Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcoc0 Structured version   Visualization version   GIF version

Theorem lcoc0 44457
 Description: Properties of a linear combination where all scalars are 0. (Contributed by AV, 12-Apr-2019.) (Revised by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
lincvalsc0.b 𝐵 = (Base‘𝑀)
lincvalsc0.s 𝑆 = (Scalar‘𝑀)
lincvalsc0.0 0 = (0g𝑆)
lincvalsc0.z 𝑍 = (0g𝑀)
lincvalsc0.f 𝐹 = (𝑥𝑉0 )
lcoc0.r 𝑅 = (Base‘𝑆)
Assertion
Ref Expression
lcoc0 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ (𝑅m 𝑉) ∧ 𝐹 finSupp 0 ∧ (𝐹( linC ‘𝑀)𝑉) = 𝑍))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑀   𝑥,𝑉   𝑥, 0   𝑥,𝐹   𝑥,𝑅
Allowed substitution hints:   𝑆(𝑥)   𝑍(𝑥)

Proof of Theorem lcoc0
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lincvalsc0.s . . . . . 6 𝑆 = (Scalar‘𝑀)
2 lcoc0.r . . . . . 6 𝑅 = (Base‘𝑆)
3 lincvalsc0.0 . . . . . 6 0 = (0g𝑆)
41, 2, 3lmod0cl 19652 . . . . 5 (𝑀 ∈ LMod → 0𝑅)
54ad2antrr 724 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥𝑉) → 0𝑅)
6 lincvalsc0.f . . . 4 𝐹 = (𝑥𝑉0 )
75, 6fmptd 6871 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹:𝑉𝑅)
82fvexi 6677 . . . . 5 𝑅 ∈ V
98a1i 11 . . . 4 (𝑀 ∈ LMod → 𝑅 ∈ V)
10 elmapg 8411 . . . 4 ((𝑅 ∈ V ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ (𝑅m 𝑉) ↔ 𝐹:𝑉𝑅))
119, 10sylan 582 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ (𝑅m 𝑉) ↔ 𝐹:𝑉𝑅))
127, 11mpbird 259 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹 ∈ (𝑅m 𝑉))
13 eqidd 2820 . . . . . . 7 (𝑥 = 𝑣0 = 0 )
1413cbvmptv 5160 . . . . . 6 (𝑥𝑉0 ) = (𝑣𝑉0 )
156, 14eqtri 2842 . . . . 5 𝐹 = (𝑣𝑉0 )
16 simpr 487 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝑉 ∈ 𝒫 𝐵)
173fvexi 6677 . . . . . 6 0 ∈ V
1817a1i 11 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 0 ∈ V)
1917a1i 11 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → 0 ∈ V)
2015, 16, 18, 19mptsuppd 7845 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 supp 0 ) = {𝑣𝑉00 })
21 neirr 3023 . . . . . . . 8 ¬ 00
2221a1i 11 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → ¬ 00 )
2322ralrimivw 3181 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → ∀𝑣𝑉 ¬ 00 )
24 rabeq0 4336 . . . . . 6 ({𝑣𝑉00 } = ∅ ↔ ∀𝑣𝑉 ¬ 00 )
2523, 24sylibr 236 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → {𝑣𝑉00 } = ∅)
26 0fin 8738 . . . . . 6 ∅ ∈ Fin
2726a1i 11 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → ∅ ∈ Fin)
2825, 27eqeltrd 2911 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → {𝑣𝑉00 } ∈ Fin)
2920, 28eqeltrd 2911 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 supp 0 ) ∈ Fin)
306funmpt2 6387 . . . . 5 Fun 𝐹
3130a1i 11 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → Fun 𝐹)
32 funisfsupp 8830 . . . 4 ((Fun 𝐹𝐹 ∈ (𝑅m 𝑉) ∧ 0 ∈ V) → (𝐹 finSupp 0 ↔ (𝐹 supp 0 ) ∈ Fin))
3331, 12, 18, 32syl3anc 1365 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 finSupp 0 ↔ (𝐹 supp 0 ) ∈ Fin))
3429, 33mpbird 259 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹 finSupp 0 )
35 lincvalsc0.b . . 3 𝐵 = (Base‘𝑀)
36 lincvalsc0.z . . 3 𝑍 = (0g𝑀)
3735, 1, 3, 36, 6lincvalsc0 44456 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹( linC ‘𝑀)𝑉) = 𝑍)
3812, 34, 373jca 1122 1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ (𝑅m 𝑉) ∧ 𝐹 finSupp 0 ∧ (𝐹( linC ‘𝑀)𝑉) = 𝑍))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 208   ∧ wa 398   ∧ w3a 1081   = wceq 1530   ∈ wcel 2107   ≠ wne 3014  ∀wral 3136  {crab 3140  Vcvv 3493  ∅c0 4289  𝒫 cpw 4537   class class class wbr 5057   ↦ cmpt 5137  Fun wfun 6342  ⟶wf 6344  ‘cfv 6348  (class class class)co 7148   supp csupp 7822   ↑m cmap 8398  Fincfn 8501   finSupp cfsupp 8825  Basecbs 16475  Scalarcsca 16560  0gc0g 16705  LModclmod 19626   linC clinc 44439 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-map 8400  df-en 8502  df-fin 8505  df-fsupp 8826  df-seq 13362  df-0g 16707  df-gsum 16708  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-ring 19291  df-lmod 19628  df-linc 44441 This theorem is referenced by:  lcoel0  44463
 Copyright terms: Public domain W3C validator