ndmico 43104 |
Copyright terms: Public domain | W3C validator |