Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcoc0 Structured version   Visualization version   GIF version

Theorem lcoc0 48268
Description: Properties of a linear combination where all scalars are 0. (Contributed by AV, 12-Apr-2019.) (Revised by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
lincvalsc0.b 𝐵 = (Base‘𝑀)
lincvalsc0.s 𝑆 = (Scalar‘𝑀)
lincvalsc0.0 0 = (0g𝑆)
lincvalsc0.z 𝑍 = (0g𝑀)
lincvalsc0.f 𝐹 = (𝑥𝑉0 )
lcoc0.r 𝑅 = (Base‘𝑆)
Assertion
Ref Expression
lcoc0 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ (𝑅m 𝑉) ∧ 𝐹 finSupp 0 ∧ (𝐹( linC ‘𝑀)𝑉) = 𝑍))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑀   𝑥,𝑉   𝑥, 0   𝑥,𝐹   𝑥,𝑅
Allowed substitution hints:   𝑆(𝑥)   𝑍(𝑥)

Proof of Theorem lcoc0
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lincvalsc0.s . . . . . 6 𝑆 = (Scalar‘𝑀)
2 lcoc0.r . . . . . 6 𝑅 = (Base‘𝑆)
3 lincvalsc0.0 . . . . . 6 0 = (0g𝑆)
41, 2, 3lmod0cl 20903 . . . . 5 (𝑀 ∈ LMod → 0𝑅)
54ad2antrr 726 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥𝑉) → 0𝑅)
6 lincvalsc0.f . . . 4 𝐹 = (𝑥𝑉0 )
75, 6fmptd 7134 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹:𝑉𝑅)
82fvexi 6921 . . . . 5 𝑅 ∈ V
98a1i 11 . . . 4 (𝑀 ∈ LMod → 𝑅 ∈ V)
10 elmapg 8878 . . . 4 ((𝑅 ∈ V ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ (𝑅m 𝑉) ↔ 𝐹:𝑉𝑅))
119, 10sylan 580 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ (𝑅m 𝑉) ↔ 𝐹:𝑉𝑅))
127, 11mpbird 257 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹 ∈ (𝑅m 𝑉))
13 eqidd 2736 . . . . . . 7 (𝑥 = 𝑣0 = 0 )
1413cbvmptv 5261 . . . . . 6 (𝑥𝑉0 ) = (𝑣𝑉0 )
156, 14eqtri 2763 . . . . 5 𝐹 = (𝑣𝑉0 )
16 simpr 484 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝑉 ∈ 𝒫 𝐵)
173fvexi 6921 . . . . . 6 0 ∈ V
1817a1i 11 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 0 ∈ V)
1917a1i 11 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → 0 ∈ V)
2015, 16, 18, 19mptsuppd 8211 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 supp 0 ) = {𝑣𝑉00 })
21 neirr 2947 . . . . . . . 8 ¬ 00
2221a1i 11 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → ¬ 00 )
2322ralrimivw 3148 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → ∀𝑣𝑉 ¬ 00 )
24 rabeq0 4394 . . . . . 6 ({𝑣𝑉00 } = ∅ ↔ ∀𝑣𝑉 ¬ 00 )
2523, 24sylibr 234 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → {𝑣𝑉00 } = ∅)
26 0fi 9081 . . . . . 6 ∅ ∈ Fin
2726a1i 11 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → ∅ ∈ Fin)
2825, 27eqeltrd 2839 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → {𝑣𝑉00 } ∈ Fin)
2920, 28eqeltrd 2839 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 supp 0 ) ∈ Fin)
306funmpt2 6607 . . . . 5 Fun 𝐹
3130a1i 11 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → Fun 𝐹)
32 funisfsupp 9405 . . . 4 ((Fun 𝐹𝐹 ∈ (𝑅m 𝑉) ∧ 0 ∈ V) → (𝐹 finSupp 0 ↔ (𝐹 supp 0 ) ∈ Fin))
3331, 12, 18, 32syl3anc 1370 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 finSupp 0 ↔ (𝐹 supp 0 ) ∈ Fin))
3429, 33mpbird 257 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹 finSupp 0 )
35 lincvalsc0.b . . 3 𝐵 = (Base‘𝑀)
36 lincvalsc0.z . . 3 𝑍 = (0g𝑀)
3735, 1, 3, 36, 6lincvalsc0 48267 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹( linC ‘𝑀)𝑉) = 𝑍)
3812, 34, 373jca 1127 1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ (𝑅m 𝑉) ∧ 𝐹 finSupp 0 ∧ (𝐹( linC ‘𝑀)𝑉) = 𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  {crab 3433  Vcvv 3478  c0 4339  𝒫 cpw 4605   class class class wbr 5148  cmpt 5231  Fun wfun 6557  wf 6559  cfv 6563  (class class class)co 7431   supp csupp 8184  m cmap 8865  Fincfn 8984   finSupp cfsupp 9399  Basecbs 17245  Scalarcsca 17301  0gc0g 17486  LModclmod 20875   linC clinc 48250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-map 8867  df-en 8985  df-fin 8988  df-fsupp 9400  df-seq 14040  df-0g 17488  df-gsum 17489  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-ring 20253  df-lmod 20877  df-linc 48252
This theorem is referenced by:  lcoel0  48274
  Copyright terms: Public domain W3C validator