| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ac5b | Structured version Visualization version GIF version | ||
| Description: Equivalent of Axiom of Choice. (Contributed by NM, 31-Aug-1999.) |
| Ref | Expression |
|---|---|
| ac5b.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| ac5b | ⊢ (∀𝑥 ∈ 𝐴 𝑥 ≠ ∅ → ∃𝑓(𝑓:𝐴⟶∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ac5b.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | 1 | uniex 7740 | . . 3 ⊢ ∪ 𝐴 ∈ V |
| 3 | numth3 10489 | . . 3 ⊢ (∪ 𝐴 ∈ V → ∪ 𝐴 ∈ dom card) | |
| 4 | 2, 3 | mp1i 13 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ≠ ∅ → ∪ 𝐴 ∈ dom card) |
| 5 | neirr 2942 | . . 3 ⊢ ¬ ∅ ≠ ∅ | |
| 6 | neeq1 2995 | . . . 4 ⊢ (𝑥 = ∅ → (𝑥 ≠ ∅ ↔ ∅ ≠ ∅)) | |
| 7 | 6 | rspccv 3603 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ≠ ∅ → (∅ ∈ 𝐴 → ∅ ≠ ∅)) |
| 8 | 5, 7 | mtoi 199 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ≠ ∅ → ¬ ∅ ∈ 𝐴) |
| 9 | ac5num 10055 | . 2 ⊢ ((∪ 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) → ∃𝑓(𝑓:𝐴⟶∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) | |
| 10 | 4, 8, 9 | syl2anc 584 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ≠ ∅ → ∃𝑓(𝑓:𝐴⟶∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ≠ wne 2933 ∀wral 3052 Vcvv 3464 ∅c0 4313 ∪ cuni 4888 dom cdm 5659 ⟶wf 6532 ‘cfv 6536 cardccrd 9954 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-ac2 10482 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-en 8965 df-card 9958 df-ac 10135 |
| This theorem is referenced by: acunirnmpt 32642 fnpreimac 32654 |
| Copyright terms: Public domain | W3C validator |