![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > padd02 | Structured version Visualization version GIF version |
Description: Projective subspace sum with an empty set. (Contributed by NM, 11-Jan-2012.) |
Ref | Expression |
---|---|
padd0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
padd0.p | ⊢ + = (+𝑃‘𝐾) |
Ref | Expression |
---|---|
padd02 | ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴) → (∅ + 𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 476 | . . . 4 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴) → 𝐾 ∈ 𝐵) | |
2 | 0ss 4198 | . . . . 5 ⊢ ∅ ⊆ 𝐴 | |
3 | 2 | a1i 11 | . . . 4 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴) → ∅ ⊆ 𝐴) |
4 | simpr 479 | . . . 4 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴) → 𝑋 ⊆ 𝐴) | |
5 | 1, 3, 4 | 3jca 1119 | . . 3 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝐾 ∈ 𝐵 ∧ ∅ ⊆ 𝐴 ∧ 𝑋 ⊆ 𝐴)) |
6 | neirr 2978 | . . . 4 ⊢ ¬ ∅ ≠ ∅ | |
7 | 6 | intnanr 483 | . . 3 ⊢ ¬ (∅ ≠ ∅ ∧ 𝑋 ≠ ∅) |
8 | padd0.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
9 | padd0.p | . . . 4 ⊢ + = (+𝑃‘𝐾) | |
10 | 8, 9 | paddval0 35966 | . . 3 ⊢ (((𝐾 ∈ 𝐵 ∧ ∅ ⊆ 𝐴 ∧ 𝑋 ⊆ 𝐴) ∧ ¬ (∅ ≠ ∅ ∧ 𝑋 ≠ ∅)) → (∅ + 𝑋) = (∅ ∪ 𝑋)) |
11 | 5, 7, 10 | sylancl 580 | . 2 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴) → (∅ + 𝑋) = (∅ ∪ 𝑋)) |
12 | uncom 3980 | . . 3 ⊢ (∅ ∪ 𝑋) = (𝑋 ∪ ∅) | |
13 | un0 4193 | . . 3 ⊢ (𝑋 ∪ ∅) = 𝑋 | |
14 | 12, 13 | eqtri 2802 | . 2 ⊢ (∅ ∪ 𝑋) = 𝑋 |
15 | 11, 14 | syl6eq 2830 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴) → (∅ + 𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ≠ wne 2969 ∪ cun 3790 ⊆ wss 3792 ∅c0 4141 ‘cfv 6135 (class class class)co 6922 Atomscatm 35419 +𝑃cpadd 35951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-1st 7445 df-2nd 7446 df-padd 35952 |
This theorem is referenced by: paddasslem17 35992 pmodlem2 36003 pmapjat1 36009 osumclN 36123 pexmidALTN 36134 |
Copyright terms: Public domain | W3C validator |