| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > usgrnloop0ALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of usgrnloop0 29138, not using umgrnloop0 29043. (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 17-Oct-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| usgrnloopv.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| usgrnloop0ALT | ⊢ (𝐺 ∈ USGraph → {𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) = {𝑈}} = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neirr 2935 | . . . . 5 ⊢ ¬ 𝑈 ≠ 𝑈 | |
| 2 | usgrnloopv.e | . . . . . 6 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 3 | 2 | usgrnloop 29136 | . . . . 5 ⊢ (𝐺 ∈ USGraph → (∃𝑥 ∈ dom 𝐸(𝐸‘𝑥) = {𝑈, 𝑈} → 𝑈 ≠ 𝑈)) |
| 4 | 1, 3 | mtoi 199 | . . . 4 ⊢ (𝐺 ∈ USGraph → ¬ ∃𝑥 ∈ dom 𝐸(𝐸‘𝑥) = {𝑈, 𝑈}) |
| 5 | simpr 484 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ (𝐸‘𝑥) = {𝑈}) → (𝐸‘𝑥) = {𝑈}) | |
| 6 | dfsn2 4605 | . . . . . . 7 ⊢ {𝑈} = {𝑈, 𝑈} | |
| 7 | 5, 6 | eqtrdi 2781 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ (𝐸‘𝑥) = {𝑈}) → (𝐸‘𝑥) = {𝑈, 𝑈}) |
| 8 | 7 | ex 412 | . . . . 5 ⊢ (𝐺 ∈ USGraph → ((𝐸‘𝑥) = {𝑈} → (𝐸‘𝑥) = {𝑈, 𝑈})) |
| 9 | 8 | reximdv 3149 | . . . 4 ⊢ (𝐺 ∈ USGraph → (∃𝑥 ∈ dom 𝐸(𝐸‘𝑥) = {𝑈} → ∃𝑥 ∈ dom 𝐸(𝐸‘𝑥) = {𝑈, 𝑈})) |
| 10 | 4, 9 | mtod 198 | . . 3 ⊢ (𝐺 ∈ USGraph → ¬ ∃𝑥 ∈ dom 𝐸(𝐸‘𝑥) = {𝑈}) |
| 11 | ralnex 3056 | . . 3 ⊢ (∀𝑥 ∈ dom 𝐸 ¬ (𝐸‘𝑥) = {𝑈} ↔ ¬ ∃𝑥 ∈ dom 𝐸(𝐸‘𝑥) = {𝑈}) | |
| 12 | 10, 11 | sylibr 234 | . 2 ⊢ (𝐺 ∈ USGraph → ∀𝑥 ∈ dom 𝐸 ¬ (𝐸‘𝑥) = {𝑈}) |
| 13 | rabeq0 4354 | . 2 ⊢ ({𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) = {𝑈}} = ∅ ↔ ∀𝑥 ∈ dom 𝐸 ¬ (𝐸‘𝑥) = {𝑈}) | |
| 14 | 12, 13 | sylibr 234 | 1 ⊢ (𝐺 ∈ USGraph → {𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) = {𝑈}} = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 {crab 3408 ∅c0 4299 {csn 4592 {cpr 4594 dom cdm 5641 ‘cfv 6514 iEdgciedg 28931 USGraphcusgr 29083 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-oadd 8441 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-hash 14303 df-uhgr 28992 df-upgr 29016 df-umgr 29017 df-usgr 29085 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |