MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hleqnid Structured version   Visualization version   GIF version

Theorem hleqnid 26873
Description: The endpoint does not belong to the half-line. (Contributed by Thierry Arnoux, 3-Mar-2020.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
hlln.1 (𝜑𝐺 ∈ TarskiG)
Assertion
Ref Expression
hleqnid (𝜑 → ¬ 𝐴(𝐾𝐴)𝐵)

Proof of Theorem hleqnid
StepHypRef Expression
1 neirr 2951 . . 3 ¬ 𝐴𝐴
21a1i 11 . 2 (𝜑 → ¬ 𝐴𝐴)
3 ishlg.p . . 3 𝑃 = (Base‘𝐺)
4 ishlg.i . . 3 𝐼 = (Itv‘𝐺)
5 ishlg.k . . 3 𝐾 = (hlG‘𝐺)
6 ishlg.a . . . 4 (𝜑𝐴𝑃)
76adantr 480 . . 3 ((𝜑𝐴(𝐾𝐴)𝐵) → 𝐴𝑃)
8 ishlg.b . . . 4 (𝜑𝐵𝑃)
98adantr 480 . . 3 ((𝜑𝐴(𝐾𝐴)𝐵) → 𝐵𝑃)
10 hlln.1 . . . 4 (𝜑𝐺 ∈ TarskiG)
1110adantr 480 . . 3 ((𝜑𝐴(𝐾𝐴)𝐵) → 𝐺 ∈ TarskiG)
12 simpr 484 . . 3 ((𝜑𝐴(𝐾𝐴)𝐵) → 𝐴(𝐾𝐴)𝐵)
133, 4, 5, 7, 9, 7, 11, 12hlne1 26870 . 2 ((𝜑𝐴(𝐾𝐴)𝐵) → 𝐴𝐴)
142, 13mtand 812 1 (𝜑 → ¬ 𝐴(𝐾𝐴)𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  Basecbs 16840  TarskiGcstrkg 26693  Itvcitv 26699  hlGchlg 26865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-hlg 26866
This theorem is referenced by:  mirbtwnhl  26945
  Copyright terms: Public domain W3C validator