Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmsupp0 Structured version   Visualization version   GIF version

Theorem rmsupp0 48360
Description: The support of a mapping of a multiplication of zero with a function into a ring is empty. (Contributed by AV, 10-Apr-2019.)
Hypothesis
Ref Expression
rmsuppss.r 𝑅 = (Base‘𝑀)
Assertion
Ref Expression
rmsupp0 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) = ∅)
Distinct variable groups:   𝑣,𝐴   𝑣,𝐶   𝑣,𝑀   𝑣,𝑅   𝑣,𝑋   𝑣,𝑉

Proof of Theorem rmsupp0
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6861 . . . . 5 (𝑣 = 𝑤 → (𝐴𝑣) = (𝐴𝑤))
21oveq2d 7406 . . . 4 (𝑣 = 𝑤 → (𝐶(.r𝑀)(𝐴𝑣)) = (𝐶(.r𝑀)(𝐴𝑤)))
32cbvmptv 5214 . . 3 (𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) = (𝑤𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑤)))
4 simpl2 1193 . . 3 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → 𝑉𝑋)
5 fvexd 6876 . . 3 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → (0g𝑀) ∈ V)
6 ovexd 7425 . . 3 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → (𝐶(.r𝑀)(𝐴𝑤)) ∈ V)
73, 4, 5, 6mptsuppd 8169 . 2 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) = {𝑤𝑉 ∣ (𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀)})
8 simpll3 1215 . . . . . 6 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → 𝐶 = (0g𝑀))
98oveq1d 7405 . . . . 5 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → (𝐶(.r𝑀)(𝐴𝑤)) = ((0g𝑀)(.r𝑀)(𝐴𝑤)))
10 simpll1 1213 . . . . . 6 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → 𝑀 ∈ Ring)
11 elmapi 8825 . . . . . . . . 9 (𝐴 ∈ (𝑅m 𝑉) → 𝐴:𝑉𝑅)
12 ffvelcdm 7056 . . . . . . . . . . 11 ((𝐴:𝑉𝑅𝑤𝑉) → (𝐴𝑤) ∈ 𝑅)
13 rmsuppss.r . . . . . . . . . . 11 𝑅 = (Base‘𝑀)
1412, 13eleqtrdi 2839 . . . . . . . . . 10 ((𝐴:𝑉𝑅𝑤𝑉) → (𝐴𝑤) ∈ (Base‘𝑀))
1514ex 412 . . . . . . . . 9 (𝐴:𝑉𝑅 → (𝑤𝑉 → (𝐴𝑤) ∈ (Base‘𝑀)))
1611, 15syl 17 . . . . . . . 8 (𝐴 ∈ (𝑅m 𝑉) → (𝑤𝑉 → (𝐴𝑤) ∈ (Base‘𝑀)))
1716adantl 481 . . . . . . 7 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → (𝑤𝑉 → (𝐴𝑤) ∈ (Base‘𝑀)))
1817imp 406 . . . . . 6 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → (𝐴𝑤) ∈ (Base‘𝑀))
19 eqid 2730 . . . . . . 7 (Base‘𝑀) = (Base‘𝑀)
20 eqid 2730 . . . . . . 7 (.r𝑀) = (.r𝑀)
21 eqid 2730 . . . . . . 7 (0g𝑀) = (0g𝑀)
2219, 20, 21ringlz 20209 . . . . . 6 ((𝑀 ∈ Ring ∧ (𝐴𝑤) ∈ (Base‘𝑀)) → ((0g𝑀)(.r𝑀)(𝐴𝑤)) = (0g𝑀))
2310, 18, 22syl2anc 584 . . . . 5 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → ((0g𝑀)(.r𝑀)(𝐴𝑤)) = (0g𝑀))
249, 23eqtrd 2765 . . . 4 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → (𝐶(.r𝑀)(𝐴𝑤)) = (0g𝑀))
2524neeq1d 2985 . . 3 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → ((𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀) ↔ (0g𝑀) ≠ (0g𝑀)))
2625rabbidva 3415 . 2 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → {𝑤𝑉 ∣ (𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀)} = {𝑤𝑉 ∣ (0g𝑀) ≠ (0g𝑀)})
27 neirr 2935 . . . . 5 ¬ (0g𝑀) ≠ (0g𝑀)
2827a1i 11 . . . 4 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → ¬ (0g𝑀) ≠ (0g𝑀))
2928ralrimivw 3130 . . 3 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → ∀𝑤𝑉 ¬ (0g𝑀) ≠ (0g𝑀))
30 rabeq0 4354 . . 3 ({𝑤𝑉 ∣ (0g𝑀) ≠ (0g𝑀)} = ∅ ↔ ∀𝑤𝑉 ¬ (0g𝑀) ≠ (0g𝑀))
3129, 30sylibr 234 . 2 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → {𝑤𝑉 ∣ (0g𝑀) ≠ (0g𝑀)} = ∅)
327, 26, 313eqtrd 2769 1 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  {crab 3408  Vcvv 3450  c0 4299  cmpt 5191  wf 6510  cfv 6514  (class class class)co 7390   supp csupp 8142  m cmap 8802  Basecbs 17186  .rcmulr 17228  0gc0g 17409  Ringcrg 20149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator