| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rmsupp0 | Structured version Visualization version GIF version | ||
| Description: The support of a mapping of a multiplication of zero with a function into a ring is empty. (Contributed by AV, 10-Apr-2019.) |
| Ref | Expression |
|---|---|
| rmsuppss.r | ⊢ 𝑅 = (Base‘𝑀) |
| Ref | Expression |
|---|---|
| rmsupp0 | ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → ((𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) supp (0g‘𝑀)) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6858 | . . . . 5 ⊢ (𝑣 = 𝑤 → (𝐴‘𝑣) = (𝐴‘𝑤)) | |
| 2 | 1 | oveq2d 7403 | . . . 4 ⊢ (𝑣 = 𝑤 → (𝐶(.r‘𝑀)(𝐴‘𝑣)) = (𝐶(.r‘𝑀)(𝐴‘𝑤))) |
| 3 | 2 | cbvmptv 5211 | . . 3 ⊢ (𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) = (𝑤 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑤))) |
| 4 | simpl2 1193 | . . 3 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → 𝑉 ∈ 𝑋) | |
| 5 | fvexd 6873 | . . 3 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → (0g‘𝑀) ∈ V) | |
| 6 | ovexd 7422 | . . 3 ⊢ ((((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → (𝐶(.r‘𝑀)(𝐴‘𝑤)) ∈ V) | |
| 7 | 3, 4, 5, 6 | mptsuppd 8166 | . 2 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → ((𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) supp (0g‘𝑀)) = {𝑤 ∈ 𝑉 ∣ (𝐶(.r‘𝑀)(𝐴‘𝑤)) ≠ (0g‘𝑀)}) |
| 8 | simpll3 1215 | . . . . . 6 ⊢ ((((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → 𝐶 = (0g‘𝑀)) | |
| 9 | 8 | oveq1d 7402 | . . . . 5 ⊢ ((((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → (𝐶(.r‘𝑀)(𝐴‘𝑤)) = ((0g‘𝑀)(.r‘𝑀)(𝐴‘𝑤))) |
| 10 | simpll1 1213 | . . . . . 6 ⊢ ((((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → 𝑀 ∈ Ring) | |
| 11 | elmapi 8822 | . . . . . . . . 9 ⊢ (𝐴 ∈ (𝑅 ↑m 𝑉) → 𝐴:𝑉⟶𝑅) | |
| 12 | ffvelcdm 7053 | . . . . . . . . . . 11 ⊢ ((𝐴:𝑉⟶𝑅 ∧ 𝑤 ∈ 𝑉) → (𝐴‘𝑤) ∈ 𝑅) | |
| 13 | rmsuppss.r | . . . . . . . . . . 11 ⊢ 𝑅 = (Base‘𝑀) | |
| 14 | 12, 13 | eleqtrdi 2838 | . . . . . . . . . 10 ⊢ ((𝐴:𝑉⟶𝑅 ∧ 𝑤 ∈ 𝑉) → (𝐴‘𝑤) ∈ (Base‘𝑀)) |
| 15 | 14 | ex 412 | . . . . . . . . 9 ⊢ (𝐴:𝑉⟶𝑅 → (𝑤 ∈ 𝑉 → (𝐴‘𝑤) ∈ (Base‘𝑀))) |
| 16 | 11, 15 | syl 17 | . . . . . . . 8 ⊢ (𝐴 ∈ (𝑅 ↑m 𝑉) → (𝑤 ∈ 𝑉 → (𝐴‘𝑤) ∈ (Base‘𝑀))) |
| 17 | 16 | adantl 481 | . . . . . . 7 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → (𝑤 ∈ 𝑉 → (𝐴‘𝑤) ∈ (Base‘𝑀))) |
| 18 | 17 | imp 406 | . . . . . 6 ⊢ ((((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → (𝐴‘𝑤) ∈ (Base‘𝑀)) |
| 19 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 20 | eqid 2729 | . . . . . . 7 ⊢ (.r‘𝑀) = (.r‘𝑀) | |
| 21 | eqid 2729 | . . . . . . 7 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
| 22 | 19, 20, 21 | ringlz 20202 | . . . . . 6 ⊢ ((𝑀 ∈ Ring ∧ (𝐴‘𝑤) ∈ (Base‘𝑀)) → ((0g‘𝑀)(.r‘𝑀)(𝐴‘𝑤)) = (0g‘𝑀)) |
| 23 | 10, 18, 22 | syl2anc 584 | . . . . 5 ⊢ ((((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → ((0g‘𝑀)(.r‘𝑀)(𝐴‘𝑤)) = (0g‘𝑀)) |
| 24 | 9, 23 | eqtrd 2764 | . . . 4 ⊢ ((((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → (𝐶(.r‘𝑀)(𝐴‘𝑤)) = (0g‘𝑀)) |
| 25 | 24 | neeq1d 2984 | . . 3 ⊢ ((((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → ((𝐶(.r‘𝑀)(𝐴‘𝑤)) ≠ (0g‘𝑀) ↔ (0g‘𝑀) ≠ (0g‘𝑀))) |
| 26 | 25 | rabbidva 3412 | . 2 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → {𝑤 ∈ 𝑉 ∣ (𝐶(.r‘𝑀)(𝐴‘𝑤)) ≠ (0g‘𝑀)} = {𝑤 ∈ 𝑉 ∣ (0g‘𝑀) ≠ (0g‘𝑀)}) |
| 27 | neirr 2934 | . . . . 5 ⊢ ¬ (0g‘𝑀) ≠ (0g‘𝑀) | |
| 28 | 27 | a1i 11 | . . . 4 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → ¬ (0g‘𝑀) ≠ (0g‘𝑀)) |
| 29 | 28 | ralrimivw 3129 | . . 3 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → ∀𝑤 ∈ 𝑉 ¬ (0g‘𝑀) ≠ (0g‘𝑀)) |
| 30 | rabeq0 4351 | . . 3 ⊢ ({𝑤 ∈ 𝑉 ∣ (0g‘𝑀) ≠ (0g‘𝑀)} = ∅ ↔ ∀𝑤 ∈ 𝑉 ¬ (0g‘𝑀) ≠ (0g‘𝑀)) | |
| 31 | 29, 30 | sylibr 234 | . 2 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → {𝑤 ∈ 𝑉 ∣ (0g‘𝑀) ≠ (0g‘𝑀)} = ∅) |
| 32 | 7, 26, 31 | 3eqtrd 2768 | 1 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → ((𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) supp (0g‘𝑀)) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 {crab 3405 Vcvv 3447 ∅c0 4296 ↦ cmpt 5188 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 supp csupp 8139 ↑m cmap 8799 Basecbs 17179 .rcmulr 17221 0gc0g 17402 Ringcrg 20142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |