| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcoc0 | Structured version Visualization version GIF version | ||
| Description: Properties of a linear combination where all scalars are 0. (Contributed by AV, 12-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
| Ref | Expression |
|---|---|
| lincvalsc0.b | ⊢ 𝐵 = (Base‘𝑀) |
| lincvalsc0.s | ⊢ 𝑆 = (Scalar‘𝑀) |
| lincvalsc0.0 | ⊢ 0 = (0g‘𝑆) |
| lincvalsc0.z | ⊢ 𝑍 = (0g‘𝑀) |
| lincvalsc0.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ 0 ) |
| lcoc0.r | ⊢ 𝑅 = (Base‘𝑆) |
| Ref | Expression |
|---|---|
| lcoc0 | ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ (𝑅 ↑m 𝑉) ∧ 𝐹 finSupp 0 ∧ (𝐹( linC ‘𝑀)𝑉) = 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lincvalsc0.s | . . . . . 6 ⊢ 𝑆 = (Scalar‘𝑀) | |
| 2 | lcoc0.r | . . . . . 6 ⊢ 𝑅 = (Base‘𝑆) | |
| 3 | lincvalsc0.0 | . . . . . 6 ⊢ 0 = (0g‘𝑆) | |
| 4 | 1, 2, 3 | lmod0cl 20850 | . . . . 5 ⊢ (𝑀 ∈ LMod → 0 ∈ 𝑅) |
| 5 | 4 | ad2antrr 726 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝑉) → 0 ∈ 𝑅) |
| 6 | lincvalsc0.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ 0 ) | |
| 7 | 5, 6 | fmptd 7109 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹:𝑉⟶𝑅) |
| 8 | 2 | fvexi 6895 | . . . . 5 ⊢ 𝑅 ∈ V |
| 9 | 8 | a1i 11 | . . . 4 ⊢ (𝑀 ∈ LMod → 𝑅 ∈ V) |
| 10 | elmapg 8858 | . . . 4 ⊢ ((𝑅 ∈ V ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ (𝑅 ↑m 𝑉) ↔ 𝐹:𝑉⟶𝑅)) | |
| 11 | 9, 10 | sylan 580 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ (𝑅 ↑m 𝑉) ↔ 𝐹:𝑉⟶𝑅)) |
| 12 | 7, 11 | mpbird 257 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹 ∈ (𝑅 ↑m 𝑉)) |
| 13 | eqidd 2737 | . . . . . . 7 ⊢ (𝑥 = 𝑣 → 0 = 0 ) | |
| 14 | 13 | cbvmptv 5230 | . . . . . 6 ⊢ (𝑥 ∈ 𝑉 ↦ 0 ) = (𝑣 ∈ 𝑉 ↦ 0 ) |
| 15 | 6, 14 | eqtri 2759 | . . . . 5 ⊢ 𝐹 = (𝑣 ∈ 𝑉 ↦ 0 ) |
| 16 | simpr 484 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝑉 ∈ 𝒫 𝐵) | |
| 17 | 3 | fvexi 6895 | . . . . . 6 ⊢ 0 ∈ V |
| 18 | 17 | a1i 11 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 0 ∈ V) |
| 19 | 17 | a1i 11 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣 ∈ 𝑉) → 0 ∈ V) |
| 20 | 15, 16, 18, 19 | mptsuppd 8191 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 supp 0 ) = {𝑣 ∈ 𝑉 ∣ 0 ≠ 0 }) |
| 21 | neirr 2942 | . . . . . . . 8 ⊢ ¬ 0 ≠ 0 | |
| 22 | 21 | a1i 11 | . . . . . . 7 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → ¬ 0 ≠ 0 ) |
| 23 | 22 | ralrimivw 3137 | . . . . . 6 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → ∀𝑣 ∈ 𝑉 ¬ 0 ≠ 0 ) |
| 24 | rabeq0 4368 | . . . . . 6 ⊢ ({𝑣 ∈ 𝑉 ∣ 0 ≠ 0 } = ∅ ↔ ∀𝑣 ∈ 𝑉 ¬ 0 ≠ 0 ) | |
| 25 | 23, 24 | sylibr 234 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → {𝑣 ∈ 𝑉 ∣ 0 ≠ 0 } = ∅) |
| 26 | 0fi 9061 | . . . . . 6 ⊢ ∅ ∈ Fin | |
| 27 | 26 | a1i 11 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → ∅ ∈ Fin) |
| 28 | 25, 27 | eqeltrd 2835 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → {𝑣 ∈ 𝑉 ∣ 0 ≠ 0 } ∈ Fin) |
| 29 | 20, 28 | eqeltrd 2835 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 supp 0 ) ∈ Fin) |
| 30 | 6 | funmpt2 6580 | . . . . 5 ⊢ Fun 𝐹 |
| 31 | 30 | a1i 11 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → Fun 𝐹) |
| 32 | funisfsupp 9384 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ (𝑅 ↑m 𝑉) ∧ 0 ∈ V) → (𝐹 finSupp 0 ↔ (𝐹 supp 0 ) ∈ Fin)) | |
| 33 | 31, 12, 18, 32 | syl3anc 1373 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 finSupp 0 ↔ (𝐹 supp 0 ) ∈ Fin)) |
| 34 | 29, 33 | mpbird 257 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹 finSupp 0 ) |
| 35 | lincvalsc0.b | . . 3 ⊢ 𝐵 = (Base‘𝑀) | |
| 36 | lincvalsc0.z | . . 3 ⊢ 𝑍 = (0g‘𝑀) | |
| 37 | 35, 1, 3, 36, 6 | lincvalsc0 48364 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹( linC ‘𝑀)𝑉) = 𝑍) |
| 38 | 12, 34, 37 | 3jca 1128 | 1 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ (𝑅 ↑m 𝑉) ∧ 𝐹 finSupp 0 ∧ (𝐹( linC ‘𝑀)𝑉) = 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∀wral 3052 {crab 3420 Vcvv 3464 ∅c0 4313 𝒫 cpw 4580 class class class wbr 5124 ↦ cmpt 5206 Fun wfun 6530 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 supp csupp 8164 ↑m cmap 8845 Fincfn 8964 finSupp cfsupp 9378 Basecbs 17233 Scalarcsca 17279 0gc0g 17458 LModclmod 20822 linC clinc 48347 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-map 8847 df-en 8965 df-fin 8968 df-fsupp 9379 df-seq 14025 df-0g 17460 df-gsum 17461 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-ring 20200 df-lmod 20824 df-linc 48349 |
| This theorem is referenced by: lcoel0 48371 |
| Copyright terms: Public domain | W3C validator |