![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > umgrnloop0 | Structured version Visualization version GIF version |
Description: A multigraph has no loops. (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 11-Dec-2020.) |
Ref | Expression |
---|---|
umgrnloopv.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
umgrnloop0 | ⊢ (𝐺 ∈ UMGraph → {𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) = {𝑈}} = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neirr 2951 | . . . . 5 ⊢ ¬ 𝑈 ≠ 𝑈 | |
2 | umgrnloopv.e | . . . . . 6 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | 2 | umgrnloop 29134 | . . . . 5 ⊢ (𝐺 ∈ UMGraph → (∃𝑥 ∈ dom 𝐸(𝐸‘𝑥) = {𝑈, 𝑈} → 𝑈 ≠ 𝑈)) |
4 | 1, 3 | mtoi 199 | . . . 4 ⊢ (𝐺 ∈ UMGraph → ¬ ∃𝑥 ∈ dom 𝐸(𝐸‘𝑥) = {𝑈, 𝑈}) |
5 | simpr 484 | . . . . . . 7 ⊢ ((𝐺 ∈ UMGraph ∧ (𝐸‘𝑥) = {𝑈}) → (𝐸‘𝑥) = {𝑈}) | |
6 | dfsn2 4661 | . . . . . . 7 ⊢ {𝑈} = {𝑈, 𝑈} | |
7 | 5, 6 | eqtrdi 2790 | . . . . . 6 ⊢ ((𝐺 ∈ UMGraph ∧ (𝐸‘𝑥) = {𝑈}) → (𝐸‘𝑥) = {𝑈, 𝑈}) |
8 | 7 | ex 412 | . . . . 5 ⊢ (𝐺 ∈ UMGraph → ((𝐸‘𝑥) = {𝑈} → (𝐸‘𝑥) = {𝑈, 𝑈})) |
9 | 8 | reximdv 3172 | . . . 4 ⊢ (𝐺 ∈ UMGraph → (∃𝑥 ∈ dom 𝐸(𝐸‘𝑥) = {𝑈} → ∃𝑥 ∈ dom 𝐸(𝐸‘𝑥) = {𝑈, 𝑈})) |
10 | 4, 9 | mtod 198 | . . 3 ⊢ (𝐺 ∈ UMGraph → ¬ ∃𝑥 ∈ dom 𝐸(𝐸‘𝑥) = {𝑈}) |
11 | ralnex 3074 | . . 3 ⊢ (∀𝑥 ∈ dom 𝐸 ¬ (𝐸‘𝑥) = {𝑈} ↔ ¬ ∃𝑥 ∈ dom 𝐸(𝐸‘𝑥) = {𝑈}) | |
12 | 10, 11 | sylibr 234 | . 2 ⊢ (𝐺 ∈ UMGraph → ∀𝑥 ∈ dom 𝐸 ¬ (𝐸‘𝑥) = {𝑈}) |
13 | rabeq0 4407 | . 2 ⊢ ({𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) = {𝑈}} = ∅ ↔ ∀𝑥 ∈ dom 𝐸 ¬ (𝐸‘𝑥) = {𝑈}) | |
14 | 12, 13 | sylibr 234 | 1 ⊢ (𝐺 ∈ UMGraph → {𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) = {𝑈}} = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2103 ≠ wne 2942 ∀wral 3063 ∃wrex 3072 {crab 3438 ∅c0 4347 {csn 4648 {cpr 4650 dom cdm 5699 ‘cfv 6572 iEdgciedg 29023 UMGraphcumgr 29107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-sep 5320 ax-nul 5327 ax-pow 5386 ax-pr 5450 ax-un 7766 ax-cnex 11236 ax-resscn 11237 ax-1cn 11238 ax-icn 11239 ax-addcl 11240 ax-addrcl 11241 ax-mulcl 11242 ax-mulrcl 11243 ax-mulcom 11244 ax-addass 11245 ax-mulass 11246 ax-distr 11247 ax-i2m1 11248 ax-1ne0 11249 ax-1rid 11250 ax-rnegex 11251 ax-rrecex 11252 ax-cnre 11253 ax-pre-lttri 11254 ax-pre-lttrn 11255 ax-pre-ltadd 11256 ax-pre-mulgt0 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-reu 3384 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-pss 3990 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4973 df-iun 5021 df-br 5170 df-opab 5232 df-mpt 5253 df-tr 5287 df-id 5597 df-eprel 5603 df-po 5611 df-so 5612 df-fr 5654 df-we 5656 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-pred 6331 df-ord 6397 df-on 6398 df-lim 6399 df-suc 6400 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-f1 6577 df-fo 6578 df-f1o 6579 df-fv 6580 df-riota 7401 df-ov 7448 df-oprab 7449 df-mpo 7450 df-om 7900 df-1st 8026 df-2nd 8027 df-frecs 8318 df-wrecs 8349 df-recs 8423 df-rdg 8462 df-1o 8518 df-oadd 8522 df-er 8759 df-en 9000 df-dom 9001 df-sdom 9002 df-fin 9003 df-dju 9966 df-card 10004 df-pnf 11322 df-mnf 11323 df-xr 11324 df-ltxr 11325 df-le 11326 df-sub 11518 df-neg 11519 df-nn 12290 df-2 12352 df-n0 12550 df-z 12636 df-uz 12900 df-fz 13564 df-hash 14376 df-uhgr 29084 df-upgr 29108 df-umgr 29109 |
This theorem is referenced by: usgrnloop0 29230 |
Copyright terms: Public domain | W3C validator |