Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > prtlem400 | Structured version Visualization version GIF version |
Description: Lemma for prter2 36458 and also a property of partitions . (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
prtlem13.1 | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} |
Ref | Expression |
---|---|
prtlem400 | ⊢ ¬ ∅ ∈ (∪ 𝐴 / ∼ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neirr 2961 | . 2 ⊢ ¬ ∅ ≠ ∅ | |
2 | prtlem13.1 | . . . 4 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} | |
3 | 2 | prtlem16 36446 | . . 3 ⊢ dom ∼ = ∪ 𝐴 |
4 | elqsn0 8377 | . . 3 ⊢ ((dom ∼ = ∪ 𝐴 ∧ ∅ ∈ (∪ 𝐴 / ∼ )) → ∅ ≠ ∅) | |
5 | 3, 4 | mpan 690 | . 2 ⊢ (∅ ∈ (∪ 𝐴 / ∼ ) → ∅ ≠ ∅) |
6 | 1, 5 | mto 200 | 1 ⊢ ¬ ∅ ∈ (∪ 𝐴 / ∼ ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ≠ wne 2952 ∃wrex 3072 ∅c0 4226 ∪ cuni 4799 {copab 5095 dom cdm 5525 / cqs 8299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pr 5299 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3698 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-br 5034 df-opab 5096 df-xp 5531 df-cnv 5533 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-ec 8302 df-qs 8306 |
This theorem is referenced by: prter2 36458 |
Copyright terms: Public domain | W3C validator |