Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcoc0 Structured version   Visualization version   GIF version

Theorem lcoc0 45297
Description: Properties of a linear combination where all scalars are 0. (Contributed by AV, 12-Apr-2019.) (Revised by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
lincvalsc0.b 𝐵 = (Base‘𝑀)
lincvalsc0.s 𝑆 = (Scalar‘𝑀)
lincvalsc0.0 0 = (0g𝑆)
lincvalsc0.z 𝑍 = (0g𝑀)
lincvalsc0.f 𝐹 = (𝑥𝑉0 )
lcoc0.r 𝑅 = (Base‘𝑆)
Assertion
Ref Expression
lcoc0 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ (𝑅m 𝑉) ∧ 𝐹 finSupp 0 ∧ (𝐹( linC ‘𝑀)𝑉) = 𝑍))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑀   𝑥,𝑉   𝑥, 0   𝑥,𝐹   𝑥,𝑅
Allowed substitution hints:   𝑆(𝑥)   𝑍(𝑥)

Proof of Theorem lcoc0
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lincvalsc0.s . . . . . 6 𝑆 = (Scalar‘𝑀)
2 lcoc0.r . . . . . 6 𝑅 = (Base‘𝑆)
3 lincvalsc0.0 . . . . . 6 0 = (0g𝑆)
41, 2, 3lmod0cl 19779 . . . . 5 (𝑀 ∈ LMod → 0𝑅)
54ad2antrr 726 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥𝑉) → 0𝑅)
6 lincvalsc0.f . . . 4 𝐹 = (𝑥𝑉0 )
75, 6fmptd 6888 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹:𝑉𝑅)
82fvexi 6688 . . . . 5 𝑅 ∈ V
98a1i 11 . . . 4 (𝑀 ∈ LMod → 𝑅 ∈ V)
10 elmapg 8450 . . . 4 ((𝑅 ∈ V ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ (𝑅m 𝑉) ↔ 𝐹:𝑉𝑅))
119, 10sylan 583 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ (𝑅m 𝑉) ↔ 𝐹:𝑉𝑅))
127, 11mpbird 260 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹 ∈ (𝑅m 𝑉))
13 eqidd 2739 . . . . . . 7 (𝑥 = 𝑣0 = 0 )
1413cbvmptv 5133 . . . . . 6 (𝑥𝑉0 ) = (𝑣𝑉0 )
156, 14eqtri 2761 . . . . 5 𝐹 = (𝑣𝑉0 )
16 simpr 488 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝑉 ∈ 𝒫 𝐵)
173fvexi 6688 . . . . . 6 0 ∈ V
1817a1i 11 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 0 ∈ V)
1917a1i 11 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → 0 ∈ V)
2015, 16, 18, 19mptsuppd 7882 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 supp 0 ) = {𝑣𝑉00 })
21 neirr 2943 . . . . . . . 8 ¬ 00
2221a1i 11 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → ¬ 00 )
2322ralrimivw 3097 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → ∀𝑣𝑉 ¬ 00 )
24 rabeq0 4273 . . . . . 6 ({𝑣𝑉00 } = ∅ ↔ ∀𝑣𝑉 ¬ 00 )
2523, 24sylibr 237 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → {𝑣𝑉00 } = ∅)
26 0fin 8770 . . . . . 6 ∅ ∈ Fin
2726a1i 11 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → ∅ ∈ Fin)
2825, 27eqeltrd 2833 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → {𝑣𝑉00 } ∈ Fin)
2920, 28eqeltrd 2833 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 supp 0 ) ∈ Fin)
306funmpt2 6378 . . . . 5 Fun 𝐹
3130a1i 11 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → Fun 𝐹)
32 funisfsupp 8911 . . . 4 ((Fun 𝐹𝐹 ∈ (𝑅m 𝑉) ∧ 0 ∈ V) → (𝐹 finSupp 0 ↔ (𝐹 supp 0 ) ∈ Fin))
3331, 12, 18, 32syl3anc 1372 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 finSupp 0 ↔ (𝐹 supp 0 ) ∈ Fin))
3429, 33mpbird 260 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹 finSupp 0 )
35 lincvalsc0.b . . 3 𝐵 = (Base‘𝑀)
36 lincvalsc0.z . . 3 𝑍 = (0g𝑀)
3735, 1, 3, 36, 6lincvalsc0 45296 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹( linC ‘𝑀)𝑉) = 𝑍)
3812, 34, 373jca 1129 1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ (𝑅m 𝑉) ∧ 𝐹 finSupp 0 ∧ (𝐹( linC ‘𝑀)𝑉) = 𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wne 2934  wral 3053  {crab 3057  Vcvv 3398  c0 4211  𝒫 cpw 4488   class class class wbr 5030  cmpt 5110  Fun wfun 6333  wf 6335  cfv 6339  (class class class)co 7170   supp csupp 7856  m cmap 8437  Fincfn 8555   finSupp cfsupp 8906  Basecbs 16586  Scalarcsca 16671  0gc0g 16816  LModclmod 19753   linC clinc 45279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1st 7714  df-2nd 7715  df-supp 7857  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-map 8439  df-en 8556  df-fin 8559  df-fsupp 8907  df-seq 13461  df-0g 16818  df-gsum 16819  df-mgm 17968  df-sgrp 18017  df-mnd 18028  df-grp 18222  df-ring 19418  df-lmod 19755  df-linc 45281
This theorem is referenced by:  lcoel0  45303
  Copyright terms: Public domain W3C validator