| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcoc0 | Structured version Visualization version GIF version | ||
| Description: Properties of a linear combination where all scalars are 0. (Contributed by AV, 12-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
| Ref | Expression |
|---|---|
| lincvalsc0.b | ⊢ 𝐵 = (Base‘𝑀) |
| lincvalsc0.s | ⊢ 𝑆 = (Scalar‘𝑀) |
| lincvalsc0.0 | ⊢ 0 = (0g‘𝑆) |
| lincvalsc0.z | ⊢ 𝑍 = (0g‘𝑀) |
| lincvalsc0.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ 0 ) |
| lcoc0.r | ⊢ 𝑅 = (Base‘𝑆) |
| Ref | Expression |
|---|---|
| lcoc0 | ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ (𝑅 ↑m 𝑉) ∧ 𝐹 finSupp 0 ∧ (𝐹( linC ‘𝑀)𝑉) = 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lincvalsc0.s | . . . . . 6 ⊢ 𝑆 = (Scalar‘𝑀) | |
| 2 | lcoc0.r | . . . . . 6 ⊢ 𝑅 = (Base‘𝑆) | |
| 3 | lincvalsc0.0 | . . . . . 6 ⊢ 0 = (0g‘𝑆) | |
| 4 | 1, 2, 3 | lmod0cl 20800 | . . . . 5 ⊢ (𝑀 ∈ LMod → 0 ∈ 𝑅) |
| 5 | 4 | ad2antrr 726 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝑉) → 0 ∈ 𝑅) |
| 6 | lincvalsc0.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ 0 ) | |
| 7 | 5, 6 | fmptd 7088 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹:𝑉⟶𝑅) |
| 8 | 2 | fvexi 6874 | . . . . 5 ⊢ 𝑅 ∈ V |
| 9 | 8 | a1i 11 | . . . 4 ⊢ (𝑀 ∈ LMod → 𝑅 ∈ V) |
| 10 | elmapg 8814 | . . . 4 ⊢ ((𝑅 ∈ V ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ (𝑅 ↑m 𝑉) ↔ 𝐹:𝑉⟶𝑅)) | |
| 11 | 9, 10 | sylan 580 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ (𝑅 ↑m 𝑉) ↔ 𝐹:𝑉⟶𝑅)) |
| 12 | 7, 11 | mpbird 257 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹 ∈ (𝑅 ↑m 𝑉)) |
| 13 | eqidd 2731 | . . . . . . 7 ⊢ (𝑥 = 𝑣 → 0 = 0 ) | |
| 14 | 13 | cbvmptv 5213 | . . . . . 6 ⊢ (𝑥 ∈ 𝑉 ↦ 0 ) = (𝑣 ∈ 𝑉 ↦ 0 ) |
| 15 | 6, 14 | eqtri 2753 | . . . . 5 ⊢ 𝐹 = (𝑣 ∈ 𝑉 ↦ 0 ) |
| 16 | simpr 484 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝑉 ∈ 𝒫 𝐵) | |
| 17 | 3 | fvexi 6874 | . . . . . 6 ⊢ 0 ∈ V |
| 18 | 17 | a1i 11 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 0 ∈ V) |
| 19 | 17 | a1i 11 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣 ∈ 𝑉) → 0 ∈ V) |
| 20 | 15, 16, 18, 19 | mptsuppd 8168 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 supp 0 ) = {𝑣 ∈ 𝑉 ∣ 0 ≠ 0 }) |
| 21 | neirr 2935 | . . . . . . . 8 ⊢ ¬ 0 ≠ 0 | |
| 22 | 21 | a1i 11 | . . . . . . 7 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → ¬ 0 ≠ 0 ) |
| 23 | 22 | ralrimivw 3130 | . . . . . 6 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → ∀𝑣 ∈ 𝑉 ¬ 0 ≠ 0 ) |
| 24 | rabeq0 4353 | . . . . . 6 ⊢ ({𝑣 ∈ 𝑉 ∣ 0 ≠ 0 } = ∅ ↔ ∀𝑣 ∈ 𝑉 ¬ 0 ≠ 0 ) | |
| 25 | 23, 24 | sylibr 234 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → {𝑣 ∈ 𝑉 ∣ 0 ≠ 0 } = ∅) |
| 26 | 0fi 9015 | . . . . . 6 ⊢ ∅ ∈ Fin | |
| 27 | 26 | a1i 11 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → ∅ ∈ Fin) |
| 28 | 25, 27 | eqeltrd 2829 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → {𝑣 ∈ 𝑉 ∣ 0 ≠ 0 } ∈ Fin) |
| 29 | 20, 28 | eqeltrd 2829 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 supp 0 ) ∈ Fin) |
| 30 | 6 | funmpt2 6557 | . . . . 5 ⊢ Fun 𝐹 |
| 31 | 30 | a1i 11 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → Fun 𝐹) |
| 32 | funisfsupp 9324 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ (𝑅 ↑m 𝑉) ∧ 0 ∈ V) → (𝐹 finSupp 0 ↔ (𝐹 supp 0 ) ∈ Fin)) | |
| 33 | 31, 12, 18, 32 | syl3anc 1373 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 finSupp 0 ↔ (𝐹 supp 0 ) ∈ Fin)) |
| 34 | 29, 33 | mpbird 257 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹 finSupp 0 ) |
| 35 | lincvalsc0.b | . . 3 ⊢ 𝐵 = (Base‘𝑀) | |
| 36 | lincvalsc0.z | . . 3 ⊢ 𝑍 = (0g‘𝑀) | |
| 37 | 35, 1, 3, 36, 6 | lincvalsc0 48400 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹( linC ‘𝑀)𝑉) = 𝑍) |
| 38 | 12, 34, 37 | 3jca 1128 | 1 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ (𝑅 ↑m 𝑉) ∧ 𝐹 finSupp 0 ∧ (𝐹( linC ‘𝑀)𝑉) = 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 {crab 3408 Vcvv 3450 ∅c0 4298 𝒫 cpw 4565 class class class wbr 5109 ↦ cmpt 5190 Fun wfun 6507 ⟶wf 6509 ‘cfv 6513 (class class class)co 7389 supp csupp 8141 ↑m cmap 8801 Fincfn 8920 finSupp cfsupp 9318 Basecbs 17185 Scalarcsca 17229 0gc0g 17408 LModclmod 20772 linC clinc 48383 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-supp 8142 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-map 8803 df-en 8921 df-fin 8924 df-fsupp 9319 df-seq 13973 df-0g 17410 df-gsum 17411 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18874 df-ring 20150 df-lmod 20774 df-linc 48385 |
| This theorem is referenced by: lcoel0 48407 |
| Copyright terms: Public domain | W3C validator |