Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrdiff Structured version   Visualization version   GIF version

Theorem irrdiff 35787
Description: The irrationals are exactly those reals that are a different distance from every rational. (Contributed by Jim Kingdon, 19-May-2024.)
Assertion
Ref Expression
irrdiff (𝐴 ∈ ℝ → (¬ 𝐴 ∈ ℚ ↔ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟)))))
Distinct variable group:   𝐴,𝑞,𝑟

Proof of Theorem irrdiff
StepHypRef Expression
1 simplll 773 . . . . 5 ((((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) → 𝐴 ∈ ℝ)
2 simpllr 774 . . . . 5 ((((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) → ¬ 𝐴 ∈ ℚ)
3 simplrl 775 . . . . 5 ((((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) → 𝑞 ∈ ℚ)
4 simplrr 776 . . . . 5 ((((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) → 𝑟 ∈ ℚ)
5 simpr 485 . . . . 5 ((((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) → 𝑞𝑟)
61, 2, 3, 4, 5irrdifflemf 35786 . . . 4 ((((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟)))
76ex 413 . . 3 (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) → (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟))))
87ralrimivva 3197 . 2 ((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) → ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟))))
9 simplr 767 . . . 4 (((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟)))) ∧ 𝐴 ∈ ℚ) → ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟))))
10 peano2rem 11467 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ)
11 recn 11140 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
12 1cnd 11149 . . . . . . . 8 (𝐴 ∈ ℝ → 1 ∈ ℂ)
1311, 12negsubd 11517 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 + -1) = (𝐴 − 1))
14 neg1lt0 12269 . . . . . . . . 9 -1 < 0
15 0lt1 11676 . . . . . . . . 9 0 < 1
16 neg1rr 12267 . . . . . . . . . 10 -1 ∈ ℝ
17 0re 11156 . . . . . . . . . 10 0 ∈ ℝ
18 1re 11154 . . . . . . . . . 10 1 ∈ ℝ
1916, 17, 18lttri 11280 . . . . . . . . 9 ((-1 < 0 ∧ 0 < 1) → -1 < 1)
2014, 15, 19mp2an 690 . . . . . . . 8 -1 < 1
2116a1i 11 . . . . . . . . 9 (𝐴 ∈ ℝ → -1 ∈ ℝ)
22 1red 11155 . . . . . . . . 9 (𝐴 ∈ ℝ → 1 ∈ ℝ)
23 id 22 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
2421, 22, 23ltadd2d 11310 . . . . . . . 8 (𝐴 ∈ ℝ → (-1 < 1 ↔ (𝐴 + -1) < (𝐴 + 1)))
2520, 24mpbii 232 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 + -1) < (𝐴 + 1))
2613, 25eqbrtrrd 5129 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 − 1) < (𝐴 + 1))
2710, 26ltned 11290 . . . . 5 (𝐴 ∈ ℝ → (𝐴 − 1) ≠ (𝐴 + 1))
2827ad2antrr 724 . . . 4 (((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟)))) ∧ 𝐴 ∈ ℚ) → (𝐴 − 1) ≠ (𝐴 + 1))
29 1z 12532 . . . . . . 7 1 ∈ ℤ
30 zq 12878 . . . . . . 7 (1 ∈ ℤ → 1 ∈ ℚ)
3129, 30ax-mp 5 . . . . . 6 1 ∈ ℚ
32 qsubcl 12892 . . . . . 6 ((𝐴 ∈ ℚ ∧ 1 ∈ ℚ) → (𝐴 − 1) ∈ ℚ)
3331, 32mpan2 689 . . . . 5 (𝐴 ∈ ℚ → (𝐴 − 1) ∈ ℚ)
34 qaddcl 12889 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 1 ∈ ℚ) → (𝐴 + 1) ∈ ℚ)
3531, 34mpan2 689 . . . . . 6 (𝐴 ∈ ℚ → (𝐴 + 1) ∈ ℚ)
3635adantl 482 . . . . 5 (((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟)))) ∧ 𝐴 ∈ ℚ) → (𝐴 + 1) ∈ ℚ)
37 simpl 483 . . . . . . . 8 ((𝑞 = (𝐴 − 1) ∧ 𝑟 = (𝐴 + 1)) → 𝑞 = (𝐴 − 1))
38 simpr 485 . . . . . . . 8 ((𝑞 = (𝐴 − 1) ∧ 𝑟 = (𝐴 + 1)) → 𝑟 = (𝐴 + 1))
3937, 38neeq12d 3005 . . . . . . 7 ((𝑞 = (𝐴 − 1) ∧ 𝑟 = (𝐴 + 1)) → (𝑞𝑟 ↔ (𝐴 − 1) ≠ (𝐴 + 1)))
40 oveq2 7364 . . . . . . . . . 10 (𝑞 = (𝐴 − 1) → (𝐴𝑞) = (𝐴 − (𝐴 − 1)))
4140adantr 481 . . . . . . . . 9 ((𝑞 = (𝐴 − 1) ∧ 𝑟 = (𝐴 + 1)) → (𝐴𝑞) = (𝐴 − (𝐴 − 1)))
4241fveq2d 6846 . . . . . . . 8 ((𝑞 = (𝐴 − 1) ∧ 𝑟 = (𝐴 + 1)) → (abs‘(𝐴𝑞)) = (abs‘(𝐴 − (𝐴 − 1))))
43 oveq2 7364 . . . . . . . . . 10 (𝑟 = (𝐴 + 1) → (𝐴𝑟) = (𝐴 − (𝐴 + 1)))
4443adantl 482 . . . . . . . . 9 ((𝑞 = (𝐴 − 1) ∧ 𝑟 = (𝐴 + 1)) → (𝐴𝑟) = (𝐴 − (𝐴 + 1)))
4544fveq2d 6846 . . . . . . . 8 ((𝑞 = (𝐴 − 1) ∧ 𝑟 = (𝐴 + 1)) → (abs‘(𝐴𝑟)) = (abs‘(𝐴 − (𝐴 + 1))))
4642, 45neeq12d 3005 . . . . . . 7 ((𝑞 = (𝐴 − 1) ∧ 𝑟 = (𝐴 + 1)) → ((abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟)) ↔ (abs‘(𝐴 − (𝐴 − 1))) ≠ (abs‘(𝐴 − (𝐴 + 1)))))
4739, 46imbi12d 344 . . . . . 6 ((𝑞 = (𝐴 − 1) ∧ 𝑟 = (𝐴 + 1)) → ((𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟))) ↔ ((𝐴 − 1) ≠ (𝐴 + 1) → (abs‘(𝐴 − (𝐴 − 1))) ≠ (abs‘(𝐴 − (𝐴 + 1))))))
4847rspc2gv 3589 . . . . 5 (((𝐴 − 1) ∈ ℚ ∧ (𝐴 + 1) ∈ ℚ) → (∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟))) → ((𝐴 − 1) ≠ (𝐴 + 1) → (abs‘(𝐴 − (𝐴 − 1))) ≠ (abs‘(𝐴 − (𝐴 + 1))))))
4933, 36, 48syl2an2 684 . . . 4 (((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟)))) ∧ 𝐴 ∈ ℚ) → (∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟))) → ((𝐴 − 1) ≠ (𝐴 + 1) → (abs‘(𝐴 − (𝐴 − 1))) ≠ (abs‘(𝐴 − (𝐴 + 1))))))
509, 28, 49mp2d 49 . . 3 (((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟)))) ∧ 𝐴 ∈ ℚ) → (abs‘(𝐴 − (𝐴 − 1))) ≠ (abs‘(𝐴 − (𝐴 + 1))))
51 neirr 2952 . . . . 5 ¬ (abs‘1) ≠ (abs‘1)
5211, 12nncand 11516 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 − (𝐴 − 1)) = 1)
5352fveq2d 6846 . . . . . 6 (𝐴 ∈ ℝ → (abs‘(𝐴 − (𝐴 − 1))) = (abs‘1))
5411, 12subnegd 11518 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 − -1) = (𝐴 + 1))
5554oveq2d 7372 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 − (𝐴 − -1)) = (𝐴 − (𝐴 + 1)))
5621recnd 11182 . . . . . . . . . 10 (𝐴 ∈ ℝ → -1 ∈ ℂ)
5711, 56nncand 11516 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 − (𝐴 − -1)) = -1)
5855, 57eqtr3d 2778 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 − (𝐴 + 1)) = -1)
5958fveq2d 6846 . . . . . . 7 (𝐴 ∈ ℝ → (abs‘(𝐴 − (𝐴 + 1))) = (abs‘-1))
6012absnegd 15333 . . . . . . 7 (𝐴 ∈ ℝ → (abs‘-1) = (abs‘1))
6159, 60eqtrd 2776 . . . . . 6 (𝐴 ∈ ℝ → (abs‘(𝐴 − (𝐴 + 1))) = (abs‘1))
6253, 61neeq12d 3005 . . . . 5 (𝐴 ∈ ℝ → ((abs‘(𝐴 − (𝐴 − 1))) ≠ (abs‘(𝐴 − (𝐴 + 1))) ↔ (abs‘1) ≠ (abs‘1)))
6351, 62mtbiri 326 . . . 4 (𝐴 ∈ ℝ → ¬ (abs‘(𝐴 − (𝐴 − 1))) ≠ (abs‘(𝐴 − (𝐴 + 1))))
6463ad2antrr 724 . . 3 (((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟)))) ∧ 𝐴 ∈ ℚ) → ¬ (abs‘(𝐴 − (𝐴 − 1))) ≠ (abs‘(𝐴 − (𝐴 + 1))))
6550, 64pm2.65da 815 . 2 ((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟)))) → ¬ 𝐴 ∈ ℚ)
668, 65impbida 799 1 (𝐴 ∈ ℝ → (¬ 𝐴 ∈ ℚ ↔ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  wral 3064   class class class wbr 5105  cfv 6496  (class class class)co 7356  cr 11049  0cc0 11050  1c1 11051   + caddc 11053   < clt 11188  cmin 11384  -cneg 11385  cz 12498  cq 12872  abscabs 15118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7671  ax-cnex 11106  ax-resscn 11107  ax-1cn 11108  ax-icn 11109  ax-addcl 11110  ax-addrcl 11111  ax-mulcl 11112  ax-mulrcl 11113  ax-mulcom 11114  ax-addass 11115  ax-mulass 11116  ax-distr 11117  ax-i2m1 11118  ax-1ne0 11119  ax-1rid 11120  ax-rnegex 11121  ax-rrecex 11122  ax-cnre 11123  ax-pre-lttri 11124  ax-pre-lttrn 11125  ax-pre-ltadd 11126  ax-pre-mulgt0 11127  ax-pre-sup 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7312  df-ov 7359  df-oprab 7360  df-mpo 7361  df-om 7802  df-1st 7920  df-2nd 7921  df-frecs 8211  df-wrecs 8242  df-recs 8316  df-rdg 8355  df-er 8647  df-en 8883  df-dom 8884  df-sdom 8885  df-sup 9377  df-pnf 11190  df-mnf 11191  df-xr 11192  df-ltxr 11193  df-le 11194  df-sub 11386  df-neg 11387  df-div 11812  df-nn 12153  df-2 12215  df-3 12216  df-n0 12413  df-z 12499  df-uz 12763  df-q 12873  df-rp 12915  df-seq 13906  df-exp 13967  df-cj 14983  df-re 14984  df-im 14985  df-sqrt 15119  df-abs 15120
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator