Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  padd02 Structured version   Visualization version   GIF version

Theorem padd02 35968
Description: Projective subspace sum with an empty set. (Contributed by NM, 11-Jan-2012.)
Hypotheses
Ref Expression
padd0.a 𝐴 = (Atoms‘𝐾)
padd0.p + = (+𝑃𝐾)
Assertion
Ref Expression
padd02 ((𝐾𝐵𝑋𝐴) → (∅ + 𝑋) = 𝑋)

Proof of Theorem padd02
StepHypRef Expression
1 simpl 476 . . . 4 ((𝐾𝐵𝑋𝐴) → 𝐾𝐵)
2 0ss 4198 . . . . 5 ∅ ⊆ 𝐴
32a1i 11 . . . 4 ((𝐾𝐵𝑋𝐴) → ∅ ⊆ 𝐴)
4 simpr 479 . . . 4 ((𝐾𝐵𝑋𝐴) → 𝑋𝐴)
51, 3, 43jca 1119 . . 3 ((𝐾𝐵𝑋𝐴) → (𝐾𝐵 ∧ ∅ ⊆ 𝐴𝑋𝐴))
6 neirr 2978 . . . 4 ¬ ∅ ≠ ∅
76intnanr 483 . . 3 ¬ (∅ ≠ ∅ ∧ 𝑋 ≠ ∅)
8 padd0.a . . . 4 𝐴 = (Atoms‘𝐾)
9 padd0.p . . . 4 + = (+𝑃𝐾)
108, 9paddval0 35966 . . 3 (((𝐾𝐵 ∧ ∅ ⊆ 𝐴𝑋𝐴) ∧ ¬ (∅ ≠ ∅ ∧ 𝑋 ≠ ∅)) → (∅ + 𝑋) = (∅ ∪ 𝑋))
115, 7, 10sylancl 580 . 2 ((𝐾𝐵𝑋𝐴) → (∅ + 𝑋) = (∅ ∪ 𝑋))
12 uncom 3980 . . 3 (∅ ∪ 𝑋) = (𝑋 ∪ ∅)
13 un0 4193 . . 3 (𝑋 ∪ ∅) = 𝑋
1412, 13eqtri 2802 . 2 (∅ ∪ 𝑋) = 𝑋
1511, 14syl6eq 2830 1 ((𝐾𝐵𝑋𝐴) → (∅ + 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386  w3a 1071   = wceq 1601  wcel 2107  wne 2969  cun 3790  wss 3792  c0 4141  cfv 6135  (class class class)co 6922  Atomscatm 35419  +𝑃cpadd 35951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-1st 7445  df-2nd 7446  df-padd 35952
This theorem is referenced by:  paddasslem17  35992  pmodlem2  36003  pmapjat1  36009  osumclN  36123  pexmidALTN  36134
  Copyright terms: Public domain W3C validator