Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  padd01 Structured version   Visualization version   GIF version

Theorem padd01 37421
Description: Projective subspace sum with an empty set. (Contributed by NM, 11-Jan-2012.)
Hypotheses
Ref Expression
padd0.a 𝐴 = (Atoms‘𝐾)
padd0.p + = (+𝑃𝐾)
Assertion
Ref Expression
padd01 ((𝐾𝐵𝑋𝐴) → (𝑋 + ∅) = 𝑋)

Proof of Theorem padd01
StepHypRef Expression
1 simpl 486 . . . 4 ((𝐾𝐵𝑋𝐴) → 𝐾𝐵)
2 simpr 488 . . . 4 ((𝐾𝐵𝑋𝐴) → 𝑋𝐴)
3 0ss 4295 . . . . 5 ∅ ⊆ 𝐴
43a1i 11 . . . 4 ((𝐾𝐵𝑋𝐴) → ∅ ⊆ 𝐴)
51, 2, 43jca 1125 . . 3 ((𝐾𝐵𝑋𝐴) → (𝐾𝐵𝑋𝐴 ∧ ∅ ⊆ 𝐴))
6 neirr 2960 . . . 4 ¬ ∅ ≠ ∅
76intnan 490 . . 3 ¬ (𝑋 ≠ ∅ ∧ ∅ ≠ ∅)
8 padd0.a . . . 4 𝐴 = (Atoms‘𝐾)
9 padd0.p . . . 4 + = (+𝑃𝐾)
108, 9paddval0 37420 . . 3 (((𝐾𝐵𝑋𝐴 ∧ ∅ ⊆ 𝐴) ∧ ¬ (𝑋 ≠ ∅ ∧ ∅ ≠ ∅)) → (𝑋 + ∅) = (𝑋 ∪ ∅))
115, 7, 10sylancl 589 . 2 ((𝐾𝐵𝑋𝐴) → (𝑋 + ∅) = (𝑋 ∪ ∅))
12 un0 4289 . 2 (𝑋 ∪ ∅) = 𝑋
1311, 12eqtrdi 2809 1 ((𝐾𝐵𝑋𝐴) → (𝑋 + ∅) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2951  cun 3858  wss 3860  c0 4227  cfv 6340  (class class class)co 7156  Atomscatm 36873  +𝑃cpadd 37405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7699  df-2nd 7700  df-padd 37406
This theorem is referenced by:  paddasslem17  37446  pmodlem2  37457
  Copyright terms: Public domain W3C validator