MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrnloop0 Structured version   Visualization version   GIF version

Theorem umgrnloop0 28966
Description: A multigraph has no loops. (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 11-Dec-2020.)
Hypothesis
Ref Expression
umgrnloopv.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
umgrnloop0 (𝐺 ∈ UMGraph → {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) = {𝑈}} = ∅)
Distinct variable groups:   𝑥,𝐺   𝑥,𝑈
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem umgrnloop0
StepHypRef Expression
1 neirr 2939 . . . . 5 ¬ 𝑈𝑈
2 umgrnloopv.e . . . . . 6 𝐸 = (iEdg‘𝐺)
32umgrnloop 28965 . . . . 5 (𝐺 ∈ UMGraph → (∃𝑥 ∈ dom 𝐸(𝐸𝑥) = {𝑈, 𝑈} → 𝑈𝑈))
41, 3mtoi 198 . . . 4 (𝐺 ∈ UMGraph → ¬ ∃𝑥 ∈ dom 𝐸(𝐸𝑥) = {𝑈, 𝑈})
5 simpr 483 . . . . . . 7 ((𝐺 ∈ UMGraph ∧ (𝐸𝑥) = {𝑈}) → (𝐸𝑥) = {𝑈})
6 dfsn2 4637 . . . . . . 7 {𝑈} = {𝑈, 𝑈}
75, 6eqtrdi 2781 . . . . . 6 ((𝐺 ∈ UMGraph ∧ (𝐸𝑥) = {𝑈}) → (𝐸𝑥) = {𝑈, 𝑈})
87ex 411 . . . . 5 (𝐺 ∈ UMGraph → ((𝐸𝑥) = {𝑈} → (𝐸𝑥) = {𝑈, 𝑈}))
98reximdv 3160 . . . 4 (𝐺 ∈ UMGraph → (∃𝑥 ∈ dom 𝐸(𝐸𝑥) = {𝑈} → ∃𝑥 ∈ dom 𝐸(𝐸𝑥) = {𝑈, 𝑈}))
104, 9mtod 197 . . 3 (𝐺 ∈ UMGraph → ¬ ∃𝑥 ∈ dom 𝐸(𝐸𝑥) = {𝑈})
11 ralnex 3062 . . 3 (∀𝑥 ∈ dom 𝐸 ¬ (𝐸𝑥) = {𝑈} ↔ ¬ ∃𝑥 ∈ dom 𝐸(𝐸𝑥) = {𝑈})
1210, 11sylibr 233 . 2 (𝐺 ∈ UMGraph → ∀𝑥 ∈ dom 𝐸 ¬ (𝐸𝑥) = {𝑈})
13 rabeq0 4380 . 2 ({𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) = {𝑈}} = ∅ ↔ ∀𝑥 ∈ dom 𝐸 ¬ (𝐸𝑥) = {𝑈})
1412, 13sylibr 233 1 (𝐺 ∈ UMGraph → {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) = {𝑈}} = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1533  wcel 2098  wne 2930  wral 3051  wrex 3060  {crab 3419  c0 4318  {csn 4624  {cpr 4626  dom cdm 5672  cfv 6543  iEdgciedg 28854  UMGraphcumgr 28938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3959  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7991  df-2nd 7992  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-dju 9924  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-n0 12503  df-z 12589  df-uz 12853  df-fz 13517  df-hash 14322  df-uhgr 28915  df-upgr 28939  df-umgr 28940
This theorem is referenced by:  usgrnloop0  29061
  Copyright terms: Public domain W3C validator