Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  padd02 Structured version   Visualization version   GIF version

Theorem padd02 39814
Description: Projective subspace sum with an empty set. (Contributed by NM, 11-Jan-2012.)
Hypotheses
Ref Expression
padd0.a 𝐴 = (Atoms‘𝐾)
padd0.p + = (+𝑃𝐾)
Assertion
Ref Expression
padd02 ((𝐾𝐵𝑋𝐴) → (∅ + 𝑋) = 𝑋)

Proof of Theorem padd02
StepHypRef Expression
1 simpl 482 . . . 4 ((𝐾𝐵𝑋𝐴) → 𝐾𝐵)
2 0ss 4400 . . . . 5 ∅ ⊆ 𝐴
32a1i 11 . . . 4 ((𝐾𝐵𝑋𝐴) → ∅ ⊆ 𝐴)
4 simpr 484 . . . 4 ((𝐾𝐵𝑋𝐴) → 𝑋𝐴)
51, 3, 43jca 1129 . . 3 ((𝐾𝐵𝑋𝐴) → (𝐾𝐵 ∧ ∅ ⊆ 𝐴𝑋𝐴))
6 neirr 2949 . . . 4 ¬ ∅ ≠ ∅
76intnanr 487 . . 3 ¬ (∅ ≠ ∅ ∧ 𝑋 ≠ ∅)
8 padd0.a . . . 4 𝐴 = (Atoms‘𝐾)
9 padd0.p . . . 4 + = (+𝑃𝐾)
108, 9paddval0 39812 . . 3 (((𝐾𝐵 ∧ ∅ ⊆ 𝐴𝑋𝐴) ∧ ¬ (∅ ≠ ∅ ∧ 𝑋 ≠ ∅)) → (∅ + 𝑋) = (∅ ∪ 𝑋))
115, 7, 10sylancl 586 . 2 ((𝐾𝐵𝑋𝐴) → (∅ + 𝑋) = (∅ ∪ 𝑋))
12 uncom 4158 . . 3 (∅ ∪ 𝑋) = (𝑋 ∪ ∅)
13 un0 4394 . . 3 (𝑋 ∪ ∅) = 𝑋
1412, 13eqtri 2765 . 2 (∅ ∪ 𝑋) = 𝑋
1511, 14eqtrdi 2793 1 ((𝐾𝐵𝑋𝐴) → (∅ + 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  cun 3949  wss 3951  c0 4333  cfv 6561  (class class class)co 7431  Atomscatm 39264  +𝑃cpadd 39797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-padd 39798
This theorem is referenced by:  paddasslem17  39838  pmodlem2  39849  pmapjat1  39855  osumclN  39969  pexmidALTN  39980
  Copyright terms: Public domain W3C validator