Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > padd01 | Structured version Visualization version GIF version |
Description: Projective subspace sum with an empty set. (Contributed by NM, 11-Jan-2012.) |
Ref | Expression |
---|---|
padd0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
padd0.p | ⊢ + = (+𝑃‘𝐾) |
Ref | Expression |
---|---|
padd01 | ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝑋 + ∅) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . 4 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴) → 𝐾 ∈ 𝐵) | |
2 | simpr 484 | . . . 4 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴) → 𝑋 ⊆ 𝐴) | |
3 | 0ss 4327 | . . . . 5 ⊢ ∅ ⊆ 𝐴 | |
4 | 3 | a1i 11 | . . . 4 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴) → ∅ ⊆ 𝐴) |
5 | 1, 2, 4 | 3jca 1126 | . . 3 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ ∅ ⊆ 𝐴)) |
6 | neirr 2951 | . . . 4 ⊢ ¬ ∅ ≠ ∅ | |
7 | 6 | intnan 486 | . . 3 ⊢ ¬ (𝑋 ≠ ∅ ∧ ∅ ≠ ∅) |
8 | padd0.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
9 | padd0.p | . . . 4 ⊢ + = (+𝑃‘𝐾) | |
10 | 8, 9 | paddval0 37751 | . . 3 ⊢ (((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ ∅ ⊆ 𝐴) ∧ ¬ (𝑋 ≠ ∅ ∧ ∅ ≠ ∅)) → (𝑋 + ∅) = (𝑋 ∪ ∅)) |
11 | 5, 7, 10 | sylancl 585 | . 2 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝑋 + ∅) = (𝑋 ∪ ∅)) |
12 | un0 4321 | . 2 ⊢ (𝑋 ∪ ∅) = 𝑋 | |
13 | 11, 12 | eqtrdi 2795 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝑋 + ∅) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∪ cun 3881 ⊆ wss 3883 ∅c0 4253 ‘cfv 6418 (class class class)co 7255 Atomscatm 37204 +𝑃cpadd 37736 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-padd 37737 |
This theorem is referenced by: paddasslem17 37777 pmodlem2 37788 |
Copyright terms: Public domain | W3C validator |