Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmsupp0 Structured version   Visualization version   GIF version

Theorem rmsupp0 43817
Description: The support of a mapping of a multiplication of zero with a function into a ring is empty. (Contributed by AV, 10-Apr-2019.)
Hypothesis
Ref Expression
rmsuppss.r 𝑅 = (Base‘𝑀)
Assertion
Ref Expression
rmsupp0 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) = ∅)
Distinct variable groups:   𝑣,𝐴   𝑣,𝐶   𝑣,𝑀   𝑣,𝑅   𝑣,𝑋   𝑣,𝑉

Proof of Theorem rmsupp0
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6504 . . . . 5 (𝑣 = 𝑤 → (𝐴𝑣) = (𝐴𝑤))
21oveq2d 6998 . . . 4 (𝑣 = 𝑤 → (𝐶(.r𝑀)(𝐴𝑣)) = (𝐶(.r𝑀)(𝐴𝑤)))
32cbvmptv 5033 . . 3 (𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) = (𝑤𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑤)))
4 simpl2 1173 . . 3 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) → 𝑉𝑋)
5 fvexd 6519 . . 3 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) → (0g𝑀) ∈ V)
6 ovexd 7016 . . 3 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) ∧ 𝑤𝑉) → (𝐶(.r𝑀)(𝐴𝑤)) ∈ V)
73, 4, 5, 6mptsuppd 7662 . 2 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) = {𝑤𝑉 ∣ (𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀)})
8 simpll3 1195 . . . . . 6 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) ∧ 𝑤𝑉) → 𝐶 = (0g𝑀))
98oveq1d 6997 . . . . 5 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) ∧ 𝑤𝑉) → (𝐶(.r𝑀)(𝐴𝑤)) = ((0g𝑀)(.r𝑀)(𝐴𝑤)))
10 simpll1 1193 . . . . . 6 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) ∧ 𝑤𝑉) → 𝑀 ∈ Ring)
11 elmapi 8234 . . . . . . . . 9 (𝐴 ∈ (𝑅𝑚 𝑉) → 𝐴:𝑉𝑅)
12 ffvelrn 6680 . . . . . . . . . . 11 ((𝐴:𝑉𝑅𝑤𝑉) → (𝐴𝑤) ∈ 𝑅)
13 rmsuppss.r . . . . . . . . . . 11 𝑅 = (Base‘𝑀)
1412, 13syl6eleq 2878 . . . . . . . . . 10 ((𝐴:𝑉𝑅𝑤𝑉) → (𝐴𝑤) ∈ (Base‘𝑀))
1514ex 405 . . . . . . . . 9 (𝐴:𝑉𝑅 → (𝑤𝑉 → (𝐴𝑤) ∈ (Base‘𝑀)))
1611, 15syl 17 . . . . . . . 8 (𝐴 ∈ (𝑅𝑚 𝑉) → (𝑤𝑉 → (𝐴𝑤) ∈ (Base‘𝑀)))
1716adantl 474 . . . . . . 7 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) → (𝑤𝑉 → (𝐴𝑤) ∈ (Base‘𝑀)))
1817imp 398 . . . . . 6 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) ∧ 𝑤𝑉) → (𝐴𝑤) ∈ (Base‘𝑀))
19 eqid 2780 . . . . . . 7 (Base‘𝑀) = (Base‘𝑀)
20 eqid 2780 . . . . . . 7 (.r𝑀) = (.r𝑀)
21 eqid 2780 . . . . . . 7 (0g𝑀) = (0g𝑀)
2219, 20, 21ringlz 19072 . . . . . 6 ((𝑀 ∈ Ring ∧ (𝐴𝑤) ∈ (Base‘𝑀)) → ((0g𝑀)(.r𝑀)(𝐴𝑤)) = (0g𝑀))
2310, 18, 22syl2anc 576 . . . . 5 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) ∧ 𝑤𝑉) → ((0g𝑀)(.r𝑀)(𝐴𝑤)) = (0g𝑀))
249, 23eqtrd 2816 . . . 4 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) ∧ 𝑤𝑉) → (𝐶(.r𝑀)(𝐴𝑤)) = (0g𝑀))
2524neeq1d 3028 . . 3 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) ∧ 𝑤𝑉) → ((𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀) ↔ (0g𝑀) ≠ (0g𝑀)))
2625rabbidva 3404 . 2 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) → {𝑤𝑉 ∣ (𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀)} = {𝑤𝑉 ∣ (0g𝑀) ≠ (0g𝑀)})
27 neirr 2978 . . . . 5 ¬ (0g𝑀) ≠ (0g𝑀)
2827a1i 11 . . . 4 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) → ¬ (0g𝑀) ≠ (0g𝑀))
2928ralrimivw 3135 . . 3 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) → ∀𝑤𝑉 ¬ (0g𝑀) ≠ (0g𝑀))
30 rabeq0 4227 . . 3 ({𝑤𝑉 ∣ (0g𝑀) ≠ (0g𝑀)} = ∅ ↔ ∀𝑤𝑉 ¬ (0g𝑀) ≠ (0g𝑀))
3129, 30sylibr 226 . 2 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) → {𝑤𝑉 ∣ (0g𝑀) ≠ (0g𝑀)} = ∅)
327, 26, 313eqtrd 2820 1 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅𝑚 𝑉)) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387  w3a 1069   = wceq 1508  wcel 2051  wne 2969  wral 3090  {crab 3094  Vcvv 3417  c0 4181  cmpt 5013  wf 6189  cfv 6193  (class class class)co 6982   supp csupp 7639  𝑚 cmap 8212  Basecbs 16345  .rcmulr 16428  0gc0g 16575  Ringcrg 19032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-rep 5053  ax-sep 5064  ax-nul 5071  ax-pow 5123  ax-pr 5190  ax-un 7285  ax-cnex 10397  ax-resscn 10398  ax-1cn 10399  ax-icn 10400  ax-addcl 10401  ax-addrcl 10402  ax-mulcl 10403  ax-mulrcl 10404  ax-mulcom 10405  ax-addass 10406  ax-mulass 10407  ax-distr 10408  ax-i2m1 10409  ax-1ne0 10410  ax-1rid 10411  ax-rnegex 10412  ax-rrecex 10413  ax-cnre 10414  ax-pre-lttri 10415  ax-pre-lttrn 10416  ax-pre-ltadd 10417  ax-pre-mulgt0 10418
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2551  df-eu 2589  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3419  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4182  df-if 4354  df-pw 4427  df-sn 4445  df-pr 4447  df-tp 4449  df-op 4451  df-uni 4718  df-iun 4799  df-br 4935  df-opab 4997  df-mpt 5014  df-tr 5036  df-id 5316  df-eprel 5321  df-po 5330  df-so 5331  df-fr 5370  df-we 5372  df-xp 5417  df-rel 5418  df-cnv 5419  df-co 5420  df-dm 5421  df-rn 5422  df-res 5423  df-ima 5424  df-pred 5991  df-ord 6037  df-on 6038  df-lim 6039  df-suc 6040  df-iota 6157  df-fun 6195  df-fn 6196  df-f 6197  df-f1 6198  df-fo 6199  df-f1o 6200  df-fv 6201  df-riota 6943  df-ov 6985  df-oprab 6986  df-mpo 6987  df-om 7403  df-1st 7507  df-2nd 7508  df-supp 7640  df-wrecs 7756  df-recs 7818  df-rdg 7856  df-er 8095  df-map 8214  df-en 8313  df-dom 8314  df-sdom 8315  df-pnf 10482  df-mnf 10483  df-xr 10484  df-ltxr 10485  df-le 10486  df-sub 10678  df-neg 10679  df-nn 11446  df-2 11509  df-ndx 16348  df-slot 16349  df-base 16351  df-sets 16352  df-plusg 16440  df-0g 16577  df-mgm 17722  df-sgrp 17764  df-mnd 17775  df-grp 17906  df-minusg 17907  df-mgp 18975  df-ring 19034
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator