Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hleqnid | Structured version Visualization version GIF version |
Description: The endpoint does not belong to the half-line. (Contributed by Thierry Arnoux, 3-Mar-2020.) |
Ref | Expression |
---|---|
ishlg.p | ⊢ 𝑃 = (Base‘𝐺) |
ishlg.i | ⊢ 𝐼 = (Itv‘𝐺) |
ishlg.k | ⊢ 𝐾 = (hlG‘𝐺) |
ishlg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
ishlg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
ishlg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
hlln.1 | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
Ref | Expression |
---|---|
hleqnid | ⊢ (𝜑 → ¬ 𝐴(𝐾‘𝐴)𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neirr 2951 | . . 3 ⊢ ¬ 𝐴 ≠ 𝐴 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ¬ 𝐴 ≠ 𝐴) |
3 | ishlg.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
4 | ishlg.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | ishlg.k | . . 3 ⊢ 𝐾 = (hlG‘𝐺) | |
6 | ishlg.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
7 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴(𝐾‘𝐴)𝐵) → 𝐴 ∈ 𝑃) |
8 | ishlg.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
9 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴(𝐾‘𝐴)𝐵) → 𝐵 ∈ 𝑃) |
10 | hlln.1 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
11 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴(𝐾‘𝐴)𝐵) → 𝐺 ∈ TarskiG) |
12 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐴(𝐾‘𝐴)𝐵) → 𝐴(𝐾‘𝐴)𝐵) | |
13 | 3, 4, 5, 7, 9, 7, 11, 12 | hlne1 26870 | . 2 ⊢ ((𝜑 ∧ 𝐴(𝐾‘𝐴)𝐵) → 𝐴 ≠ 𝐴) |
14 | 2, 13 | mtand 812 | 1 ⊢ (𝜑 → ¬ 𝐴(𝐾‘𝐴)𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 class class class wbr 5070 ‘cfv 6418 Basecbs 16840 TarskiGcstrkg 26693 Itvcitv 26699 hlGchlg 26865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-hlg 26866 |
This theorem is referenced by: mirbtwnhl 26945 |
Copyright terms: Public domain | W3C validator |