MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funopab Structured version   Visualization version   GIF version

Theorem funopab 6469
Description: A class of ordered pairs is a function when there is at most one second member for each pair. (Contributed by NM, 16-May-1995.)
Assertion
Ref Expression
funopab (Fun {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∀𝑥∃*𝑦𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem funopab
StepHypRef Expression
1 relopabv 5731 . . 3 Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑}
2 nfopab1 5144 . . . 4 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}
3 nfopab2 5145 . . . 4 𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑}
42, 3dffun6f 6448 . . 3 (Fun {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ (Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∧ ∀𝑥∃*𝑦 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦))
51, 4mpbiran 706 . 2 (Fun {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∀𝑥∃*𝑦 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦)
6 df-br 5075 . . . . 5 (𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
7 opabidw 5437 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑)
86, 7bitri 274 . . . 4 (𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦𝜑)
98mobii 2548 . . 3 (∃*𝑦 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦 ↔ ∃*𝑦𝜑)
109albii 1822 . 2 (∀𝑥∃*𝑦 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦 ↔ ∀𝑥∃*𝑦𝜑)
115, 10bitri 274 1 (Fun {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∀𝑥∃*𝑦𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wal 1537  wcel 2106  ∃*wmo 2538  cop 4567   class class class wbr 5074  {copab 5136  Rel wrel 5594  Fun wfun 6427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-fun 6435
This theorem is referenced by:  funopabeq  6470  funco  6474  isarep2  6523  mptfnf  6568  fnopabg  6570  opabiotafun  6849  fvopab3ig  6871  opabex  7096  funoprabg  7395  zfrep6  7797  tz7.44lem1  8236  pwfir  8959  ajfuni  29221  funadj  30248  abrexdomjm  30852  fineqvrep  33064  satfv0fun  33333  satffunlem1lem1  33364  satffunlem2lem1  33366  abrexdom  35888
  Copyright terms: Public domain W3C validator