Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcoc0 | Structured version Visualization version GIF version |
Description: Properties of a linear combination where all scalars are 0. (Contributed by AV, 12-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
Ref | Expression |
---|---|
lincvalsc0.b | ⊢ 𝐵 = (Base‘𝑀) |
lincvalsc0.s | ⊢ 𝑆 = (Scalar‘𝑀) |
lincvalsc0.0 | ⊢ 0 = (0g‘𝑆) |
lincvalsc0.z | ⊢ 𝑍 = (0g‘𝑀) |
lincvalsc0.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ 0 ) |
lcoc0.r | ⊢ 𝑅 = (Base‘𝑆) |
Ref | Expression |
---|---|
lcoc0 | ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ (𝑅 ↑m 𝑉) ∧ 𝐹 finSupp 0 ∧ (𝐹( linC ‘𝑀)𝑉) = 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lincvalsc0.s | . . . . . 6 ⊢ 𝑆 = (Scalar‘𝑀) | |
2 | lcoc0.r | . . . . . 6 ⊢ 𝑅 = (Base‘𝑆) | |
3 | lincvalsc0.0 | . . . . . 6 ⊢ 0 = (0g‘𝑆) | |
4 | 1, 2, 3 | lmod0cl 20064 | . . . . 5 ⊢ (𝑀 ∈ LMod → 0 ∈ 𝑅) |
5 | 4 | ad2antrr 722 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝑉) → 0 ∈ 𝑅) |
6 | lincvalsc0.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ 0 ) | |
7 | 5, 6 | fmptd 6970 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹:𝑉⟶𝑅) |
8 | 2 | fvexi 6770 | . . . . 5 ⊢ 𝑅 ∈ V |
9 | 8 | a1i 11 | . . . 4 ⊢ (𝑀 ∈ LMod → 𝑅 ∈ V) |
10 | elmapg 8586 | . . . 4 ⊢ ((𝑅 ∈ V ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ (𝑅 ↑m 𝑉) ↔ 𝐹:𝑉⟶𝑅)) | |
11 | 9, 10 | sylan 579 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ (𝑅 ↑m 𝑉) ↔ 𝐹:𝑉⟶𝑅)) |
12 | 7, 11 | mpbird 256 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹 ∈ (𝑅 ↑m 𝑉)) |
13 | eqidd 2739 | . . . . . . 7 ⊢ (𝑥 = 𝑣 → 0 = 0 ) | |
14 | 13 | cbvmptv 5183 | . . . . . 6 ⊢ (𝑥 ∈ 𝑉 ↦ 0 ) = (𝑣 ∈ 𝑉 ↦ 0 ) |
15 | 6, 14 | eqtri 2766 | . . . . 5 ⊢ 𝐹 = (𝑣 ∈ 𝑉 ↦ 0 ) |
16 | simpr 484 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝑉 ∈ 𝒫 𝐵) | |
17 | 3 | fvexi 6770 | . . . . . 6 ⊢ 0 ∈ V |
18 | 17 | a1i 11 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 0 ∈ V) |
19 | 17 | a1i 11 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣 ∈ 𝑉) → 0 ∈ V) |
20 | 15, 16, 18, 19 | mptsuppd 7974 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 supp 0 ) = {𝑣 ∈ 𝑉 ∣ 0 ≠ 0 }) |
21 | neirr 2951 | . . . . . . . 8 ⊢ ¬ 0 ≠ 0 | |
22 | 21 | a1i 11 | . . . . . . 7 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → ¬ 0 ≠ 0 ) |
23 | 22 | ralrimivw 3108 | . . . . . 6 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → ∀𝑣 ∈ 𝑉 ¬ 0 ≠ 0 ) |
24 | rabeq0 4315 | . . . . . 6 ⊢ ({𝑣 ∈ 𝑉 ∣ 0 ≠ 0 } = ∅ ↔ ∀𝑣 ∈ 𝑉 ¬ 0 ≠ 0 ) | |
25 | 23, 24 | sylibr 233 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → {𝑣 ∈ 𝑉 ∣ 0 ≠ 0 } = ∅) |
26 | 0fin 8916 | . . . . . 6 ⊢ ∅ ∈ Fin | |
27 | 26 | a1i 11 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → ∅ ∈ Fin) |
28 | 25, 27 | eqeltrd 2839 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → {𝑣 ∈ 𝑉 ∣ 0 ≠ 0 } ∈ Fin) |
29 | 20, 28 | eqeltrd 2839 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 supp 0 ) ∈ Fin) |
30 | 6 | funmpt2 6457 | . . . . 5 ⊢ Fun 𝐹 |
31 | 30 | a1i 11 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → Fun 𝐹) |
32 | funisfsupp 9063 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ (𝑅 ↑m 𝑉) ∧ 0 ∈ V) → (𝐹 finSupp 0 ↔ (𝐹 supp 0 ) ∈ Fin)) | |
33 | 31, 12, 18, 32 | syl3anc 1369 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 finSupp 0 ↔ (𝐹 supp 0 ) ∈ Fin)) |
34 | 29, 33 | mpbird 256 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹 finSupp 0 ) |
35 | lincvalsc0.b | . . 3 ⊢ 𝐵 = (Base‘𝑀) | |
36 | lincvalsc0.z | . . 3 ⊢ 𝑍 = (0g‘𝑀) | |
37 | 35, 1, 3, 36, 6 | lincvalsc0 45650 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹( linC ‘𝑀)𝑉) = 𝑍) |
38 | 12, 34, 37 | 3jca 1126 | 1 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ (𝑅 ↑m 𝑉) ∧ 𝐹 finSupp 0 ∧ (𝐹( linC ‘𝑀)𝑉) = 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 {crab 3067 Vcvv 3422 ∅c0 4253 𝒫 cpw 4530 class class class wbr 5070 ↦ cmpt 5153 Fun wfun 6412 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 supp csupp 7948 ↑m cmap 8573 Fincfn 8691 finSupp cfsupp 9058 Basecbs 16840 Scalarcsca 16891 0gc0g 17067 LModclmod 20038 linC clinc 45633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-map 8575 df-en 8692 df-fin 8695 df-fsupp 9059 df-seq 13650 df-0g 17069 df-gsum 17070 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-ring 19700 df-lmod 20040 df-linc 45635 |
This theorem is referenced by: lcoel0 45657 |
Copyright terms: Public domain | W3C validator |