MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hleqnid Structured version   Visualization version   GIF version

Theorem hleqnid 28535
Description: The endpoint does not belong to the half-line. (Contributed by Thierry Arnoux, 3-Mar-2020.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
hlln.1 (𝜑𝐺 ∈ TarskiG)
Assertion
Ref Expression
hleqnid (𝜑 → ¬ 𝐴(𝐾𝐴)𝐵)

Proof of Theorem hleqnid
StepHypRef Expression
1 neirr 2934 . . 3 ¬ 𝐴𝐴
21a1i 11 . 2 (𝜑 → ¬ 𝐴𝐴)
3 ishlg.p . . 3 𝑃 = (Base‘𝐺)
4 ishlg.i . . 3 𝐼 = (Itv‘𝐺)
5 ishlg.k . . 3 𝐾 = (hlG‘𝐺)
6 ishlg.a . . . 4 (𝜑𝐴𝑃)
76adantr 480 . . 3 ((𝜑𝐴(𝐾𝐴)𝐵) → 𝐴𝑃)
8 ishlg.b . . . 4 (𝜑𝐵𝑃)
98adantr 480 . . 3 ((𝜑𝐴(𝐾𝐴)𝐵) → 𝐵𝑃)
10 hlln.1 . . . 4 (𝜑𝐺 ∈ TarskiG)
1110adantr 480 . . 3 ((𝜑𝐴(𝐾𝐴)𝐵) → 𝐺 ∈ TarskiG)
12 simpr 484 . . 3 ((𝜑𝐴(𝐾𝐴)𝐵) → 𝐴(𝐾𝐴)𝐵)
133, 4, 5, 7, 9, 7, 11, 12hlne1 28532 . 2 ((𝜑𝐴(𝐾𝐴)𝐵) → 𝐴𝐴)
142, 13mtand 815 1 (𝜑 → ¬ 𝐴(𝐾𝐴)𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  cfv 6511  Basecbs 17179  TarskiGcstrkg 28354  Itvcitv 28360  hlGchlg 28527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-hlg 28528
This theorem is referenced by:  mirbtwnhl  28607
  Copyright terms: Public domain W3C validator