Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcoc0 | Structured version Visualization version GIF version |
Description: Properties of a linear combination where all scalars are 0. (Contributed by AV, 12-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
Ref | Expression |
---|---|
lincvalsc0.b | ⊢ 𝐵 = (Base‘𝑀) |
lincvalsc0.s | ⊢ 𝑆 = (Scalar‘𝑀) |
lincvalsc0.0 | ⊢ 0 = (0g‘𝑆) |
lincvalsc0.z | ⊢ 𝑍 = (0g‘𝑀) |
lincvalsc0.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ 0 ) |
lcoc0.r | ⊢ 𝑅 = (Base‘𝑆) |
Ref | Expression |
---|---|
lcoc0 | ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ (𝑅 ↑m 𝑉) ∧ 𝐹 finSupp 0 ∧ (𝐹( linC ‘𝑀)𝑉) = 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lincvalsc0.s | . . . . . 6 ⊢ 𝑆 = (Scalar‘𝑀) | |
2 | lcoc0.r | . . . . . 6 ⊢ 𝑅 = (Base‘𝑆) | |
3 | lincvalsc0.0 | . . . . . 6 ⊢ 0 = (0g‘𝑆) | |
4 | 1, 2, 3 | lmod0cl 19779 | . . . . 5 ⊢ (𝑀 ∈ LMod → 0 ∈ 𝑅) |
5 | 4 | ad2antrr 726 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝑉) → 0 ∈ 𝑅) |
6 | lincvalsc0.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ 0 ) | |
7 | 5, 6 | fmptd 6888 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹:𝑉⟶𝑅) |
8 | 2 | fvexi 6688 | . . . . 5 ⊢ 𝑅 ∈ V |
9 | 8 | a1i 11 | . . . 4 ⊢ (𝑀 ∈ LMod → 𝑅 ∈ V) |
10 | elmapg 8450 | . . . 4 ⊢ ((𝑅 ∈ V ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ (𝑅 ↑m 𝑉) ↔ 𝐹:𝑉⟶𝑅)) | |
11 | 9, 10 | sylan 583 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ (𝑅 ↑m 𝑉) ↔ 𝐹:𝑉⟶𝑅)) |
12 | 7, 11 | mpbird 260 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹 ∈ (𝑅 ↑m 𝑉)) |
13 | eqidd 2739 | . . . . . . 7 ⊢ (𝑥 = 𝑣 → 0 = 0 ) | |
14 | 13 | cbvmptv 5133 | . . . . . 6 ⊢ (𝑥 ∈ 𝑉 ↦ 0 ) = (𝑣 ∈ 𝑉 ↦ 0 ) |
15 | 6, 14 | eqtri 2761 | . . . . 5 ⊢ 𝐹 = (𝑣 ∈ 𝑉 ↦ 0 ) |
16 | simpr 488 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝑉 ∈ 𝒫 𝐵) | |
17 | 3 | fvexi 6688 | . . . . . 6 ⊢ 0 ∈ V |
18 | 17 | a1i 11 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 0 ∈ V) |
19 | 17 | a1i 11 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣 ∈ 𝑉) → 0 ∈ V) |
20 | 15, 16, 18, 19 | mptsuppd 7882 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 supp 0 ) = {𝑣 ∈ 𝑉 ∣ 0 ≠ 0 }) |
21 | neirr 2943 | . . . . . . . 8 ⊢ ¬ 0 ≠ 0 | |
22 | 21 | a1i 11 | . . . . . . 7 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → ¬ 0 ≠ 0 ) |
23 | 22 | ralrimivw 3097 | . . . . . 6 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → ∀𝑣 ∈ 𝑉 ¬ 0 ≠ 0 ) |
24 | rabeq0 4273 | . . . . . 6 ⊢ ({𝑣 ∈ 𝑉 ∣ 0 ≠ 0 } = ∅ ↔ ∀𝑣 ∈ 𝑉 ¬ 0 ≠ 0 ) | |
25 | 23, 24 | sylibr 237 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → {𝑣 ∈ 𝑉 ∣ 0 ≠ 0 } = ∅) |
26 | 0fin 8770 | . . . . . 6 ⊢ ∅ ∈ Fin | |
27 | 26 | a1i 11 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → ∅ ∈ Fin) |
28 | 25, 27 | eqeltrd 2833 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → {𝑣 ∈ 𝑉 ∣ 0 ≠ 0 } ∈ Fin) |
29 | 20, 28 | eqeltrd 2833 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 supp 0 ) ∈ Fin) |
30 | 6 | funmpt2 6378 | . . . . 5 ⊢ Fun 𝐹 |
31 | 30 | a1i 11 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → Fun 𝐹) |
32 | funisfsupp 8911 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ (𝑅 ↑m 𝑉) ∧ 0 ∈ V) → (𝐹 finSupp 0 ↔ (𝐹 supp 0 ) ∈ Fin)) | |
33 | 31, 12, 18, 32 | syl3anc 1372 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 finSupp 0 ↔ (𝐹 supp 0 ) ∈ Fin)) |
34 | 29, 33 | mpbird 260 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹 finSupp 0 ) |
35 | lincvalsc0.b | . . 3 ⊢ 𝐵 = (Base‘𝑀) | |
36 | lincvalsc0.z | . . 3 ⊢ 𝑍 = (0g‘𝑀) | |
37 | 35, 1, 3, 36, 6 | lincvalsc0 45296 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹( linC ‘𝑀)𝑉) = 𝑍) |
38 | 12, 34, 37 | 3jca 1129 | 1 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ (𝑅 ↑m 𝑉) ∧ 𝐹 finSupp 0 ∧ (𝐹( linC ‘𝑀)𝑉) = 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ≠ wne 2934 ∀wral 3053 {crab 3057 Vcvv 3398 ∅c0 4211 𝒫 cpw 4488 class class class wbr 5030 ↦ cmpt 5110 Fun wfun 6333 ⟶wf 6335 ‘cfv 6339 (class class class)co 7170 supp csupp 7856 ↑m cmap 8437 Fincfn 8555 finSupp cfsupp 8906 Basecbs 16586 Scalarcsca 16671 0gc0g 16816 LModclmod 19753 linC clinc 45279 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-1st 7714 df-2nd 7715 df-supp 7857 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-map 8439 df-en 8556 df-fin 8559 df-fsupp 8907 df-seq 13461 df-0g 16818 df-gsum 16819 df-mgm 17968 df-sgrp 18017 df-mnd 18028 df-grp 18222 df-ring 19418 df-lmod 19755 df-linc 45281 |
This theorem is referenced by: lcoel0 45303 |
Copyright terms: Public domain | W3C validator |