Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  padd01 Structured version   Visualization version   GIF version

Theorem padd01 39316
Description: Projective subspace sum with an empty set. (Contributed by NM, 11-Jan-2012.)
Hypotheses
Ref Expression
padd0.a 𝐴 = (Atoms‘𝐾)
padd0.p + = (+𝑃𝐾)
Assertion
Ref Expression
padd01 ((𝐾𝐵𝑋𝐴) → (𝑋 + ∅) = 𝑋)

Proof of Theorem padd01
StepHypRef Expression
1 simpl 481 . . . 4 ((𝐾𝐵𝑋𝐴) → 𝐾𝐵)
2 simpr 483 . . . 4 ((𝐾𝐵𝑋𝐴) → 𝑋𝐴)
3 0ss 4400 . . . . 5 ∅ ⊆ 𝐴
43a1i 11 . . . 4 ((𝐾𝐵𝑋𝐴) → ∅ ⊆ 𝐴)
51, 2, 43jca 1125 . . 3 ((𝐾𝐵𝑋𝐴) → (𝐾𝐵𝑋𝐴 ∧ ∅ ⊆ 𝐴))
6 neirr 2946 . . . 4 ¬ ∅ ≠ ∅
76intnan 485 . . 3 ¬ (𝑋 ≠ ∅ ∧ ∅ ≠ ∅)
8 padd0.a . . . 4 𝐴 = (Atoms‘𝐾)
9 padd0.p . . . 4 + = (+𝑃𝐾)
108, 9paddval0 39315 . . 3 (((𝐾𝐵𝑋𝐴 ∧ ∅ ⊆ 𝐴) ∧ ¬ (𝑋 ≠ ∅ ∧ ∅ ≠ ∅)) → (𝑋 + ∅) = (𝑋 ∪ ∅))
115, 7, 10sylancl 584 . 2 ((𝐾𝐵𝑋𝐴) → (𝑋 + ∅) = (𝑋 ∪ ∅))
12 un0 4394 . 2 (𝑋 ∪ ∅) = 𝑋
1311, 12eqtrdi 2784 1 ((𝐾𝐵𝑋𝐴) → (𝑋 + ∅) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wne 2937  cun 3947  wss 3949  c0 4326  cfv 6553  (class class class)co 7426  Atomscatm 38767  +𝑃cpadd 39300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-ov 7429  df-oprab 7430  df-mpo 7431  df-1st 7999  df-2nd 8000  df-padd 39301
This theorem is referenced by:  paddasslem17  39341  pmodlem2  39352
  Copyright terms: Public domain W3C validator