Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > prtlem400 | Structured version Visualization version GIF version |
Description: Lemma for prter2 36822 and also a property of partitions . (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
prtlem13.1 | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} |
Ref | Expression |
---|---|
prtlem400 | ⊢ ¬ ∅ ∈ (∪ 𝐴 / ∼ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neirr 2951 | . 2 ⊢ ¬ ∅ ≠ ∅ | |
2 | prtlem13.1 | . . . 4 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} | |
3 | 2 | prtlem16 36810 | . . 3 ⊢ dom ∼ = ∪ 𝐴 |
4 | elqsn0 8533 | . . 3 ⊢ ((dom ∼ = ∪ 𝐴 ∧ ∅ ∈ (∪ 𝐴 / ∼ )) → ∅ ≠ ∅) | |
5 | 3, 4 | mpan 686 | . 2 ⊢ (∅ ∈ (∪ 𝐴 / ∼ ) → ∅ ≠ ∅) |
6 | 1, 5 | mto 196 | 1 ⊢ ¬ ∅ ∈ (∪ 𝐴 / ∼ ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∃wrex 3064 ∅c0 4253 ∪ cuni 4836 {copab 5132 dom cdm 5580 / cqs 8455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ec 8458 df-qs 8462 |
This theorem is referenced by: prter2 36822 |
Copyright terms: Public domain | W3C validator |