Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prtlem400 Structured version   Visualization version   GIF version

Theorem prtlem400 36447
Description: Lemma for prter2 36458 and also a property of partitions . (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
prtlem13.1 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
Assertion
Ref Expression
prtlem400 ¬ ∅ ∈ ( 𝐴 / )
Distinct variable group:   𝑥,𝑢,𝑦,𝐴
Allowed substitution hints:   (𝑥,𝑦,𝑢)

Proof of Theorem prtlem400
StepHypRef Expression
1 neirr 2961 . 2 ¬ ∅ ≠ ∅
2 prtlem13.1 . . . 4 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
32prtlem16 36446 . . 3 dom = 𝐴
4 elqsn0 8377 . . 3 ((dom = 𝐴 ∧ ∅ ∈ ( 𝐴 / )) → ∅ ≠ ∅)
53, 4mpan 690 . 2 (∅ ∈ ( 𝐴 / ) → ∅ ≠ ∅)
61, 5mto 200 1 ¬ ∅ ∈ ( 𝐴 / )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 400   = wceq 1539  wcel 2112  wne 2952  wrex 3072  c0 4226   cuni 4799  {copab 5095  dom cdm 5525   / cqs 8299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pr 5299
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-rab 3080  df-v 3412  df-sbc 3698  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-sn 4524  df-pr 4526  df-op 4530  df-uni 4800  df-br 5034  df-opab 5096  df-xp 5531  df-cnv 5533  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-ec 8302  df-qs 8306
This theorem is referenced by:  prter2  36458
  Copyright terms: Public domain W3C validator