Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prtlem400 Structured version   Visualization version   GIF version

Theorem prtlem400 38989
Description: Lemma for prter2 39000 and also a property of partitions . (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
prtlem13.1 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
Assertion
Ref Expression
prtlem400 ¬ ∅ ∈ ( 𝐴 / )
Distinct variable group:   𝑥,𝑢,𝑦,𝐴
Allowed substitution hints:   (𝑥,𝑦,𝑢)

Proof of Theorem prtlem400
StepHypRef Expression
1 neirr 2938 . 2 ¬ ∅ ≠ ∅
2 prtlem13.1 . . . 4 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
32prtlem16 38988 . . 3 dom = 𝐴
4 elqsn0 8714 . . 3 ((dom = 𝐴 ∧ ∅ ∈ ( 𝐴 / )) → ∅ ≠ ∅)
53, 4mpan 690 . 2 (∅ ∈ ( 𝐴 / ) → ∅ ≠ ∅)
61, 5mto 197 1 ¬ ∅ ∈ ( 𝐴 / )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1541  wcel 2113  wne 2929  wrex 3057  c0 4282   cuni 4858  {copab 5155  dom cdm 5619   / cqs 8627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-xp 5625  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ec 8630  df-qs 8634
This theorem is referenced by:  prter2  39000
  Copyright terms: Public domain W3C validator