MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrnloop0 Structured version   Visualization version   GIF version

Theorem umgrnloop0 28877
Description: A multigraph has no loops. (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 11-Dec-2020.)
Hypothesis
Ref Expression
umgrnloopv.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
umgrnloop0 (𝐺 ∈ UMGraph → {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) = {𝑈}} = ∅)
Distinct variable groups:   𝑥,𝐺   𝑥,𝑈
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem umgrnloop0
StepHypRef Expression
1 neirr 2943 . . . . 5 ¬ 𝑈𝑈
2 umgrnloopv.e . . . . . 6 𝐸 = (iEdg‘𝐺)
32umgrnloop 28876 . . . . 5 (𝐺 ∈ UMGraph → (∃𝑥 ∈ dom 𝐸(𝐸𝑥) = {𝑈, 𝑈} → 𝑈𝑈))
41, 3mtoi 198 . . . 4 (𝐺 ∈ UMGraph → ¬ ∃𝑥 ∈ dom 𝐸(𝐸𝑥) = {𝑈, 𝑈})
5 simpr 484 . . . . . . 7 ((𝐺 ∈ UMGraph ∧ (𝐸𝑥) = {𝑈}) → (𝐸𝑥) = {𝑈})
6 dfsn2 4636 . . . . . . 7 {𝑈} = {𝑈, 𝑈}
75, 6eqtrdi 2782 . . . . . 6 ((𝐺 ∈ UMGraph ∧ (𝐸𝑥) = {𝑈}) → (𝐸𝑥) = {𝑈, 𝑈})
87ex 412 . . . . 5 (𝐺 ∈ UMGraph → ((𝐸𝑥) = {𝑈} → (𝐸𝑥) = {𝑈, 𝑈}))
98reximdv 3164 . . . 4 (𝐺 ∈ UMGraph → (∃𝑥 ∈ dom 𝐸(𝐸𝑥) = {𝑈} → ∃𝑥 ∈ dom 𝐸(𝐸𝑥) = {𝑈, 𝑈}))
104, 9mtod 197 . . 3 (𝐺 ∈ UMGraph → ¬ ∃𝑥 ∈ dom 𝐸(𝐸𝑥) = {𝑈})
11 ralnex 3066 . . 3 (∀𝑥 ∈ dom 𝐸 ¬ (𝐸𝑥) = {𝑈} ↔ ¬ ∃𝑥 ∈ dom 𝐸(𝐸𝑥) = {𝑈})
1210, 11sylibr 233 . 2 (𝐺 ∈ UMGraph → ∀𝑥 ∈ dom 𝐸 ¬ (𝐸𝑥) = {𝑈})
13 rabeq0 4379 . 2 ({𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) = {𝑈}} = ∅ ↔ ∀𝑥 ∈ dom 𝐸 ¬ (𝐸𝑥) = {𝑈})
1412, 13sylibr 233 1 (𝐺 ∈ UMGraph → {𝑥 ∈ dom 𝐸 ∣ (𝐸𝑥) = {𝑈}} = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1533  wcel 2098  wne 2934  wral 3055  wrex 3064  {crab 3426  c0 4317  {csn 4623  {cpr 4625  dom cdm 5669  cfv 6537  iEdgciedg 28765  UMGraphcumgr 28849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-oadd 8471  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-dju 9898  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13491  df-hash 14296  df-uhgr 28826  df-upgr 28850  df-umgr 28851
This theorem is referenced by:  usgrnloop0  28969
  Copyright terms: Public domain W3C validator