MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ngrp Structured version   Visualization version   GIF version

Theorem 0ngrp 28852
Description: The empty set is not a group. (Contributed by NM, 25-Apr-2007.) (New usage is discouraged.)
Assertion
Ref Expression
0ngrp ¬ ∅ ∈ GrpOp

Proof of Theorem 0ngrp
StepHypRef Expression
1 neirr 2953 . 2 ¬ ∅ ≠ ∅
2 rn0 5832 . . . 4 ran ∅ = ∅
32eqcomi 2748 . . 3 ∅ = ran ∅
43grpon0 28843 . 2 (∅ ∈ GrpOp → ∅ ≠ ∅)
51, 4mto 196 1 ¬ ∅ ∈ GrpOp
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2109  wne 2944  c0 4261  ran crn 5589  GrpOpcgr 28830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-fo 6436  df-fv 6438  df-ov 7271  df-grpo 28834
This theorem is referenced by:  vsfval  28974  zrdivrng  36090
  Copyright terms: Public domain W3C validator