Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrdiff Structured version   Visualization version   GIF version

Theorem irrdiff 37381
Description: The irrationals are exactly those reals that are a different distance from every rational. (Contributed by Jim Kingdon, 19-May-2024.)
Assertion
Ref Expression
irrdiff (𝐴 ∈ ℝ → (¬ 𝐴 ∈ ℚ ↔ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟)))))
Distinct variable group:   𝐴,𝑞,𝑟

Proof of Theorem irrdiff
StepHypRef Expression
1 simplll 774 . . . . 5 ((((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) → 𝐴 ∈ ℝ)
2 simpllr 775 . . . . 5 ((((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) → ¬ 𝐴 ∈ ℚ)
3 simplrl 776 . . . . 5 ((((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) → 𝑞 ∈ ℚ)
4 simplrr 777 . . . . 5 ((((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) → 𝑟 ∈ ℚ)
5 simpr 484 . . . . 5 ((((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) → 𝑞𝑟)
61, 2, 3, 4, 5irrdifflemf 37380 . . . 4 ((((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟)))
76ex 412 . . 3 (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) → (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟))))
87ralrimivva 3177 . 2 ((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) → ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟))))
9 simplr 768 . . . 4 (((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟)))) ∧ 𝐴 ∈ ℚ) → ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟))))
10 peano2rem 11438 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ)
11 recn 11106 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
12 1cnd 11117 . . . . . . . 8 (𝐴 ∈ ℝ → 1 ∈ ℂ)
1311, 12negsubd 11488 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 + -1) = (𝐴 − 1))
14 neg1lt0 12123 . . . . . . . . 9 -1 < 0
15 0lt1 11649 . . . . . . . . 9 0 < 1
16 neg1rr 12121 . . . . . . . . . 10 -1 ∈ ℝ
17 0re 11124 . . . . . . . . . 10 0 ∈ ℝ
18 1re 11122 . . . . . . . . . 10 1 ∈ ℝ
1916, 17, 18lttri 11249 . . . . . . . . 9 ((-1 < 0 ∧ 0 < 1) → -1 < 1)
2014, 15, 19mp2an 692 . . . . . . . 8 -1 < 1
2116a1i 11 . . . . . . . . 9 (𝐴 ∈ ℝ → -1 ∈ ℝ)
22 1red 11123 . . . . . . . . 9 (𝐴 ∈ ℝ → 1 ∈ ℝ)
23 id 22 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
2421, 22, 23ltadd2d 11279 . . . . . . . 8 (𝐴 ∈ ℝ → (-1 < 1 ↔ (𝐴 + -1) < (𝐴 + 1)))
2520, 24mpbii 233 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 + -1) < (𝐴 + 1))
2613, 25eqbrtrrd 5119 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 − 1) < (𝐴 + 1))
2710, 26ltned 11259 . . . . 5 (𝐴 ∈ ℝ → (𝐴 − 1) ≠ (𝐴 + 1))
2827ad2antrr 726 . . . 4 (((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟)))) ∧ 𝐴 ∈ ℚ) → (𝐴 − 1) ≠ (𝐴 + 1))
29 1z 12512 . . . . . . 7 1 ∈ ℤ
30 zq 12862 . . . . . . 7 (1 ∈ ℤ → 1 ∈ ℚ)
3129, 30ax-mp 5 . . . . . 6 1 ∈ ℚ
32 qsubcl 12876 . . . . . 6 ((𝐴 ∈ ℚ ∧ 1 ∈ ℚ) → (𝐴 − 1) ∈ ℚ)
3331, 32mpan2 691 . . . . 5 (𝐴 ∈ ℚ → (𝐴 − 1) ∈ ℚ)
34 qaddcl 12873 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 1 ∈ ℚ) → (𝐴 + 1) ∈ ℚ)
3531, 34mpan2 691 . . . . . 6 (𝐴 ∈ ℚ → (𝐴 + 1) ∈ ℚ)
3635adantl 481 . . . . 5 (((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟)))) ∧ 𝐴 ∈ ℚ) → (𝐴 + 1) ∈ ℚ)
37 simpl 482 . . . . . . . 8 ((𝑞 = (𝐴 − 1) ∧ 𝑟 = (𝐴 + 1)) → 𝑞 = (𝐴 − 1))
38 simpr 484 . . . . . . . 8 ((𝑞 = (𝐴 − 1) ∧ 𝑟 = (𝐴 + 1)) → 𝑟 = (𝐴 + 1))
3937, 38neeq12d 2991 . . . . . . 7 ((𝑞 = (𝐴 − 1) ∧ 𝑟 = (𝐴 + 1)) → (𝑞𝑟 ↔ (𝐴 − 1) ≠ (𝐴 + 1)))
40 oveq2 7363 . . . . . . . . . 10 (𝑞 = (𝐴 − 1) → (𝐴𝑞) = (𝐴 − (𝐴 − 1)))
4140adantr 480 . . . . . . . . 9 ((𝑞 = (𝐴 − 1) ∧ 𝑟 = (𝐴 + 1)) → (𝐴𝑞) = (𝐴 − (𝐴 − 1)))
4241fveq2d 6835 . . . . . . . 8 ((𝑞 = (𝐴 − 1) ∧ 𝑟 = (𝐴 + 1)) → (abs‘(𝐴𝑞)) = (abs‘(𝐴 − (𝐴 − 1))))
43 oveq2 7363 . . . . . . . . . 10 (𝑟 = (𝐴 + 1) → (𝐴𝑟) = (𝐴 − (𝐴 + 1)))
4443adantl 481 . . . . . . . . 9 ((𝑞 = (𝐴 − 1) ∧ 𝑟 = (𝐴 + 1)) → (𝐴𝑟) = (𝐴 − (𝐴 + 1)))
4544fveq2d 6835 . . . . . . . 8 ((𝑞 = (𝐴 − 1) ∧ 𝑟 = (𝐴 + 1)) → (abs‘(𝐴𝑟)) = (abs‘(𝐴 − (𝐴 + 1))))
4642, 45neeq12d 2991 . . . . . . 7 ((𝑞 = (𝐴 − 1) ∧ 𝑟 = (𝐴 + 1)) → ((abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟)) ↔ (abs‘(𝐴 − (𝐴 − 1))) ≠ (abs‘(𝐴 − (𝐴 + 1)))))
4739, 46imbi12d 344 . . . . . 6 ((𝑞 = (𝐴 − 1) ∧ 𝑟 = (𝐴 + 1)) → ((𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟))) ↔ ((𝐴 − 1) ≠ (𝐴 + 1) → (abs‘(𝐴 − (𝐴 − 1))) ≠ (abs‘(𝐴 − (𝐴 + 1))))))
4847rspc2gv 3584 . . . . 5 (((𝐴 − 1) ∈ ℚ ∧ (𝐴 + 1) ∈ ℚ) → (∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟))) → ((𝐴 − 1) ≠ (𝐴 + 1) → (abs‘(𝐴 − (𝐴 − 1))) ≠ (abs‘(𝐴 − (𝐴 + 1))))))
4933, 36, 48syl2an2 686 . . . 4 (((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟)))) ∧ 𝐴 ∈ ℚ) → (∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟))) → ((𝐴 − 1) ≠ (𝐴 + 1) → (abs‘(𝐴 − (𝐴 − 1))) ≠ (abs‘(𝐴 − (𝐴 + 1))))))
509, 28, 49mp2d 49 . . 3 (((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟)))) ∧ 𝐴 ∈ ℚ) → (abs‘(𝐴 − (𝐴 − 1))) ≠ (abs‘(𝐴 − (𝐴 + 1))))
51 neirr 2939 . . . . 5 ¬ (abs‘1) ≠ (abs‘1)
5211, 12nncand 11487 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 − (𝐴 − 1)) = 1)
5352fveq2d 6835 . . . . . 6 (𝐴 ∈ ℝ → (abs‘(𝐴 − (𝐴 − 1))) = (abs‘1))
5411, 12subnegd 11489 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 − -1) = (𝐴 + 1))
5554oveq2d 7371 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 − (𝐴 − -1)) = (𝐴 − (𝐴 + 1)))
5621recnd 11150 . . . . . . . . . 10 (𝐴 ∈ ℝ → -1 ∈ ℂ)
5711, 56nncand 11487 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 − (𝐴 − -1)) = -1)
5855, 57eqtr3d 2770 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 − (𝐴 + 1)) = -1)
5958fveq2d 6835 . . . . . . 7 (𝐴 ∈ ℝ → (abs‘(𝐴 − (𝐴 + 1))) = (abs‘-1))
6012absnegd 15369 . . . . . . 7 (𝐴 ∈ ℝ → (abs‘-1) = (abs‘1))
6159, 60eqtrd 2768 . . . . . 6 (𝐴 ∈ ℝ → (abs‘(𝐴 − (𝐴 + 1))) = (abs‘1))
6253, 61neeq12d 2991 . . . . 5 (𝐴 ∈ ℝ → ((abs‘(𝐴 − (𝐴 − 1))) ≠ (abs‘(𝐴 − (𝐴 + 1))) ↔ (abs‘1) ≠ (abs‘1)))
6351, 62mtbiri 327 . . . 4 (𝐴 ∈ ℝ → ¬ (abs‘(𝐴 − (𝐴 − 1))) ≠ (abs‘(𝐴 − (𝐴 + 1))))
6463ad2antrr 726 . . 3 (((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟)))) ∧ 𝐴 ∈ ℚ) → ¬ (abs‘(𝐴 − (𝐴 − 1))) ≠ (abs‘(𝐴 − (𝐴 + 1))))
6550, 64pm2.65da 816 . 2 ((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟)))) → ¬ 𝐴 ∈ ℚ)
668, 65impbida 800 1 (𝐴 ∈ ℝ → (¬ 𝐴 ∈ ℚ ↔ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2930  wral 3049   class class class wbr 5095  cfv 6489  (class class class)co 7355  cr 11015  0cc0 11016  1c1 11017   + caddc 11019   < clt 11156  cmin 11354  -cneg 11355  cz 12478  cq 12856  abscabs 15151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8879  df-dom 8880  df-sdom 8881  df-sup 9336  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-3 12199  df-n0 12392  df-z 12479  df-uz 12743  df-q 12857  df-rp 12901  df-seq 13919  df-exp 13979  df-cj 15016  df-re 15017  df-im 15018  df-sqrt 15152  df-abs 15153
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator