| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0ngrp | Structured version Visualization version GIF version | ||
| Description: The empty set is not a group. (Contributed by NM, 25-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 0ngrp | ⊢ ¬ ∅ ∈ GrpOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neirr 2935 | . 2 ⊢ ¬ ∅ ≠ ∅ | |
| 2 | rn0 5892 | . . . 4 ⊢ ran ∅ = ∅ | |
| 3 | 2 | eqcomi 2739 | . . 3 ⊢ ∅ = ran ∅ |
| 4 | 3 | grpon0 30438 | . 2 ⊢ (∅ ∈ GrpOp → ∅ ≠ ∅) |
| 5 | 1, 4 | mto 197 | 1 ⊢ ¬ ∅ ∈ GrpOp |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 ≠ wne 2926 ∅c0 4299 ran crn 5642 GrpOpcgr 30425 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fo 6520 df-fv 6522 df-ov 7393 df-grpo 30429 |
| This theorem is referenced by: vsfval 30569 zrdivrng 37954 |
| Copyright terms: Public domain | W3C validator |