Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrdiff Structured version   Visualization version   GIF version

Theorem irrdiff 37314
Description: The irrationals are exactly those reals that are a different distance from every rational. (Contributed by Jim Kingdon, 19-May-2024.)
Assertion
Ref Expression
irrdiff (𝐴 ∈ ℝ → (¬ 𝐴 ∈ ℚ ↔ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟)))))
Distinct variable group:   𝐴,𝑞,𝑟

Proof of Theorem irrdiff
StepHypRef Expression
1 simplll 774 . . . . 5 ((((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) → 𝐴 ∈ ℝ)
2 simpllr 775 . . . . 5 ((((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) → ¬ 𝐴 ∈ ℚ)
3 simplrl 776 . . . . 5 ((((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) → 𝑞 ∈ ℚ)
4 simplrr 777 . . . . 5 ((((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) → 𝑟 ∈ ℚ)
5 simpr 484 . . . . 5 ((((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) → 𝑞𝑟)
61, 2, 3, 4, 5irrdifflemf 37313 . . . 4 ((((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) ∧ 𝑞𝑟) → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟)))
76ex 412 . . 3 (((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) ∧ (𝑞 ∈ ℚ ∧ 𝑟 ∈ ℚ)) → (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟))))
87ralrimivva 3180 . 2 ((𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℚ) → ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟))))
9 simplr 768 . . . 4 (((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟)))) ∧ 𝐴 ∈ ℚ) → ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟))))
10 peano2rem 11489 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 − 1) ∈ ℝ)
11 recn 11158 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
12 1cnd 11169 . . . . . . . 8 (𝐴 ∈ ℝ → 1 ∈ ℂ)
1311, 12negsubd 11539 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 + -1) = (𝐴 − 1))
14 neg1lt0 12174 . . . . . . . . 9 -1 < 0
15 0lt1 11700 . . . . . . . . 9 0 < 1
16 neg1rr 12172 . . . . . . . . . 10 -1 ∈ ℝ
17 0re 11176 . . . . . . . . . 10 0 ∈ ℝ
18 1re 11174 . . . . . . . . . 10 1 ∈ ℝ
1916, 17, 18lttri 11300 . . . . . . . . 9 ((-1 < 0 ∧ 0 < 1) → -1 < 1)
2014, 15, 19mp2an 692 . . . . . . . 8 -1 < 1
2116a1i 11 . . . . . . . . 9 (𝐴 ∈ ℝ → -1 ∈ ℝ)
22 1red 11175 . . . . . . . . 9 (𝐴 ∈ ℝ → 1 ∈ ℝ)
23 id 22 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ)
2421, 22, 23ltadd2d 11330 . . . . . . . 8 (𝐴 ∈ ℝ → (-1 < 1 ↔ (𝐴 + -1) < (𝐴 + 1)))
2520, 24mpbii 233 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 + -1) < (𝐴 + 1))
2613, 25eqbrtrrd 5131 . . . . . 6 (𝐴 ∈ ℝ → (𝐴 − 1) < (𝐴 + 1))
2710, 26ltned 11310 . . . . 5 (𝐴 ∈ ℝ → (𝐴 − 1) ≠ (𝐴 + 1))
2827ad2antrr 726 . . . 4 (((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟)))) ∧ 𝐴 ∈ ℚ) → (𝐴 − 1) ≠ (𝐴 + 1))
29 1z 12563 . . . . . . 7 1 ∈ ℤ
30 zq 12913 . . . . . . 7 (1 ∈ ℤ → 1 ∈ ℚ)
3129, 30ax-mp 5 . . . . . 6 1 ∈ ℚ
32 qsubcl 12927 . . . . . 6 ((𝐴 ∈ ℚ ∧ 1 ∈ ℚ) → (𝐴 − 1) ∈ ℚ)
3331, 32mpan2 691 . . . . 5 (𝐴 ∈ ℚ → (𝐴 − 1) ∈ ℚ)
34 qaddcl 12924 . . . . . . 7 ((𝐴 ∈ ℚ ∧ 1 ∈ ℚ) → (𝐴 + 1) ∈ ℚ)
3531, 34mpan2 691 . . . . . 6 (𝐴 ∈ ℚ → (𝐴 + 1) ∈ ℚ)
3635adantl 481 . . . . 5 (((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟)))) ∧ 𝐴 ∈ ℚ) → (𝐴 + 1) ∈ ℚ)
37 simpl 482 . . . . . . . 8 ((𝑞 = (𝐴 − 1) ∧ 𝑟 = (𝐴 + 1)) → 𝑞 = (𝐴 − 1))
38 simpr 484 . . . . . . . 8 ((𝑞 = (𝐴 − 1) ∧ 𝑟 = (𝐴 + 1)) → 𝑟 = (𝐴 + 1))
3937, 38neeq12d 2986 . . . . . . 7 ((𝑞 = (𝐴 − 1) ∧ 𝑟 = (𝐴 + 1)) → (𝑞𝑟 ↔ (𝐴 − 1) ≠ (𝐴 + 1)))
40 oveq2 7395 . . . . . . . . . 10 (𝑞 = (𝐴 − 1) → (𝐴𝑞) = (𝐴 − (𝐴 − 1)))
4140adantr 480 . . . . . . . . 9 ((𝑞 = (𝐴 − 1) ∧ 𝑟 = (𝐴 + 1)) → (𝐴𝑞) = (𝐴 − (𝐴 − 1)))
4241fveq2d 6862 . . . . . . . 8 ((𝑞 = (𝐴 − 1) ∧ 𝑟 = (𝐴 + 1)) → (abs‘(𝐴𝑞)) = (abs‘(𝐴 − (𝐴 − 1))))
43 oveq2 7395 . . . . . . . . . 10 (𝑟 = (𝐴 + 1) → (𝐴𝑟) = (𝐴 − (𝐴 + 1)))
4443adantl 481 . . . . . . . . 9 ((𝑞 = (𝐴 − 1) ∧ 𝑟 = (𝐴 + 1)) → (𝐴𝑟) = (𝐴 − (𝐴 + 1)))
4544fveq2d 6862 . . . . . . . 8 ((𝑞 = (𝐴 − 1) ∧ 𝑟 = (𝐴 + 1)) → (abs‘(𝐴𝑟)) = (abs‘(𝐴 − (𝐴 + 1))))
4642, 45neeq12d 2986 . . . . . . 7 ((𝑞 = (𝐴 − 1) ∧ 𝑟 = (𝐴 + 1)) → ((abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟)) ↔ (abs‘(𝐴 − (𝐴 − 1))) ≠ (abs‘(𝐴 − (𝐴 + 1)))))
4739, 46imbi12d 344 . . . . . 6 ((𝑞 = (𝐴 − 1) ∧ 𝑟 = (𝐴 + 1)) → ((𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟))) ↔ ((𝐴 − 1) ≠ (𝐴 + 1) → (abs‘(𝐴 − (𝐴 − 1))) ≠ (abs‘(𝐴 − (𝐴 + 1))))))
4847rspc2gv 3598 . . . . 5 (((𝐴 − 1) ∈ ℚ ∧ (𝐴 + 1) ∈ ℚ) → (∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟))) → ((𝐴 − 1) ≠ (𝐴 + 1) → (abs‘(𝐴 − (𝐴 − 1))) ≠ (abs‘(𝐴 − (𝐴 + 1))))))
4933, 36, 48syl2an2 686 . . . 4 (((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟)))) ∧ 𝐴 ∈ ℚ) → (∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟))) → ((𝐴 − 1) ≠ (𝐴 + 1) → (abs‘(𝐴 − (𝐴 − 1))) ≠ (abs‘(𝐴 − (𝐴 + 1))))))
509, 28, 49mp2d 49 . . 3 (((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟)))) ∧ 𝐴 ∈ ℚ) → (abs‘(𝐴 − (𝐴 − 1))) ≠ (abs‘(𝐴 − (𝐴 + 1))))
51 neirr 2934 . . . . 5 ¬ (abs‘1) ≠ (abs‘1)
5211, 12nncand 11538 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 − (𝐴 − 1)) = 1)
5352fveq2d 6862 . . . . . 6 (𝐴 ∈ ℝ → (abs‘(𝐴 − (𝐴 − 1))) = (abs‘1))
5411, 12subnegd 11540 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 − -1) = (𝐴 + 1))
5554oveq2d 7403 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 − (𝐴 − -1)) = (𝐴 − (𝐴 + 1)))
5621recnd 11202 . . . . . . . . . 10 (𝐴 ∈ ℝ → -1 ∈ ℂ)
5711, 56nncand 11538 . . . . . . . . 9 (𝐴 ∈ ℝ → (𝐴 − (𝐴 − -1)) = -1)
5855, 57eqtr3d 2766 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 − (𝐴 + 1)) = -1)
5958fveq2d 6862 . . . . . . 7 (𝐴 ∈ ℝ → (abs‘(𝐴 − (𝐴 + 1))) = (abs‘-1))
6012absnegd 15418 . . . . . . 7 (𝐴 ∈ ℝ → (abs‘-1) = (abs‘1))
6159, 60eqtrd 2764 . . . . . 6 (𝐴 ∈ ℝ → (abs‘(𝐴 − (𝐴 + 1))) = (abs‘1))
6253, 61neeq12d 2986 . . . . 5 (𝐴 ∈ ℝ → ((abs‘(𝐴 − (𝐴 − 1))) ≠ (abs‘(𝐴 − (𝐴 + 1))) ↔ (abs‘1) ≠ (abs‘1)))
6351, 62mtbiri 327 . . . 4 (𝐴 ∈ ℝ → ¬ (abs‘(𝐴 − (𝐴 − 1))) ≠ (abs‘(𝐴 − (𝐴 + 1))))
6463ad2antrr 726 . . 3 (((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟)))) ∧ 𝐴 ∈ ℚ) → ¬ (abs‘(𝐴 − (𝐴 − 1))) ≠ (abs‘(𝐴 − (𝐴 + 1))))
6550, 64pm2.65da 816 . 2 ((𝐴 ∈ ℝ ∧ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟)))) → ¬ 𝐴 ∈ ℚ)
668, 65impbida 800 1 (𝐴 ∈ ℝ → (¬ 𝐴 ∈ ℚ ↔ ∀𝑞 ∈ ℚ ∀𝑟 ∈ ℚ (𝑞𝑟 → (abs‘(𝐴𝑞)) ≠ (abs‘(𝐴𝑟)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044   class class class wbr 5107  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   < clt 11208  cmin 11405  -cneg 11406  cz 12529  cq 12907  abscabs 15200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator