MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac5b Structured version   Visualization version   GIF version

Theorem ac5b 10470
Description: Equivalent of Axiom of Choice. (Contributed by NM, 31-Aug-1999.)
Hypothesis
Ref Expression
ac5b.1 𝐴 ∈ V
Assertion
Ref Expression
ac5b (∀𝑥𝐴 𝑥 ≠ ∅ → ∃𝑓(𝑓:𝐴 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥))
Distinct variable group:   𝑥,𝑓,𝐴

Proof of Theorem ac5b
StepHypRef Expression
1 ac5b.1 . . . 4 𝐴 ∈ V
21uniex 7725 . . 3 𝐴 ∈ V
3 numth3 10462 . . 3 ( 𝐴 ∈ V → 𝐴 ∈ dom card)
42, 3mp1i 13 . 2 (∀𝑥𝐴 𝑥 ≠ ∅ → 𝐴 ∈ dom card)
5 neirr 2941 . . 3 ¬ ∅ ≠ ∅
6 neeq1 2995 . . . 4 (𝑥 = ∅ → (𝑥 ≠ ∅ ↔ ∅ ≠ ∅))
76rspccv 3601 . . 3 (∀𝑥𝐴 𝑥 ≠ ∅ → (∅ ∈ 𝐴 → ∅ ≠ ∅))
85, 7mtoi 198 . 2 (∀𝑥𝐴 𝑥 ≠ ∅ → ¬ ∅ ∈ 𝐴)
9 ac5num 10028 . 2 (( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) → ∃𝑓(𝑓:𝐴 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥))
104, 8, 9syl2anc 583 1 (∀𝑥𝐴 𝑥 ≠ ∅ → ∃𝑓(𝑓:𝐴 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wex 1773  wcel 2098  wne 2932  wral 3053  Vcvv 3466  c0 4315   cuni 4900  dom cdm 5667  wf 6530  cfv 6534  cardccrd 9927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-ac2 10455
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-se 5623  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-isom 6543  df-riota 7358  df-ov 7405  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-en 8937  df-card 9931  df-ac 10108
This theorem is referenced by:  acunirnmpt  32356  fnpreimac  32368
  Copyright terms: Public domain W3C validator