| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hleqnid | Structured version Visualization version GIF version | ||
| Description: The endpoint does not belong to the half-line. (Contributed by Thierry Arnoux, 3-Mar-2020.) |
| Ref | Expression |
|---|---|
| ishlg.p | ⊢ 𝑃 = (Base‘𝐺) |
| ishlg.i | ⊢ 𝐼 = (Itv‘𝐺) |
| ishlg.k | ⊢ 𝐾 = (hlG‘𝐺) |
| ishlg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| ishlg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| ishlg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| hlln.1 | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| Ref | Expression |
|---|---|
| hleqnid | ⊢ (𝜑 → ¬ 𝐴(𝐾‘𝐴)𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neirr 2934 | . . 3 ⊢ ¬ 𝐴 ≠ 𝐴 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → ¬ 𝐴 ≠ 𝐴) |
| 3 | ishlg.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 4 | ishlg.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 5 | ishlg.k | . . 3 ⊢ 𝐾 = (hlG‘𝐺) | |
| 6 | ishlg.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴(𝐾‘𝐴)𝐵) → 𝐴 ∈ 𝑃) |
| 8 | ishlg.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 9 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴(𝐾‘𝐴)𝐵) → 𝐵 ∈ 𝑃) |
| 10 | hlln.1 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴(𝐾‘𝐴)𝐵) → 𝐺 ∈ TarskiG) |
| 12 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐴(𝐾‘𝐴)𝐵) → 𝐴(𝐾‘𝐴)𝐵) | |
| 13 | 3, 4, 5, 7, 9, 7, 11, 12 | hlne1 28550 | . 2 ⊢ ((𝜑 ∧ 𝐴(𝐾‘𝐴)𝐵) → 𝐴 ≠ 𝐴) |
| 14 | 2, 13 | mtand 815 | 1 ⊢ (𝜑 → ¬ 𝐴(𝐾‘𝐴)𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5092 ‘cfv 6482 Basecbs 17120 TarskiGcstrkg 28372 Itvcitv 28378 hlGchlg 28545 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-hlg 28546 |
| This theorem is referenced by: mirbtwnhl 28625 |
| Copyright terms: Public domain | W3C validator |