| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rmsupp0 | Structured version Visualization version GIF version | ||
| Description: The support of a mapping of a multiplication of zero with a function into a ring is empty. (Contributed by AV, 10-Apr-2019.) |
| Ref | Expression |
|---|---|
| rmsuppss.r | ⊢ 𝑅 = (Base‘𝑀) |
| Ref | Expression |
|---|---|
| rmsupp0 | ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → ((𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) supp (0g‘𝑀)) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6861 | . . . . 5 ⊢ (𝑣 = 𝑤 → (𝐴‘𝑣) = (𝐴‘𝑤)) | |
| 2 | 1 | oveq2d 7406 | . . . 4 ⊢ (𝑣 = 𝑤 → (𝐶(.r‘𝑀)(𝐴‘𝑣)) = (𝐶(.r‘𝑀)(𝐴‘𝑤))) |
| 3 | 2 | cbvmptv 5214 | . . 3 ⊢ (𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) = (𝑤 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑤))) |
| 4 | simpl2 1193 | . . 3 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → 𝑉 ∈ 𝑋) | |
| 5 | fvexd 6876 | . . 3 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → (0g‘𝑀) ∈ V) | |
| 6 | ovexd 7425 | . . 3 ⊢ ((((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → (𝐶(.r‘𝑀)(𝐴‘𝑤)) ∈ V) | |
| 7 | 3, 4, 5, 6 | mptsuppd 8169 | . 2 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → ((𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) supp (0g‘𝑀)) = {𝑤 ∈ 𝑉 ∣ (𝐶(.r‘𝑀)(𝐴‘𝑤)) ≠ (0g‘𝑀)}) |
| 8 | simpll3 1215 | . . . . . 6 ⊢ ((((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → 𝐶 = (0g‘𝑀)) | |
| 9 | 8 | oveq1d 7405 | . . . . 5 ⊢ ((((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → (𝐶(.r‘𝑀)(𝐴‘𝑤)) = ((0g‘𝑀)(.r‘𝑀)(𝐴‘𝑤))) |
| 10 | simpll1 1213 | . . . . . 6 ⊢ ((((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → 𝑀 ∈ Ring) | |
| 11 | elmapi 8825 | . . . . . . . . 9 ⊢ (𝐴 ∈ (𝑅 ↑m 𝑉) → 𝐴:𝑉⟶𝑅) | |
| 12 | ffvelcdm 7056 | . . . . . . . . . . 11 ⊢ ((𝐴:𝑉⟶𝑅 ∧ 𝑤 ∈ 𝑉) → (𝐴‘𝑤) ∈ 𝑅) | |
| 13 | rmsuppss.r | . . . . . . . . . . 11 ⊢ 𝑅 = (Base‘𝑀) | |
| 14 | 12, 13 | eleqtrdi 2839 | . . . . . . . . . 10 ⊢ ((𝐴:𝑉⟶𝑅 ∧ 𝑤 ∈ 𝑉) → (𝐴‘𝑤) ∈ (Base‘𝑀)) |
| 15 | 14 | ex 412 | . . . . . . . . 9 ⊢ (𝐴:𝑉⟶𝑅 → (𝑤 ∈ 𝑉 → (𝐴‘𝑤) ∈ (Base‘𝑀))) |
| 16 | 11, 15 | syl 17 | . . . . . . . 8 ⊢ (𝐴 ∈ (𝑅 ↑m 𝑉) → (𝑤 ∈ 𝑉 → (𝐴‘𝑤) ∈ (Base‘𝑀))) |
| 17 | 16 | adantl 481 | . . . . . . 7 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → (𝑤 ∈ 𝑉 → (𝐴‘𝑤) ∈ (Base‘𝑀))) |
| 18 | 17 | imp 406 | . . . . . 6 ⊢ ((((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → (𝐴‘𝑤) ∈ (Base‘𝑀)) |
| 19 | eqid 2730 | . . . . . . 7 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 20 | eqid 2730 | . . . . . . 7 ⊢ (.r‘𝑀) = (.r‘𝑀) | |
| 21 | eqid 2730 | . . . . . . 7 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
| 22 | 19, 20, 21 | ringlz 20209 | . . . . . 6 ⊢ ((𝑀 ∈ Ring ∧ (𝐴‘𝑤) ∈ (Base‘𝑀)) → ((0g‘𝑀)(.r‘𝑀)(𝐴‘𝑤)) = (0g‘𝑀)) |
| 23 | 10, 18, 22 | syl2anc 584 | . . . . 5 ⊢ ((((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → ((0g‘𝑀)(.r‘𝑀)(𝐴‘𝑤)) = (0g‘𝑀)) |
| 24 | 9, 23 | eqtrd 2765 | . . . 4 ⊢ ((((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → (𝐶(.r‘𝑀)(𝐴‘𝑤)) = (0g‘𝑀)) |
| 25 | 24 | neeq1d 2985 | . . 3 ⊢ ((((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → ((𝐶(.r‘𝑀)(𝐴‘𝑤)) ≠ (0g‘𝑀) ↔ (0g‘𝑀) ≠ (0g‘𝑀))) |
| 26 | 25 | rabbidva 3415 | . 2 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → {𝑤 ∈ 𝑉 ∣ (𝐶(.r‘𝑀)(𝐴‘𝑤)) ≠ (0g‘𝑀)} = {𝑤 ∈ 𝑉 ∣ (0g‘𝑀) ≠ (0g‘𝑀)}) |
| 27 | neirr 2935 | . . . . 5 ⊢ ¬ (0g‘𝑀) ≠ (0g‘𝑀) | |
| 28 | 27 | a1i 11 | . . . 4 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → ¬ (0g‘𝑀) ≠ (0g‘𝑀)) |
| 29 | 28 | ralrimivw 3130 | . . 3 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → ∀𝑤 ∈ 𝑉 ¬ (0g‘𝑀) ≠ (0g‘𝑀)) |
| 30 | rabeq0 4354 | . . 3 ⊢ ({𝑤 ∈ 𝑉 ∣ (0g‘𝑀) ≠ (0g‘𝑀)} = ∅ ↔ ∀𝑤 ∈ 𝑉 ¬ (0g‘𝑀) ≠ (0g‘𝑀)) | |
| 31 | 29, 30 | sylibr 234 | . 2 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → {𝑤 ∈ 𝑉 ∣ (0g‘𝑀) ≠ (0g‘𝑀)} = ∅) |
| 32 | 7, 26, 31 | 3eqtrd 2769 | 1 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → ((𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) supp (0g‘𝑀)) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 {crab 3408 Vcvv 3450 ∅c0 4299 ↦ cmpt 5191 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 supp csupp 8142 ↑m cmap 8802 Basecbs 17186 .rcmulr 17228 0gc0g 17409 Ringcrg 20149 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |