| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funopab | Structured version Visualization version GIF version | ||
| Description: A class of ordered pairs is a function when there is at most one second member for each pair. (Contributed by NM, 16-May-1995.) |
| Ref | Expression |
|---|---|
| funopab | ⊢ (Fun {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∀𝑥∃*𝑦𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relopabv 5784 | . . 3 ⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 2 | nfopab1 5177 | . . . 4 ⊢ Ⅎ𝑥{〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 3 | nfopab2 5178 | . . . 4 ⊢ Ⅎ𝑦{〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 4 | 2, 3 | dffun6f 6529 | . . 3 ⊢ (Fun {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ (Rel {〈𝑥, 𝑦〉 ∣ 𝜑} ∧ ∀𝑥∃*𝑦 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦)) |
| 5 | 1, 4 | mpbiran 709 | . 2 ⊢ (Fun {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∀𝑥∃*𝑦 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦) |
| 6 | df-br 5108 | . . . . 5 ⊢ (𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
| 7 | opabidw 5484 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) | |
| 8 | 6, 7 | bitri 275 | . . . 4 ⊢ (𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ 𝜑) |
| 9 | 8 | mobii 2541 | . . 3 ⊢ (∃*𝑦 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ ∃*𝑦𝜑) |
| 10 | 9 | albii 1819 | . 2 ⊢ (∀𝑥∃*𝑦 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ ∀𝑥∃*𝑦𝜑) |
| 11 | 5, 10 | bitri 275 | 1 ⊢ (Fun {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∀𝑥∃*𝑦𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 ∈ wcel 2109 ∃*wmo 2531 〈cop 4595 class class class wbr 5107 {copab 5169 Rel wrel 5643 Fun wfun 6505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-fun 6513 |
| This theorem is referenced by: funopabeq 6552 funco 6556 isarep2 6608 mptfnf 6653 fnopabg 6655 opabiotafun 6941 fvopab3ig 6964 opabex 7194 funoprabg 7510 zfrep6 7933 tz7.44lem1 8373 pwfir 9266 ajfuni 30788 funadj 31815 abrexdomjm 32436 fineqvrep 35085 satfv0fun 35358 satffunlem1lem1 35389 satffunlem2lem1 35391 abrexdom 37724 modelaxreplem2 44969 |
| Copyright terms: Public domain | W3C validator |