Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rmsupp0 | Structured version Visualization version GIF version |
Description: The support of a mapping of a multiplication of zero with a function into a ring is empty. (Contributed by AV, 10-Apr-2019.) |
Ref | Expression |
---|---|
rmsuppss.r | ⊢ 𝑅 = (Base‘𝑀) |
Ref | Expression |
---|---|
rmsupp0 | ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → ((𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) supp (0g‘𝑀)) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6756 | . . . . 5 ⊢ (𝑣 = 𝑤 → (𝐴‘𝑣) = (𝐴‘𝑤)) | |
2 | 1 | oveq2d 7271 | . . . 4 ⊢ (𝑣 = 𝑤 → (𝐶(.r‘𝑀)(𝐴‘𝑣)) = (𝐶(.r‘𝑀)(𝐴‘𝑤))) |
3 | 2 | cbvmptv 5183 | . . 3 ⊢ (𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) = (𝑤 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑤))) |
4 | simpl2 1190 | . . 3 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → 𝑉 ∈ 𝑋) | |
5 | fvexd 6771 | . . 3 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → (0g‘𝑀) ∈ V) | |
6 | ovexd 7290 | . . 3 ⊢ ((((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → (𝐶(.r‘𝑀)(𝐴‘𝑤)) ∈ V) | |
7 | 3, 4, 5, 6 | mptsuppd 7974 | . 2 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → ((𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) supp (0g‘𝑀)) = {𝑤 ∈ 𝑉 ∣ (𝐶(.r‘𝑀)(𝐴‘𝑤)) ≠ (0g‘𝑀)}) |
8 | simpll3 1212 | . . . . . 6 ⊢ ((((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → 𝐶 = (0g‘𝑀)) | |
9 | 8 | oveq1d 7270 | . . . . 5 ⊢ ((((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → (𝐶(.r‘𝑀)(𝐴‘𝑤)) = ((0g‘𝑀)(.r‘𝑀)(𝐴‘𝑤))) |
10 | simpll1 1210 | . . . . . 6 ⊢ ((((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → 𝑀 ∈ Ring) | |
11 | elmapi 8595 | . . . . . . . . 9 ⊢ (𝐴 ∈ (𝑅 ↑m 𝑉) → 𝐴:𝑉⟶𝑅) | |
12 | ffvelrn 6941 | . . . . . . . . . . 11 ⊢ ((𝐴:𝑉⟶𝑅 ∧ 𝑤 ∈ 𝑉) → (𝐴‘𝑤) ∈ 𝑅) | |
13 | rmsuppss.r | . . . . . . . . . . 11 ⊢ 𝑅 = (Base‘𝑀) | |
14 | 12, 13 | eleqtrdi 2849 | . . . . . . . . . 10 ⊢ ((𝐴:𝑉⟶𝑅 ∧ 𝑤 ∈ 𝑉) → (𝐴‘𝑤) ∈ (Base‘𝑀)) |
15 | 14 | ex 412 | . . . . . . . . 9 ⊢ (𝐴:𝑉⟶𝑅 → (𝑤 ∈ 𝑉 → (𝐴‘𝑤) ∈ (Base‘𝑀))) |
16 | 11, 15 | syl 17 | . . . . . . . 8 ⊢ (𝐴 ∈ (𝑅 ↑m 𝑉) → (𝑤 ∈ 𝑉 → (𝐴‘𝑤) ∈ (Base‘𝑀))) |
17 | 16 | adantl 481 | . . . . . . 7 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → (𝑤 ∈ 𝑉 → (𝐴‘𝑤) ∈ (Base‘𝑀))) |
18 | 17 | imp 406 | . . . . . 6 ⊢ ((((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → (𝐴‘𝑤) ∈ (Base‘𝑀)) |
19 | eqid 2738 | . . . . . . 7 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
20 | eqid 2738 | . . . . . . 7 ⊢ (.r‘𝑀) = (.r‘𝑀) | |
21 | eqid 2738 | . . . . . . 7 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
22 | 19, 20, 21 | ringlz 19741 | . . . . . 6 ⊢ ((𝑀 ∈ Ring ∧ (𝐴‘𝑤) ∈ (Base‘𝑀)) → ((0g‘𝑀)(.r‘𝑀)(𝐴‘𝑤)) = (0g‘𝑀)) |
23 | 10, 18, 22 | syl2anc 583 | . . . . 5 ⊢ ((((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → ((0g‘𝑀)(.r‘𝑀)(𝐴‘𝑤)) = (0g‘𝑀)) |
24 | 9, 23 | eqtrd 2778 | . . . 4 ⊢ ((((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → (𝐶(.r‘𝑀)(𝐴‘𝑤)) = (0g‘𝑀)) |
25 | 24 | neeq1d 3002 | . . 3 ⊢ ((((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → ((𝐶(.r‘𝑀)(𝐴‘𝑤)) ≠ (0g‘𝑀) ↔ (0g‘𝑀) ≠ (0g‘𝑀))) |
26 | 25 | rabbidva 3402 | . 2 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → {𝑤 ∈ 𝑉 ∣ (𝐶(.r‘𝑀)(𝐴‘𝑤)) ≠ (0g‘𝑀)} = {𝑤 ∈ 𝑉 ∣ (0g‘𝑀) ≠ (0g‘𝑀)}) |
27 | neirr 2951 | . . . . 5 ⊢ ¬ (0g‘𝑀) ≠ (0g‘𝑀) | |
28 | 27 | a1i 11 | . . . 4 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → ¬ (0g‘𝑀) ≠ (0g‘𝑀)) |
29 | 28 | ralrimivw 3108 | . . 3 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → ∀𝑤 ∈ 𝑉 ¬ (0g‘𝑀) ≠ (0g‘𝑀)) |
30 | rabeq0 4315 | . . 3 ⊢ ({𝑤 ∈ 𝑉 ∣ (0g‘𝑀) ≠ (0g‘𝑀)} = ∅ ↔ ∀𝑤 ∈ 𝑉 ¬ (0g‘𝑀) ≠ (0g‘𝑀)) | |
31 | 29, 30 | sylibr 233 | . 2 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → {𝑤 ∈ 𝑉 ∣ (0g‘𝑀) ≠ (0g‘𝑀)} = ∅) |
32 | 7, 26, 31 | 3eqtrd 2782 | 1 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 = (0g‘𝑀)) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → ((𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) supp (0g‘𝑀)) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 {crab 3067 Vcvv 3422 ∅c0 4253 ↦ cmpt 5153 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 supp csupp 7948 ↑m cmap 8573 Basecbs 16840 .rcmulr 16889 0gc0g 17067 Ringcrg 19698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-mgp 19636 df-ring 19700 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |