Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmsupp0 Structured version   Visualization version   GIF version

Theorem rmsupp0 46534
Description: The support of a mapping of a multiplication of zero with a function into a ring is empty. (Contributed by AV, 10-Apr-2019.)
Hypothesis
Ref Expression
rmsuppss.r 𝑅 = (Base‘𝑀)
Assertion
Ref Expression
rmsupp0 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) = ∅)
Distinct variable groups:   𝑣,𝐴   𝑣,𝐶   𝑣,𝑀   𝑣,𝑅   𝑣,𝑋   𝑣,𝑉

Proof of Theorem rmsupp0
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6846 . . . . 5 (𝑣 = 𝑤 → (𝐴𝑣) = (𝐴𝑤))
21oveq2d 7377 . . . 4 (𝑣 = 𝑤 → (𝐶(.r𝑀)(𝐴𝑣)) = (𝐶(.r𝑀)(𝐴𝑤)))
32cbvmptv 5222 . . 3 (𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) = (𝑤𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑤)))
4 simpl2 1193 . . 3 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → 𝑉𝑋)
5 fvexd 6861 . . 3 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → (0g𝑀) ∈ V)
6 ovexd 7396 . . 3 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → (𝐶(.r𝑀)(𝐴𝑤)) ∈ V)
73, 4, 5, 6mptsuppd 8122 . 2 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) = {𝑤𝑉 ∣ (𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀)})
8 simpll3 1215 . . . . . 6 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → 𝐶 = (0g𝑀))
98oveq1d 7376 . . . . 5 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → (𝐶(.r𝑀)(𝐴𝑤)) = ((0g𝑀)(.r𝑀)(𝐴𝑤)))
10 simpll1 1213 . . . . . 6 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → 𝑀 ∈ Ring)
11 elmapi 8793 . . . . . . . . 9 (𝐴 ∈ (𝑅m 𝑉) → 𝐴:𝑉𝑅)
12 ffvelcdm 7036 . . . . . . . . . . 11 ((𝐴:𝑉𝑅𝑤𝑉) → (𝐴𝑤) ∈ 𝑅)
13 rmsuppss.r . . . . . . . . . . 11 𝑅 = (Base‘𝑀)
1412, 13eleqtrdi 2844 . . . . . . . . . 10 ((𝐴:𝑉𝑅𝑤𝑉) → (𝐴𝑤) ∈ (Base‘𝑀))
1514ex 414 . . . . . . . . 9 (𝐴:𝑉𝑅 → (𝑤𝑉 → (𝐴𝑤) ∈ (Base‘𝑀)))
1611, 15syl 17 . . . . . . . 8 (𝐴 ∈ (𝑅m 𝑉) → (𝑤𝑉 → (𝐴𝑤) ∈ (Base‘𝑀)))
1716adantl 483 . . . . . . 7 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → (𝑤𝑉 → (𝐴𝑤) ∈ (Base‘𝑀)))
1817imp 408 . . . . . 6 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → (𝐴𝑤) ∈ (Base‘𝑀))
19 eqid 2733 . . . . . . 7 (Base‘𝑀) = (Base‘𝑀)
20 eqid 2733 . . . . . . 7 (.r𝑀) = (.r𝑀)
21 eqid 2733 . . . . . . 7 (0g𝑀) = (0g𝑀)
2219, 20, 21ringlz 20019 . . . . . 6 ((𝑀 ∈ Ring ∧ (𝐴𝑤) ∈ (Base‘𝑀)) → ((0g𝑀)(.r𝑀)(𝐴𝑤)) = (0g𝑀))
2310, 18, 22syl2anc 585 . . . . 5 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → ((0g𝑀)(.r𝑀)(𝐴𝑤)) = (0g𝑀))
249, 23eqtrd 2773 . . . 4 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → (𝐶(.r𝑀)(𝐴𝑤)) = (0g𝑀))
2524neeq1d 3000 . . 3 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → ((𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀) ↔ (0g𝑀) ≠ (0g𝑀)))
2625rabbidva 3413 . 2 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → {𝑤𝑉 ∣ (𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀)} = {𝑤𝑉 ∣ (0g𝑀) ≠ (0g𝑀)})
27 neirr 2949 . . . . 5 ¬ (0g𝑀) ≠ (0g𝑀)
2827a1i 11 . . . 4 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → ¬ (0g𝑀) ≠ (0g𝑀))
2928ralrimivw 3144 . . 3 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → ∀𝑤𝑉 ¬ (0g𝑀) ≠ (0g𝑀))
30 rabeq0 4348 . . 3 ({𝑤𝑉 ∣ (0g𝑀) ≠ (0g𝑀)} = ∅ ↔ ∀𝑤𝑉 ¬ (0g𝑀) ≠ (0g𝑀))
3129, 30sylibr 233 . 2 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → {𝑤𝑉 ∣ (0g𝑀) ≠ (0g𝑀)} = ∅)
327, 26, 313eqtrd 2777 1 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶 = (0g𝑀)) ∧ 𝐴 ∈ (𝑅m 𝑉)) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2940  wral 3061  {crab 3406  Vcvv 3447  c0 4286  cmpt 5192  wf 6496  cfv 6500  (class class class)co 7361   supp csupp 8096  m cmap 8771  Basecbs 17091  .rcmulr 17142  0gc0g 17329  Ringcrg 19972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-1st 7925  df-2nd 7926  df-supp 8097  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-er 8654  df-map 8773  df-en 8890  df-dom 8891  df-sdom 8892  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-nn 12162  df-2 12224  df-sets 17044  df-slot 17062  df-ndx 17074  df-base 17092  df-plusg 17154  df-0g 17331  df-mgm 18505  df-sgrp 18554  df-mnd 18565  df-grp 18759  df-minusg 18760  df-mgp 19905  df-ring 19974
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator