![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > umgrnloop0 | Structured version Visualization version GIF version |
Description: A multigraph has no loops. (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 11-Dec-2020.) |
Ref | Expression |
---|---|
umgrnloopv.e | ⊢ 𝐸 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
umgrnloop0 | ⊢ (𝐺 ∈ UMGraph → {𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) = {𝑈}} = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neirr 2939 | . . . . 5 ⊢ ¬ 𝑈 ≠ 𝑈 | |
2 | umgrnloopv.e | . . . . . 6 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | 2 | umgrnloop 29039 | . . . . 5 ⊢ (𝐺 ∈ UMGraph → (∃𝑥 ∈ dom 𝐸(𝐸‘𝑥) = {𝑈, 𝑈} → 𝑈 ≠ 𝑈)) |
4 | 1, 3 | mtoi 198 | . . . 4 ⊢ (𝐺 ∈ UMGraph → ¬ ∃𝑥 ∈ dom 𝐸(𝐸‘𝑥) = {𝑈, 𝑈}) |
5 | simpr 483 | . . . . . . 7 ⊢ ((𝐺 ∈ UMGraph ∧ (𝐸‘𝑥) = {𝑈}) → (𝐸‘𝑥) = {𝑈}) | |
6 | dfsn2 4637 | . . . . . . 7 ⊢ {𝑈} = {𝑈, 𝑈} | |
7 | 5, 6 | eqtrdi 2782 | . . . . . 6 ⊢ ((𝐺 ∈ UMGraph ∧ (𝐸‘𝑥) = {𝑈}) → (𝐸‘𝑥) = {𝑈, 𝑈}) |
8 | 7 | ex 411 | . . . . 5 ⊢ (𝐺 ∈ UMGraph → ((𝐸‘𝑥) = {𝑈} → (𝐸‘𝑥) = {𝑈, 𝑈})) |
9 | 8 | reximdv 3160 | . . . 4 ⊢ (𝐺 ∈ UMGraph → (∃𝑥 ∈ dom 𝐸(𝐸‘𝑥) = {𝑈} → ∃𝑥 ∈ dom 𝐸(𝐸‘𝑥) = {𝑈, 𝑈})) |
10 | 4, 9 | mtod 197 | . . 3 ⊢ (𝐺 ∈ UMGraph → ¬ ∃𝑥 ∈ dom 𝐸(𝐸‘𝑥) = {𝑈}) |
11 | ralnex 3062 | . . 3 ⊢ (∀𝑥 ∈ dom 𝐸 ¬ (𝐸‘𝑥) = {𝑈} ↔ ¬ ∃𝑥 ∈ dom 𝐸(𝐸‘𝑥) = {𝑈}) | |
12 | 10, 11 | sylibr 233 | . 2 ⊢ (𝐺 ∈ UMGraph → ∀𝑥 ∈ dom 𝐸 ¬ (𝐸‘𝑥) = {𝑈}) |
13 | rabeq0 4383 | . 2 ⊢ ({𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) = {𝑈}} = ∅ ↔ ∀𝑥 ∈ dom 𝐸 ¬ (𝐸‘𝑥) = {𝑈}) | |
14 | 12, 13 | sylibr 233 | 1 ⊢ (𝐺 ∈ UMGraph → {𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) = {𝑈}} = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ∀wral 3051 ∃wrex 3060 {crab 3420 ∅c0 4323 {csn 4624 {cpr 4626 dom cdm 5673 ‘cfv 6544 iEdgciedg 28928 UMGraphcumgr 29012 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7736 ax-cnex 11203 ax-resscn 11204 ax-1cn 11205 ax-icn 11206 ax-addcl 11207 ax-addrcl 11208 ax-mulcl 11209 ax-mulrcl 11210 ax-mulcom 11211 ax-addass 11212 ax-mulass 11213 ax-distr 11214 ax-i2m1 11215 ax-1ne0 11216 ax-1rid 11217 ax-rnegex 11218 ax-rrecex 11219 ax-cnre 11220 ax-pre-lttri 11221 ax-pre-lttrn 11222 ax-pre-ltadd 11223 ax-pre-mulgt0 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3366 df-rab 3421 df-v 3465 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4324 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4907 df-int 4948 df-iun 4996 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6303 df-ord 6369 df-on 6370 df-lim 6371 df-suc 6372 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-oadd 8490 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-dju 9935 df-card 9973 df-pnf 11289 df-mnf 11290 df-xr 11291 df-ltxr 11292 df-le 11293 df-sub 11485 df-neg 11486 df-nn 12257 df-2 12319 df-n0 12517 df-z 12603 df-uz 12867 df-fz 13531 df-hash 14341 df-uhgr 28989 df-upgr 29013 df-umgr 29014 |
This theorem is referenced by: usgrnloop0 29135 |
Copyright terms: Public domain | W3C validator |