| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ndmov | Structured version Visualization version GIF version | ||
| Description: The value of an operation outside its domain. (Contributed by NM, 24-Aug-1995.) |
| Ref | Expression |
|---|---|
| ndmov.1 | ⊢ dom 𝐹 = (𝑆 × 𝑆) |
| Ref | Expression |
|---|---|
| ndmov | ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndmov.1 | . 2 ⊢ dom 𝐹 = (𝑆 × 𝑆) | |
| 2 | ndmovg 7532 | . 2 ⊢ ((dom 𝐹 = (𝑆 × 𝑆) ∧ ¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → (𝐴𝐹𝐵) = ∅) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴𝐹𝐵) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∅c0 4284 × cxp 5617 dom cdm 5619 (class class class)co 7349 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-xp 5625 df-dm 5629 df-iota 6438 df-fv 6490 df-ov 7352 |
| This theorem is referenced by: ndmovcl 7534 ndmovrcl 7535 ndmovcom 7536 ndmovass 7537 ndmovdistr 7538 om0x 8437 oaabs2 8567 omabs 8569 eceqoveq 8749 elpmi 8773 elmapex 8775 pmresg 8797 pmsspw 8804 addnidpi 10795 adderpq 10850 mulerpq 10851 elixx3g 13261 ndmioo 13275 elfz2 13417 fz0 13442 elfzoel1 13560 elfzoel2 13561 fzoval 13563 fzofi 13881 restsspw 17335 fucbas 17870 fuchom 17871 xpcbas 18084 xpchomfval 18085 xpccofval 18088 restrcl 23042 ssrest 23061 resstopn 23071 iocpnfordt 23100 icomnfordt 23101 nghmfval 24608 isnghm 24609 topnfbey 30413 cvmtop1 35237 cvmtop2 35238 ndmico 45549 |
| Copyright terms: Public domain | W3C validator |