MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ngrp Structured version   Visualization version   GIF version

Theorem 0ngrp 28446
Description: The empty set is not a group. (Contributed by NM, 25-Apr-2007.) (New usage is discouraged.)
Assertion
Ref Expression
0ngrp ¬ ∅ ∈ GrpOp

Proof of Theorem 0ngrp
StepHypRef Expression
1 neirr 2943 . 2 ¬ ∅ ≠ ∅
2 rn0 5769 . . . 4 ran ∅ = ∅
32eqcomi 2747 . . 3 ∅ = ran ∅
43grpon0 28437 . 2 (∅ ∈ GrpOp → ∅ ≠ ∅)
51, 4mto 200 1 ¬ ∅ ∈ GrpOp
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2114  wne 2934  c0 4211  ran crn 5526  GrpOpcgr 28424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pr 5296  ax-un 7479
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-fo 6345  df-fv 6347  df-ov 7173  df-grpo 28428
This theorem is referenced by:  vsfval  28568  zrdivrng  35734
  Copyright terms: Public domain W3C validator