MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hleqnid Structured version   Visualization version   GIF version

Theorem hleqnid 28586
Description: The endpoint does not belong to the half-line. (Contributed by Thierry Arnoux, 3-Mar-2020.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
hlln.1 (𝜑𝐺 ∈ TarskiG)
Assertion
Ref Expression
hleqnid (𝜑 → ¬ 𝐴(𝐾𝐴)𝐵)

Proof of Theorem hleqnid
StepHypRef Expression
1 neirr 2937 . . 3 ¬ 𝐴𝐴
21a1i 11 . 2 (𝜑 → ¬ 𝐴𝐴)
3 ishlg.p . . 3 𝑃 = (Base‘𝐺)
4 ishlg.i . . 3 𝐼 = (Itv‘𝐺)
5 ishlg.k . . 3 𝐾 = (hlG‘𝐺)
6 ishlg.a . . . 4 (𝜑𝐴𝑃)
76adantr 480 . . 3 ((𝜑𝐴(𝐾𝐴)𝐵) → 𝐴𝑃)
8 ishlg.b . . . 4 (𝜑𝐵𝑃)
98adantr 480 . . 3 ((𝜑𝐴(𝐾𝐴)𝐵) → 𝐵𝑃)
10 hlln.1 . . . 4 (𝜑𝐺 ∈ TarskiG)
1110adantr 480 . . 3 ((𝜑𝐴(𝐾𝐴)𝐵) → 𝐺 ∈ TarskiG)
12 simpr 484 . . 3 ((𝜑𝐴(𝐾𝐴)𝐵) → 𝐴(𝐾𝐴)𝐵)
133, 4, 5, 7, 9, 7, 11, 12hlne1 28583 . 2 ((𝜑𝐴(𝐾𝐴)𝐵) → 𝐴𝐴)
142, 13mtand 815 1 (𝜑 → ¬ 𝐴(𝐾𝐴)𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5089  cfv 6481  Basecbs 17120  TarskiGcstrkg 28405  Itvcitv 28411  hlGchlg 28578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-hlg 28579
This theorem is referenced by:  mirbtwnhl  28658
  Copyright terms: Public domain W3C validator