Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hleqnid | Structured version Visualization version GIF version |
Description: The endpoint does not belong to the half-line. (Contributed by Thierry Arnoux, 3-Mar-2020.) |
Ref | Expression |
---|---|
ishlg.p | ⊢ 𝑃 = (Base‘𝐺) |
ishlg.i | ⊢ 𝐼 = (Itv‘𝐺) |
ishlg.k | ⊢ 𝐾 = (hlG‘𝐺) |
ishlg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
ishlg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
ishlg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
hlln.1 | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
Ref | Expression |
---|---|
hleqnid | ⊢ (𝜑 → ¬ 𝐴(𝐾‘𝐴)𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neirr 2952 | . . 3 ⊢ ¬ 𝐴 ≠ 𝐴 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ¬ 𝐴 ≠ 𝐴) |
3 | ishlg.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
4 | ishlg.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | ishlg.k | . . 3 ⊢ 𝐾 = (hlG‘𝐺) | |
6 | ishlg.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
7 | 6 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐴(𝐾‘𝐴)𝐵) → 𝐴 ∈ 𝑃) |
8 | ishlg.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
9 | 8 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐴(𝐾‘𝐴)𝐵) → 𝐵 ∈ 𝑃) |
10 | hlln.1 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
11 | 10 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐴(𝐾‘𝐴)𝐵) → 𝐺 ∈ TarskiG) |
12 | simpr 485 | . . 3 ⊢ ((𝜑 ∧ 𝐴(𝐾‘𝐴)𝐵) → 𝐴(𝐾‘𝐴)𝐵) | |
13 | 3, 4, 5, 7, 9, 7, 11, 12 | hlne1 26966 | . 2 ⊢ ((𝜑 ∧ 𝐴(𝐾‘𝐴)𝐵) → 𝐴 ≠ 𝐴) |
14 | 2, 13 | mtand 813 | 1 ⊢ (𝜑 → ¬ 𝐴(𝐾‘𝐴)𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5074 ‘cfv 6433 Basecbs 16912 TarskiGcstrkg 26788 Itvcitv 26794 hlGchlg 26961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-hlg 26962 |
This theorem is referenced by: mirbtwnhl 27041 |
Copyright terms: Public domain | W3C validator |