| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0ngrp | Structured version Visualization version GIF version | ||
| Description: The empty set is not a group. (Contributed by NM, 25-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 0ngrp | ⊢ ¬ ∅ ∈ GrpOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neirr 2942 | . 2 ⊢ ¬ ∅ ≠ ∅ | |
| 2 | rn0 5910 | . . . 4 ⊢ ran ∅ = ∅ | |
| 3 | 2 | eqcomi 2745 | . . 3 ⊢ ∅ = ran ∅ |
| 4 | 3 | grpon0 30488 | . 2 ⊢ (∅ ∈ GrpOp → ∅ ≠ ∅) |
| 5 | 1, 4 | mto 197 | 1 ⊢ ¬ ∅ ∈ GrpOp |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 ≠ wne 2933 ∅c0 4313 ran crn 5660 GrpOpcgr 30475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fo 6542 df-fv 6544 df-ov 7413 df-grpo 30479 |
| This theorem is referenced by: vsfval 30619 zrdivrng 37982 |
| Copyright terms: Public domain | W3C validator |