Users' Mathboxes Mathbox for Rodolfo Medina < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prtlem400 Structured version   Visualization version   GIF version

Theorem prtlem400 36884
Description: Lemma for prter2 36895 and also a property of partitions . (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
prtlem13.1 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
Assertion
Ref Expression
prtlem400 ¬ ∅ ∈ ( 𝐴 / )
Distinct variable group:   𝑥,𝑢,𝑦,𝐴
Allowed substitution hints:   (𝑥,𝑦,𝑢)

Proof of Theorem prtlem400
StepHypRef Expression
1 neirr 2952 . 2 ¬ ∅ ≠ ∅
2 prtlem13.1 . . . 4 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝐴 (𝑥𝑢𝑦𝑢)}
32prtlem16 36883 . . 3 dom = 𝐴
4 elqsn0 8575 . . 3 ((dom = 𝐴 ∧ ∅ ∈ ( 𝐴 / )) → ∅ ≠ ∅)
53, 4mpan 687 . 2 (∅ ∈ ( 𝐴 / ) → ∅ ≠ ∅)
61, 5mto 196 1 ¬ ∅ ∈ ( 𝐴 / )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396   = wceq 1539  wcel 2106  wne 2943  wrex 3065  c0 4256   cuni 4839  {copab 5136  dom cdm 5589   / cqs 8497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-xp 5595  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ec 8500  df-qs 8504
This theorem is referenced by:  prter2  36895
  Copyright terms: Public domain W3C validator