![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ac5b | Structured version Visualization version GIF version |
Description: Equivalent of Axiom of Choice. (Contributed by NM, 31-Aug-1999.) |
Ref | Expression |
---|---|
ac5b.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
ac5b | ⊢ (∀𝑥 ∈ 𝐴 𝑥 ≠ ∅ → ∃𝑓(𝑓:𝐴⟶∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ac5b.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | 1 | uniex 7727 | . . 3 ⊢ ∪ 𝐴 ∈ V |
3 | numth3 10461 | . . 3 ⊢ (∪ 𝐴 ∈ V → ∪ 𝐴 ∈ dom card) | |
4 | 2, 3 | mp1i 13 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ≠ ∅ → ∪ 𝐴 ∈ dom card) |
5 | neirr 2949 | . . 3 ⊢ ¬ ∅ ≠ ∅ | |
6 | neeq1 3003 | . . . 4 ⊢ (𝑥 = ∅ → (𝑥 ≠ ∅ ↔ ∅ ≠ ∅)) | |
7 | 6 | rspccv 3609 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ≠ ∅ → (∅ ∈ 𝐴 → ∅ ≠ ∅)) |
8 | 5, 7 | mtoi 198 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ≠ ∅ → ¬ ∅ ∈ 𝐴) |
9 | ac5num 10027 | . 2 ⊢ ((∪ 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) → ∃𝑓(𝑓:𝐴⟶∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) | |
10 | 4, 8, 9 | syl2anc 584 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ≠ ∅ → ∃𝑓(𝑓:𝐴⟶∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∃wex 1781 ∈ wcel 2106 ≠ wne 2940 ∀wral 3061 Vcvv 3474 ∅c0 4321 ∪ cuni 4907 dom cdm 5675 ⟶wf 6536 ‘cfv 6540 cardccrd 9926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-ac2 10454 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-en 8936 df-card 9930 df-ac 10107 |
This theorem is referenced by: acunirnmpt 31871 fnpreimac 31883 |
Copyright terms: Public domain | W3C validator |