![]() |
Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prtlem400 | Structured version Visualization version GIF version |
Description: Lemma for prter2 38592 and also a property of partitions . (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
prtlem13.1 | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} |
Ref | Expression |
---|---|
prtlem400 | ⊢ ¬ ∅ ∈ (∪ 𝐴 / ∼ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neirr 2939 | . 2 ⊢ ¬ ∅ ≠ ∅ | |
2 | prtlem13.1 | . . . 4 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} | |
3 | 2 | prtlem16 38580 | . . 3 ⊢ dom ∼ = ∪ 𝐴 |
4 | elqsn0 8807 | . . 3 ⊢ ((dom ∼ = ∪ 𝐴 ∧ ∅ ∈ (∪ 𝐴 / ∼ )) → ∅ ≠ ∅) | |
5 | 3, 4 | mpan 688 | . 2 ⊢ (∅ ∈ (∪ 𝐴 / ∼ ) → ∅ ≠ ∅) |
6 | 1, 5 | mto 196 | 1 ⊢ ¬ ∅ ∈ (∪ 𝐴 / ∼ ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ∃wrex 3060 ∅c0 4322 ∪ cuni 4905 {copab 5207 dom cdm 5674 / cqs 8725 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pr 5425 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5146 df-opab 5208 df-xp 5680 df-cnv 5682 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-ec 8728 df-qs 8732 |
This theorem is referenced by: prter2 38592 |
Copyright terms: Public domain | W3C validator |