| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ac5b | Structured version Visualization version GIF version | ||
| Description: Equivalent of Axiom of Choice. (Contributed by NM, 31-Aug-1999.) |
| Ref | Expression |
|---|---|
| ac5b.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| ac5b | ⊢ (∀𝑥 ∈ 𝐴 𝑥 ≠ ∅ → ∃𝑓(𝑓:𝐴⟶∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ac5b.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | 1 | uniex 7717 | . . 3 ⊢ ∪ 𝐴 ∈ V |
| 3 | numth3 10423 | . . 3 ⊢ (∪ 𝐴 ∈ V → ∪ 𝐴 ∈ dom card) | |
| 4 | 2, 3 | mp1i 13 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ≠ ∅ → ∪ 𝐴 ∈ dom card) |
| 5 | neirr 2934 | . . 3 ⊢ ¬ ∅ ≠ ∅ | |
| 6 | neeq1 2987 | . . . 4 ⊢ (𝑥 = ∅ → (𝑥 ≠ ∅ ↔ ∅ ≠ ∅)) | |
| 7 | 6 | rspccv 3585 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ≠ ∅ → (∅ ∈ 𝐴 → ∅ ≠ ∅)) |
| 8 | 5, 7 | mtoi 199 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ≠ ∅ → ¬ ∅ ∈ 𝐴) |
| 9 | ac5num 9989 | . 2 ⊢ ((∪ 𝐴 ∈ dom card ∧ ¬ ∅ ∈ 𝐴) → ∃𝑓(𝑓:𝐴⟶∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) | |
| 10 | 4, 8, 9 | syl2anc 584 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ≠ ∅ → ∃𝑓(𝑓:𝐴⟶∪ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 Vcvv 3447 ∅c0 4296 ∪ cuni 4871 dom cdm 5638 ⟶wf 6507 ‘cfv 6511 cardccrd 9888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-ac2 10416 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-en 8919 df-card 9892 df-ac 10069 |
| This theorem is referenced by: acunirnmpt 32583 fnpreimac 32595 |
| Copyright terms: Public domain | W3C validator |