![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcoc0 | Structured version Visualization version GIF version |
Description: Properties of a linear combination where all scalars are 0. (Contributed by AV, 12-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
Ref | Expression |
---|---|
lincvalsc0.b | ⊢ 𝐵 = (Base‘𝑀) |
lincvalsc0.s | ⊢ 𝑆 = (Scalar‘𝑀) |
lincvalsc0.0 | ⊢ 0 = (0g‘𝑆) |
lincvalsc0.z | ⊢ 𝑍 = (0g‘𝑀) |
lincvalsc0.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ 0 ) |
lcoc0.r | ⊢ 𝑅 = (Base‘𝑆) |
Ref | Expression |
---|---|
lcoc0 | ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ (𝑅 ↑m 𝑉) ∧ 𝐹 finSupp 0 ∧ (𝐹( linC ‘𝑀)𝑉) = 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lincvalsc0.s | . . . . . 6 ⊢ 𝑆 = (Scalar‘𝑀) | |
2 | lcoc0.r | . . . . . 6 ⊢ 𝑅 = (Base‘𝑆) | |
3 | lincvalsc0.0 | . . . . . 6 ⊢ 0 = (0g‘𝑆) | |
4 | 1, 2, 3 | lmod0cl 20903 | . . . . 5 ⊢ (𝑀 ∈ LMod → 0 ∈ 𝑅) |
5 | 4 | ad2antrr 726 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝑉) → 0 ∈ 𝑅) |
6 | lincvalsc0.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ 0 ) | |
7 | 5, 6 | fmptd 7134 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹:𝑉⟶𝑅) |
8 | 2 | fvexi 6921 | . . . . 5 ⊢ 𝑅 ∈ V |
9 | 8 | a1i 11 | . . . 4 ⊢ (𝑀 ∈ LMod → 𝑅 ∈ V) |
10 | elmapg 8878 | . . . 4 ⊢ ((𝑅 ∈ V ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ (𝑅 ↑m 𝑉) ↔ 𝐹:𝑉⟶𝑅)) | |
11 | 9, 10 | sylan 580 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ (𝑅 ↑m 𝑉) ↔ 𝐹:𝑉⟶𝑅)) |
12 | 7, 11 | mpbird 257 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹 ∈ (𝑅 ↑m 𝑉)) |
13 | eqidd 2736 | . . . . . . 7 ⊢ (𝑥 = 𝑣 → 0 = 0 ) | |
14 | 13 | cbvmptv 5261 | . . . . . 6 ⊢ (𝑥 ∈ 𝑉 ↦ 0 ) = (𝑣 ∈ 𝑉 ↦ 0 ) |
15 | 6, 14 | eqtri 2763 | . . . . 5 ⊢ 𝐹 = (𝑣 ∈ 𝑉 ↦ 0 ) |
16 | simpr 484 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝑉 ∈ 𝒫 𝐵) | |
17 | 3 | fvexi 6921 | . . . . . 6 ⊢ 0 ∈ V |
18 | 17 | a1i 11 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 0 ∈ V) |
19 | 17 | a1i 11 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣 ∈ 𝑉) → 0 ∈ V) |
20 | 15, 16, 18, 19 | mptsuppd 8211 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 supp 0 ) = {𝑣 ∈ 𝑉 ∣ 0 ≠ 0 }) |
21 | neirr 2947 | . . . . . . . 8 ⊢ ¬ 0 ≠ 0 | |
22 | 21 | a1i 11 | . . . . . . 7 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → ¬ 0 ≠ 0 ) |
23 | 22 | ralrimivw 3148 | . . . . . 6 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → ∀𝑣 ∈ 𝑉 ¬ 0 ≠ 0 ) |
24 | rabeq0 4394 | . . . . . 6 ⊢ ({𝑣 ∈ 𝑉 ∣ 0 ≠ 0 } = ∅ ↔ ∀𝑣 ∈ 𝑉 ¬ 0 ≠ 0 ) | |
25 | 23, 24 | sylibr 234 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → {𝑣 ∈ 𝑉 ∣ 0 ≠ 0 } = ∅) |
26 | 0fi 9081 | . . . . . 6 ⊢ ∅ ∈ Fin | |
27 | 26 | a1i 11 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → ∅ ∈ Fin) |
28 | 25, 27 | eqeltrd 2839 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → {𝑣 ∈ 𝑉 ∣ 0 ≠ 0 } ∈ Fin) |
29 | 20, 28 | eqeltrd 2839 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 supp 0 ) ∈ Fin) |
30 | 6 | funmpt2 6607 | . . . . 5 ⊢ Fun 𝐹 |
31 | 30 | a1i 11 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → Fun 𝐹) |
32 | funisfsupp 9405 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ (𝑅 ↑m 𝑉) ∧ 0 ∈ V) → (𝐹 finSupp 0 ↔ (𝐹 supp 0 ) ∈ Fin)) | |
33 | 31, 12, 18, 32 | syl3anc 1370 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 finSupp 0 ↔ (𝐹 supp 0 ) ∈ Fin)) |
34 | 29, 33 | mpbird 257 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹 finSupp 0 ) |
35 | lincvalsc0.b | . . 3 ⊢ 𝐵 = (Base‘𝑀) | |
36 | lincvalsc0.z | . . 3 ⊢ 𝑍 = (0g‘𝑀) | |
37 | 35, 1, 3, 36, 6 | lincvalsc0 48267 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹( linC ‘𝑀)𝑉) = 𝑍) |
38 | 12, 34, 37 | 3jca 1127 | 1 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ (𝑅 ↑m 𝑉) ∧ 𝐹 finSupp 0 ∧ (𝐹( linC ‘𝑀)𝑉) = 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∀wral 3059 {crab 3433 Vcvv 3478 ∅c0 4339 𝒫 cpw 4605 class class class wbr 5148 ↦ cmpt 5231 Fun wfun 6557 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 supp csupp 8184 ↑m cmap 8865 Fincfn 8984 finSupp cfsupp 9399 Basecbs 17245 Scalarcsca 17301 0gc0g 17486 LModclmod 20875 linC clinc 48250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-map 8867 df-en 8985 df-fin 8988 df-fsupp 9400 df-seq 14040 df-0g 17488 df-gsum 17489 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-ring 20253 df-lmod 20877 df-linc 48252 |
This theorem is referenced by: lcoel0 48274 |
Copyright terms: Public domain | W3C validator |