Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmsupp0 Structured version   Visualization version   GIF version

Theorem rmsupp0 48310
Description: The support of a mapping of a multiplication of zero with a function into a ring is empty. (Contributed by AV, 10-Apr-2019.)
Hypothesis
Ref Expression
rmsuppss.r 𝑅 = (Base‘𝑀)
Assertion
Ref Expression
rmsupp0 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) = ∅)
Distinct variable groups:   𝑣,𝐴   𝑣,𝐶   𝑣,𝑀   𝑣,𝑅   𝑣,𝑋   𝑣,𝑉

Proof of Theorem rmsupp0
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6881 . . . . 5 (𝑣 = 𝑤 → (𝐴𝑣) = (𝐴𝑤))
21oveq2d 7426 . . . 4 (𝑣 = 𝑤 → (𝐶(.r𝑀)(𝐴𝑣)) = (𝐶(.r𝑀)(𝐴𝑤)))
32cbvmptv 5230 . . 3 (𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) = (𝑤𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑤)))
4 simpl2 1193 . . 3 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → 𝑉𝑋)
5 fvexd 6896 . . 3 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → (0g𝑀) ∈ V)
6 ovexd 7445 . . 3 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → (𝐶(.r𝑀)(𝐴𝑤)) ∈ V)
73, 4, 5, 6mptsuppd 8191 . 2 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) = {𝑤𝑉 ∣ (𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀)})
8 simpll3 1215 . . . . . 6 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → 𝐶 = (0g𝑀))
98oveq1d 7425 . . . . 5 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → (𝐶(.r𝑀)(𝐴𝑤)) = ((0g𝑀)(.r𝑀)(𝐴𝑤)))
10 simpll1 1213 . . . . . 6 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → 𝑀 ∈ Ring)
11 elmapi 8868 . . . . . . . . 9 (𝐴 ∈ (𝑅m 𝑉) → 𝐴:𝑉𝑅)
12 ffvelcdm 7076 . . . . . . . . . . 11 ((𝐴:𝑉𝑅𝑤𝑉) → (𝐴𝑤) ∈ 𝑅)
13 rmsuppss.r . . . . . . . . . . 11 𝑅 = (Base‘𝑀)
1412, 13eleqtrdi 2845 . . . . . . . . . 10 ((𝐴:𝑉𝑅𝑤𝑉) → (𝐴𝑤) ∈ (Base‘𝑀))
1514ex 412 . . . . . . . . 9 (𝐴:𝑉𝑅 → (𝑤𝑉 → (𝐴𝑤) ∈ (Base‘𝑀)))
1611, 15syl 17 . . . . . . . 8 (𝐴 ∈ (𝑅m 𝑉) → (𝑤𝑉 → (𝐴𝑤) ∈ (Base‘𝑀)))
1716adantl 481 . . . . . . 7 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → (𝑤𝑉 → (𝐴𝑤) ∈ (Base‘𝑀)))
1817imp 406 . . . . . 6 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → (𝐴𝑤) ∈ (Base‘𝑀))
19 eqid 2736 . . . . . . 7 (Base‘𝑀) = (Base‘𝑀)
20 eqid 2736 . . . . . . 7 (.r𝑀) = (.r𝑀)
21 eqid 2736 . . . . . . 7 (0g𝑀) = (0g𝑀)
2219, 20, 21ringlz 20258 . . . . . 6 ((𝑀 ∈ Ring ∧ (𝐴𝑤) ∈ (Base‘𝑀)) → ((0g𝑀)(.r𝑀)(𝐴𝑤)) = (0g𝑀))
2310, 18, 22syl2anc 584 . . . . 5 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → ((0g𝑀)(.r𝑀)(𝐴𝑤)) = (0g𝑀))
249, 23eqtrd 2771 . . . 4 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → (𝐶(.r𝑀)(𝐴𝑤)) = (0g𝑀))
2524neeq1d 2992 . . 3 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → ((𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀) ↔ (0g𝑀) ≠ (0g𝑀)))
2625rabbidva 3427 . 2 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → {𝑤𝑉 ∣ (𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀)} = {𝑤𝑉 ∣ (0g𝑀) ≠ (0g𝑀)})
27 neirr 2942 . . . . 5 ¬ (0g𝑀) ≠ (0g𝑀)
2827a1i 11 . . . 4 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → ¬ (0g𝑀) ≠ (0g𝑀))
2928ralrimivw 3137 . . 3 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → ∀𝑤𝑉 ¬ (0g𝑀) ≠ (0g𝑀))
30 rabeq0 4368 . . 3 ({𝑤𝑉 ∣ (0g𝑀) ≠ (0g𝑀)} = ∅ ↔ ∀𝑤𝑉 ¬ (0g𝑀) ≠ (0g𝑀))
3129, 30sylibr 234 . 2 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → {𝑤𝑉 ∣ (0g𝑀) ≠ (0g𝑀)} = ∅)
327, 26, 313eqtrd 2775 1 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  {crab 3420  Vcvv 3464  c0 4313  cmpt 5206  wf 6532  cfv 6536  (class class class)co 7410   supp csupp 8164  m cmap 8845  Basecbs 17233  .rcmulr 17277  0gc0g 17458  Ringcrg 20198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator