Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcoc0 Structured version   Visualization version   GIF version

Theorem lcoc0 44484
Description: Properties of a linear combination where all scalars are 0. (Contributed by AV, 12-Apr-2019.) (Revised by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
lincvalsc0.b 𝐵 = (Base‘𝑀)
lincvalsc0.s 𝑆 = (Scalar‘𝑀)
lincvalsc0.0 0 = (0g𝑆)
lincvalsc0.z 𝑍 = (0g𝑀)
lincvalsc0.f 𝐹 = (𝑥𝑉0 )
lcoc0.r 𝑅 = (Base‘𝑆)
Assertion
Ref Expression
lcoc0 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ (𝑅m 𝑉) ∧ 𝐹 finSupp 0 ∧ (𝐹( linC ‘𝑀)𝑉) = 𝑍))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑀   𝑥,𝑉   𝑥, 0   𝑥,𝐹   𝑥,𝑅
Allowed substitution hints:   𝑆(𝑥)   𝑍(𝑥)

Proof of Theorem lcoc0
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lincvalsc0.s . . . . . 6 𝑆 = (Scalar‘𝑀)
2 lcoc0.r . . . . . 6 𝑅 = (Base‘𝑆)
3 lincvalsc0.0 . . . . . 6 0 = (0g𝑆)
41, 2, 3lmod0cl 19663 . . . . 5 (𝑀 ∈ LMod → 0𝑅)
54ad2antrr 724 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥𝑉) → 0𝑅)
6 lincvalsc0.f . . . 4 𝐹 = (𝑥𝑉0 )
75, 6fmptd 6881 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹:𝑉𝑅)
82fvexi 6687 . . . . 5 𝑅 ∈ V
98a1i 11 . . . 4 (𝑀 ∈ LMod → 𝑅 ∈ V)
10 elmapg 8422 . . . 4 ((𝑅 ∈ V ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ (𝑅m 𝑉) ↔ 𝐹:𝑉𝑅))
119, 10sylan 582 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ (𝑅m 𝑉) ↔ 𝐹:𝑉𝑅))
127, 11mpbird 259 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹 ∈ (𝑅m 𝑉))
13 eqidd 2825 . . . . . . 7 (𝑥 = 𝑣0 = 0 )
1413cbvmptv 5172 . . . . . 6 (𝑥𝑉0 ) = (𝑣𝑉0 )
156, 14eqtri 2847 . . . . 5 𝐹 = (𝑣𝑉0 )
16 simpr 487 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝑉 ∈ 𝒫 𝐵)
173fvexi 6687 . . . . . 6 0 ∈ V
1817a1i 11 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 0 ∈ V)
1917a1i 11 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑣𝑉) → 0 ∈ V)
2015, 16, 18, 19mptsuppd 7856 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 supp 0 ) = {𝑣𝑉00 })
21 neirr 3028 . . . . . . . 8 ¬ 00
2221a1i 11 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → ¬ 00 )
2322ralrimivw 3186 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → ∀𝑣𝑉 ¬ 00 )
24 rabeq0 4341 . . . . . 6 ({𝑣𝑉00 } = ∅ ↔ ∀𝑣𝑉 ¬ 00 )
2523, 24sylibr 236 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → {𝑣𝑉00 } = ∅)
26 0fin 8749 . . . . . 6 ∅ ∈ Fin
2726a1i 11 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → ∅ ∈ Fin)
2825, 27eqeltrd 2916 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → {𝑣𝑉00 } ∈ Fin)
2920, 28eqeltrd 2916 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 supp 0 ) ∈ Fin)
306funmpt2 6397 . . . . 5 Fun 𝐹
3130a1i 11 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → Fun 𝐹)
32 funisfsupp 8841 . . . 4 ((Fun 𝐹𝐹 ∈ (𝑅m 𝑉) ∧ 0 ∈ V) → (𝐹 finSupp 0 ↔ (𝐹 supp 0 ) ∈ Fin))
3331, 12, 18, 32syl3anc 1367 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 finSupp 0 ↔ (𝐹 supp 0 ) ∈ Fin))
3429, 33mpbird 259 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → 𝐹 finSupp 0 )
35 lincvalsc0.b . . 3 𝐵 = (Base‘𝑀)
36 lincvalsc0.z . . 3 𝑍 = (0g𝑀)
3735, 1, 3, 36, 6lincvalsc0 44483 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹( linC ‘𝑀)𝑉) = 𝑍)
3812, 34, 373jca 1124 1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐹 ∈ (𝑅m 𝑉) ∧ 𝐹 finSupp 0 ∧ (𝐹( linC ‘𝑀)𝑉) = 𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wne 3019  wral 3141  {crab 3145  Vcvv 3497  c0 4294  𝒫 cpw 4542   class class class wbr 5069  cmpt 5149  Fun wfun 6352  wf 6354  cfv 6358  (class class class)co 7159   supp csupp 7833  m cmap 8409  Fincfn 8512   finSupp cfsupp 8836  Basecbs 16486  Scalarcsca 16571  0gc0g 16716  LModclmod 19637   linC clinc 44466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-map 8411  df-en 8513  df-fin 8516  df-fsupp 8837  df-seq 13373  df-0g 16718  df-gsum 16719  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-grp 18109  df-ring 19302  df-lmod 19639  df-linc 44468
This theorem is referenced by:  lcoel0  44490
  Copyright terms: Public domain W3C validator