Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > padd01 | Structured version Visualization version GIF version |
Description: Projective subspace sum with an empty set. (Contributed by NM, 11-Jan-2012.) |
Ref | Expression |
---|---|
padd0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
padd0.p | ⊢ + = (+𝑃‘𝐾) |
Ref | Expression |
---|---|
padd01 | ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝑋 + ∅) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . . 4 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴) → 𝐾 ∈ 𝐵) | |
2 | simpr 485 | . . . 4 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴) → 𝑋 ⊆ 𝐴) | |
3 | 0ss 4330 | . . . . 5 ⊢ ∅ ⊆ 𝐴 | |
4 | 3 | a1i 11 | . . . 4 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴) → ∅ ⊆ 𝐴) |
5 | 1, 2, 4 | 3jca 1127 | . . 3 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ ∅ ⊆ 𝐴)) |
6 | neirr 2952 | . . . 4 ⊢ ¬ ∅ ≠ ∅ | |
7 | 6 | intnan 487 | . . 3 ⊢ ¬ (𝑋 ≠ ∅ ∧ ∅ ≠ ∅) |
8 | padd0.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
9 | padd0.p | . . . 4 ⊢ + = (+𝑃‘𝐾) | |
10 | 8, 9 | paddval0 37824 | . . 3 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ ∅ ⊆ 𝐴) ∧ ¬ (𝑋 ≠ ∅ ∧ ∅ ≠ ∅)) → (𝑋 + ∅) = (𝑋 ∪ ∅)) |
11 | 5, 7, 10 | sylancl 586 | . 2 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝑋 + ∅) = (𝑋 ∪ ∅)) |
12 | un0 4324 | . 2 ⊢ (𝑋 ∪ ∅) = 𝑋 | |
13 | 11, 12 | eqtrdi 2794 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝑋 + ∅) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∪ cun 3885 ⊆ wss 3887 ∅c0 4256 ‘cfv 6433 (class class class)co 7275 Atomscatm 37277 +𝑃cpadd 37809 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-padd 37810 |
This theorem is referenced by: paddasslem17 37850 pmodlem2 37861 |
Copyright terms: Public domain | W3C validator |