MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac5b Structured version   Visualization version   GIF version

Theorem ac5b 10340
Description: Equivalent of Axiom of Choice. (Contributed by NM, 31-Aug-1999.)
Hypothesis
Ref Expression
ac5b.1 𝐴 ∈ V
Assertion
Ref Expression
ac5b (∀𝑥𝐴 𝑥 ≠ ∅ → ∃𝑓(𝑓:𝐴 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥))
Distinct variable group:   𝑥,𝑓,𝐴

Proof of Theorem ac5b
StepHypRef Expression
1 ac5b.1 . . . 4 𝐴 ∈ V
21uniex 7661 . . 3 𝐴 ∈ V
3 numth3 10332 . . 3 ( 𝐴 ∈ V → 𝐴 ∈ dom card)
42, 3mp1i 13 . 2 (∀𝑥𝐴 𝑥 ≠ ∅ → 𝐴 ∈ dom card)
5 neirr 2950 . . 3 ¬ ∅ ≠ ∅
6 neeq1 3004 . . . 4 (𝑥 = ∅ → (𝑥 ≠ ∅ ↔ ∅ ≠ ∅))
76rspccv 3571 . . 3 (∀𝑥𝐴 𝑥 ≠ ∅ → (∅ ∈ 𝐴 → ∅ ≠ ∅))
85, 7mtoi 198 . 2 (∀𝑥𝐴 𝑥 ≠ ∅ → ¬ ∅ ∈ 𝐴)
9 ac5num 9898 . 2 (( 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) → ∃𝑓(𝑓:𝐴 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥))
104, 8, 9syl2anc 585 1 (∀𝑥𝐴 𝑥 ≠ ∅ → ∃𝑓(𝑓:𝐴 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  wex 1781  wcel 2106  wne 2941  wral 3062  Vcvv 3442  c0 4274   cuni 4857  dom cdm 5625  wf 6480  cfv 6484  cardccrd 9797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5234  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-ac2 10325
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3921  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-int 4900  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-tr 5215  df-id 5523  df-eprel 5529  df-po 5537  df-so 5538  df-fr 5580  df-se 5581  df-we 5582  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-pred 6243  df-ord 6310  df-on 6311  df-suc 6313  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-isom 6493  df-riota 7298  df-ov 7345  df-2nd 7905  df-frecs 8172  df-wrecs 8203  df-recs 8277  df-en 8810  df-card 9801  df-ac 9978
This theorem is referenced by:  acunirnmpt  31281  fnpreimac  31293
  Copyright terms: Public domain W3C validator