Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmsupp0 Structured version   Visualization version   GIF version

Theorem rmsupp0 48289
Description: The support of a mapping of a multiplication of zero with a function into a ring is empty. (Contributed by AV, 10-Apr-2019.)
Hypothesis
Ref Expression
rmsuppss.r 𝑅 = (Base‘𝑀)
Assertion
Ref Expression
rmsupp0 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) = ∅)
Distinct variable groups:   𝑣,𝐴   𝑣,𝐶   𝑣,𝑀   𝑣,𝑅   𝑣,𝑋   𝑣,𝑉

Proof of Theorem rmsupp0
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6905 . . . . 5 (𝑣 = 𝑤 → (𝐴𝑣) = (𝐴𝑤))
21oveq2d 7448 . . . 4 (𝑣 = 𝑤 → (𝐶(.r𝑀)(𝐴𝑣)) = (𝐶(.r𝑀)(𝐴𝑤)))
32cbvmptv 5254 . . 3 (𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) = (𝑤𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑤)))
4 simpl2 1192 . . 3 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → 𝑉𝑋)
5 fvexd 6920 . . 3 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → (0g𝑀) ∈ V)
6 ovexd 7467 . . 3 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → (𝐶(.r𝑀)(𝐴𝑤)) ∈ V)
73, 4, 5, 6mptsuppd 8213 . 2 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) = {𝑤𝑉 ∣ (𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀)})
8 simpll3 1214 . . . . . 6 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → 𝐶 = (0g𝑀))
98oveq1d 7447 . . . . 5 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → (𝐶(.r𝑀)(𝐴𝑤)) = ((0g𝑀)(.r𝑀)(𝐴𝑤)))
10 simpll1 1212 . . . . . 6 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → 𝑀 ∈ Ring)
11 elmapi 8890 . . . . . . . . 9 (𝐴 ∈ (𝑅m 𝑉) → 𝐴:𝑉𝑅)
12 ffvelcdm 7100 . . . . . . . . . . 11 ((𝐴:𝑉𝑅𝑤𝑉) → (𝐴𝑤) ∈ 𝑅)
13 rmsuppss.r . . . . . . . . . . 11 𝑅 = (Base‘𝑀)
1412, 13eleqtrdi 2850 . . . . . . . . . 10 ((𝐴:𝑉𝑅𝑤𝑉) → (𝐴𝑤) ∈ (Base‘𝑀))
1514ex 412 . . . . . . . . 9 (𝐴:𝑉𝑅 → (𝑤𝑉 → (𝐴𝑤) ∈ (Base‘𝑀)))
1611, 15syl 17 . . . . . . . 8 (𝐴 ∈ (𝑅m 𝑉) → (𝑤𝑉 → (𝐴𝑤) ∈ (Base‘𝑀)))
1716adantl 481 . . . . . . 7 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → (𝑤𝑉 → (𝐴𝑤) ∈ (Base‘𝑀)))
1817imp 406 . . . . . 6 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → (𝐴𝑤) ∈ (Base‘𝑀))
19 eqid 2736 . . . . . . 7 (Base‘𝑀) = (Base‘𝑀)
20 eqid 2736 . . . . . . 7 (.r𝑀) = (.r𝑀)
21 eqid 2736 . . . . . . 7 (0g𝑀) = (0g𝑀)
2219, 20, 21ringlz 20291 . . . . . 6 ((𝑀 ∈ Ring ∧ (𝐴𝑤) ∈ (Base‘𝑀)) → ((0g𝑀)(.r𝑀)(𝐴𝑤)) = (0g𝑀))
2310, 18, 22syl2anc 584 . . . . 5 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → ((0g𝑀)(.r𝑀)(𝐴𝑤)) = (0g𝑀))
249, 23eqtrd 2776 . . . 4 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → (𝐶(.r𝑀)(𝐴𝑤)) = (0g𝑀))
2524neeq1d 2999 . . 3 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → ((𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀) ↔ (0g𝑀) ≠ (0g𝑀)))
2625rabbidva 3442 . 2 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → {𝑤𝑉 ∣ (𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀)} = {𝑤𝑉 ∣ (0g𝑀) ≠ (0g𝑀)})
27 neirr 2948 . . . . 5 ¬ (0g𝑀) ≠ (0g𝑀)
2827a1i 11 . . . 4 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → ¬ (0g𝑀) ≠ (0g𝑀))
2928ralrimivw 3149 . . 3 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → ∀𝑤𝑉 ¬ (0g𝑀) ≠ (0g𝑀))
30 rabeq0 4387 . . 3 ({𝑤𝑉 ∣ (0g𝑀) ≠ (0g𝑀)} = ∅ ↔ ∀𝑤𝑉 ¬ (0g𝑀) ≠ (0g𝑀))
3129, 30sylibr 234 . 2 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → {𝑤𝑉 ∣ (0g𝑀) ≠ (0g𝑀)} = ∅)
327, 26, 313eqtrd 2780 1 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2939  wral 3060  {crab 3435  Vcvv 3479  c0 4332  cmpt 5224  wf 6556  cfv 6560  (class class class)co 7432   supp csupp 8186  m cmap 8867  Basecbs 17248  .rcmulr 17299  0gc0g 17485  Ringcrg 20231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-plusg 17311  df-0g 17487  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-grp 18955  df-minusg 18956  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator