Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrdiff Structured version   Visualization version   GIF version

Theorem irrdiff 36981
Description: The irrationals are exactly those reals that are a different distance from every rational. (Contributed by Jim Kingdon, 19-May-2024.)
Assertion
Ref Expression
irrdiff (𝐴 ∈ ℝ → (¬ 𝐴 ∈ ℚ ↔ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟)))))
Distinct variable group:   𝐴,𝑞,𝑟

Proof of Theorem irrdiff
StepHypRef Expression
1 simplll 773 . . . . 5 ((((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) → 𝐴 ∈ ℝ)
2 simpllr 774 . . . . 5 ((((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) → ¬ 𝐴 ∈ ℚ)
3 simplrl 775 . . . . 5 ((((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) → 𝑞 ∈ ℚ)
4 simplrr 776 . . . . 5 ((((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) → 𝑟 ∈ ℚ)
5 simpr 483 . . . . 5 ((((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) → 𝑞𝑟)
61, 2, 3, 4, 5irrdifflemf 36980 . . . 4 ((((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟)))
76ex 411 . . 3 (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) → (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟))))
87ralrimivva 3190 . 2 ((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) → ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟))))
9 simplr 767 . . . 4 (((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟)))) ∧ 𝐴 ∈ ℚ) → ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟))))
10 peano2rem 11573 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ)
11 recn 11244 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
12 1cnd 11255 . . . . . . . 8 (𝐴 ∈ ℝ → 1 ∈ ℂ)
1311, 12negsubd 11623 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 + -1) = (𝐴 − 1))
14 neg1lt0 12376 . . . . . . . . 9 -1 < 0
15 0lt1 11782 . . . . . . . . 9 0 < 1
16 neg1rr 12374 . . . . . . . . . 10 -1 ∈ ℝ
17 0re 11262 . . . . . . . . . 10 0 ∈ ℝ
18 1re 11260 . . . . . . . . . 10 1 ∈ ℝ
1916, 17, 18lttri 11386 . . . . . . . . 9 ((-1 < 0 ∧ 0 < 1) → -1 < 1)
2014, 15, 19mp2an 690 . . . . . . . 8 -1 < 1
2116a1i 11 . . . . . . . . 9 (𝐴 ∈ ℝ → -1 ∈ ℝ)
22 1red 11261 . . . . . . . . 9 (𝐴 ∈ ℝ → 1 ∈ ℝ)
23 id 22 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
2421, 22, 23ltadd2d 11416 . . . . . . . 8 (𝐴 ∈ ℝ → (-1 < 1 ↔ (𝐴 + -1) < (𝐴 + 1)))
2520, 24mpbii 232 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 + -1) < (𝐴 + 1))
2613, 25eqbrtrrd 5176 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 − 1) < (𝐴 + 1))
2710, 26ltned 11396 . . . . 5 (𝐴 ∈ ℝ → (𝐴 − 1) ≠ (𝐴 + 1))
2827ad2antrr 724 . . . 4 (((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟)))) ∧ 𝐴 ∈ ℚ) → (𝐴 − 1) ≠ (𝐴 + 1))
29 1z 12639 . . . . . . 7 1 ∈ ℤ
30 zq 12985 . . . . . . 7 (1 ∈ ℤ → 1 ∈ ℚ)
3129, 30ax-mp 5 . . . . . 6 1 ∈ ℚ
32 qsubcl 12999 . . . . . 6 ((𝐴 ∈ ℚ ∧ 1 ∈ ℚ) → (𝐴 − 1) ∈ ℚ)
3331, 32mpan2 689 . . . . 5 (𝐴 ∈ ℚ → (𝐴 − 1) ∈ ℚ)
34 qaddcl 12996 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 1 ∈ ℚ) → (𝐴 + 1) ∈ ℚ)
3531, 34mpan2 689 . . . . . 6 (𝐴 ∈ ℚ → (𝐴 + 1) ∈ ℚ)
3635adantl 480 . . . . 5 (((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟)))) ∧ 𝐴 ∈ ℚ) → (𝐴 + 1) ∈ ℚ)
37 simpl 481 . . . . . . . 8 ((𝑞 = (𝐴 − 1) ∧ 𝑟 = (𝐴 + 1)) → 𝑞 = (𝐴 − 1))
38 simpr 483 . . . . . . . 8 ((𝑞 = (𝐴 − 1) ∧ 𝑟 = (𝐴 + 1)) → 𝑟 = (𝐴 + 1))
3937, 38neeq12d 2991 . . . . . . 7 ((𝑞 = (𝐴 − 1) ∧ 𝑟 = (𝐴 + 1)) → (𝑞𝑟 ↔ (𝐴 − 1) ≠ (𝐴 + 1)))
40 oveq2 7431 . . . . . . . . . 10 (𝑞 = (𝐴 − 1) → (𝐴𝑞) = (𝐴 − (𝐴 − 1)))
4140adantr 479 . . . . . . . . 9 ((𝑞 = (𝐴 − 1) ∧ 𝑟 = (𝐴 + 1)) → (𝐴𝑞) = (𝐴 − (𝐴 − 1)))
4241fveq2d 6904 . . . . . . . 8 ((𝑞 = (𝐴 − 1) ∧ 𝑟 = (𝐴 + 1)) → (abs‘(𝐴𝑞)) = (abs‘(𝐴 − (𝐴 − 1))))
43 oveq2 7431 . . . . . . . . . 10 (𝑟 = (𝐴 + 1) → (𝐴𝑟) = (𝐴 − (𝐴 + 1)))
4443adantl 480 . . . . . . . . 9 ((𝑞 = (𝐴 − 1) ∧ 𝑟 = (𝐴 + 1)) → (𝐴𝑟) = (𝐴 − (𝐴 + 1)))
4544fveq2d 6904 . . . . . . . 8 ((𝑞 = (𝐴 − 1) ∧ 𝑟 = (𝐴 + 1)) → (abs‘(𝐴𝑟)) = (abs‘(𝐴 − (𝐴 + 1))))
4642, 45neeq12d 2991 . . . . . . 7 ((𝑞 = (𝐴 − 1) ∧ 𝑟 = (𝐴 + 1)) → ((abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟)) ↔ (abs‘(𝐴 − (𝐴 − 1))) ≠ (abs‘(𝐴 − (𝐴 + 1)))))
4739, 46imbi12d 343 . . . . . 6 ((𝑞 = (𝐴 − 1) ∧ 𝑟 = (𝐴 + 1)) → ((𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟))) ↔ ((𝐴 − 1) ≠ (𝐴 + 1) → (abs‘(𝐴 − (𝐴 − 1))) ≠ (abs‘(𝐴 − (𝐴 + 1))))))
4847rspc2gv 3617 . . . . 5 (((𝐴 − 1) ∈ ℚ ∧ (𝐴 + 1) ∈ ℚ) → (∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟))) → ((𝐴 − 1) ≠ (𝐴 + 1) → (abs‘(𝐴 − (𝐴 − 1))) ≠ (abs‘(𝐴 − (𝐴 + 1))))))
4933, 36, 48syl2an2 684 . . . 4 (((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟)))) ∧ 𝐴 ∈ ℚ) → (∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟))) → ((𝐴 − 1) ≠ (𝐴 + 1) → (abs‘(𝐴 − (𝐴 − 1))) ≠ (abs‘(𝐴 − (𝐴 + 1))))))
509, 28, 49mp2d 49 . . 3 (((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟)))) ∧ 𝐴 ∈ ℚ) → (abs‘(𝐴 − (𝐴 − 1))) ≠ (abs‘(𝐴 − (𝐴 + 1))))
51 neirr 2938 . . . . 5 ¬ (abs‘1) ≠ (abs‘1)
5211, 12nncand 11622 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 − (𝐴 − 1)) = 1)
5352fveq2d 6904 . . . . . 6 (𝐴 ∈ ℝ → (abs‘(𝐴 − (𝐴 − 1))) = (abs‘1))
5411, 12subnegd 11624 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 − -1) = (𝐴 + 1))
5554oveq2d 7439 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 − (𝐴 − -1)) = (𝐴 − (𝐴 + 1)))
5621recnd 11288 . . . . . . . . . 10 (𝐴 ∈ ℝ → -1 ∈ ℂ)
5711, 56nncand 11622 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 − (𝐴 − -1)) = -1)
5855, 57eqtr3d 2767 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 − (𝐴 + 1)) = -1)
5958fveq2d 6904 . . . . . . 7 (𝐴 ∈ ℝ → (abs‘(𝐴 − (𝐴 + 1))) = (abs‘-1))
6012absnegd 15449 . . . . . . 7 (𝐴 ∈ ℝ → (abs‘-1) = (abs‘1))
6159, 60eqtrd 2765 . . . . . 6 (𝐴 ∈ ℝ → (abs‘(𝐴 − (𝐴 + 1))) = (abs‘1))
6253, 61neeq12d 2991 . . . . 5 (𝐴 ∈ ℝ → ((abs‘(𝐴 − (𝐴 − 1))) ≠ (abs‘(𝐴 − (𝐴 + 1))) ↔ (abs‘1) ≠ (abs‘1)))
6351, 62mtbiri 326 . . . 4 (𝐴 ∈ ℝ → ¬ (abs‘(𝐴 − (𝐴 − 1))) ≠ (abs‘(𝐴 − (𝐴 + 1))))
6463ad2antrr 724 . . 3 (((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟)))) ∧ 𝐴 ∈ ℚ) → ¬ (abs‘(𝐴 − (𝐴 − 1))) ≠ (abs‘(𝐴 − (𝐴 + 1))))
6550, 64pm2.65da 815 . 2 ((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟)))) → ¬ 𝐴 ∈ ℚ)
668, 65impbida 799 1 (𝐴 ∈ ℝ → (¬ 𝐴 ∈ ℚ ↔ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wne 2929  wral 3050   class class class wbr 5152  cfv 6553  (class class class)co 7423  cr 11153  0cc0 11154  1c1 11155   + caddc 11157   < clt 11294  cmin 11490  -cneg 11491  cz 12605  cq 12979  abscabs 15234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745  ax-cnex 11210  ax-resscn 11211  ax-1cn 11212  ax-icn 11213  ax-addcl 11214  ax-addrcl 11215  ax-mulcl 11216  ax-mulrcl 11217  ax-mulcom 11218  ax-addass 11219  ax-mulass 11220  ax-distr 11221  ax-i2m1 11222  ax-1ne0 11223  ax-1rid 11224  ax-rnegex 11225  ax-rrecex 11226  ax-cnre 11227  ax-pre-lttri 11228  ax-pre-lttrn 11229  ax-pre-ltadd 11230  ax-pre-mulgt0 11231  ax-pre-sup 11232
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5579  df-eprel 5585  df-po 5593  df-so 5594  df-fr 5636  df-we 5638  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-pred 6311  df-ord 6378  df-on 6379  df-lim 6380  df-suc 6381  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7379  df-ov 7426  df-oprab 7427  df-mpo 7428  df-om 7876  df-1st 8002  df-2nd 8003  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-er 8733  df-en 8974  df-dom 8975  df-sdom 8976  df-sup 9481  df-pnf 11296  df-mnf 11297  df-xr 11298  df-ltxr 11299  df-le 11300  df-sub 11492  df-neg 11493  df-div 11918  df-nn 12260  df-2 12322  df-3 12323  df-n0 12520  df-z 12606  df-uz 12870  df-q 12980  df-rp 13024  df-seq 14017  df-exp 14077  df-cj 15099  df-re 15100  df-im 15101  df-sqrt 15235  df-abs 15236
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator