| Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > prtlem400 | Structured version Visualization version GIF version | ||
| Description: Lemma for prter2 38869 and also a property of partitions . (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| prtlem13.1 | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} |
| Ref | Expression |
|---|---|
| prtlem400 | ⊢ ¬ ∅ ∈ (∪ 𝐴 / ∼ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neirr 2935 | . 2 ⊢ ¬ ∅ ≠ ∅ | |
| 2 | prtlem13.1 | . . . 4 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} | |
| 3 | 2 | prtlem16 38857 | . . 3 ⊢ dom ∼ = ∪ 𝐴 |
| 4 | elqsn0 8759 | . . 3 ⊢ ((dom ∼ = ∪ 𝐴 ∧ ∅ ∈ (∪ 𝐴 / ∼ )) → ∅ ≠ ∅) | |
| 5 | 3, 4 | mpan 690 | . 2 ⊢ (∅ ∈ (∪ 𝐴 / ∼ ) → ∅ ≠ ∅) |
| 6 | 1, 5 | mto 197 | 1 ⊢ ¬ ∅ ∈ (∪ 𝐴 / ∼ ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∃wrex 3054 ∅c0 4298 ∪ cuni 4873 {copab 5171 dom cdm 5640 / cqs 8672 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-xp 5646 df-cnv 5648 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-ec 8675 df-qs 8679 |
| This theorem is referenced by: prter2 38869 |
| Copyright terms: Public domain | W3C validator |