| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ac5b | Structured version Visualization version GIF version | ||
| Description: Equivalent of Axiom of Choice. (Contributed by NM, 31-Aug-1999.) |
| Ref | Expression |
|---|---|
| ac5b.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| ac5b | ⊢ (∀𝑥 ∈ 𝐴 𝑥 ≠ ∅ → ∃𝑓(𝑓:𝐴⟶∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ac5b.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | 1 | uniex 7674 | . . 3 ⊢ ∪ 𝐴 ∈ V |
| 3 | numth3 10361 | . . 3 ⊢ (∪ 𝐴 ∈ V → ∪ 𝐴 ∈ dom card) | |
| 4 | 2, 3 | mp1i 13 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ≠ ∅ → ∪ 𝐴 ∈ dom card) |
| 5 | neirr 2937 | . . 3 ⊢ ¬ ∅ ≠ ∅ | |
| 6 | neeq1 2990 | . . . 4 ⊢ (𝑥 = ∅ → (𝑥 ≠ ∅ ↔ ∅ ≠ ∅)) | |
| 7 | 6 | rspccv 3574 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ≠ ∅ → (∅ ∈ 𝐴 → ∅ ≠ ∅)) |
| 8 | 5, 7 | mtoi 199 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ≠ ∅ → ¬ ∅ ∈ 𝐴) |
| 9 | ac5num 9927 | . 2 ⊢ ((∪ 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) → ∃𝑓(𝑓:𝐴⟶∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) | |
| 10 | 4, 8, 9 | syl2anc 584 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ≠ ∅ → ∃𝑓(𝑓:𝐴⟶∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 Vcvv 3436 ∅c0 4283 ∪ cuni 4859 dom cdm 5616 ⟶wf 6477 ‘cfv 6481 cardccrd 9828 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-ac2 10354 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-en 8870 df-card 9832 df-ac 10007 |
| This theorem is referenced by: acunirnmpt 32639 fnpreimac 32651 |
| Copyright terms: Public domain | W3C validator |