MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funopab Structured version   Visualization version   GIF version

Theorem funopab 6370
Description: A class of ordered pairs is a function when there is at most one second member for each pair. (Contributed by NM, 16-May-1995.)
Assertion
Ref Expression
funopab (Fun {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∀𝑥∃*𝑦𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem funopab
StepHypRef Expression
1 relopab 5665 . . 3 Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑}
2 nfopab1 5101 . . . 4 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}
3 nfopab2 5102 . . . 4 𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑}
42, 3dffun6f 6349 . . 3 (Fun {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ (Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑} ∧ ∀𝑥∃*𝑦 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦))
51, 4mpbiran 708 . 2 (Fun {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∀𝑥∃*𝑦 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦)
6 df-br 5033 . . . . 5 (𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
7 opabidw 5382 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑)
86, 7bitri 278 . . . 4 (𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦𝜑)
98mobii 2565 . . 3 (∃*𝑦 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦 ↔ ∃*𝑦𝜑)
109albii 1821 . 2 (∀𝑥∃*𝑦 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}𝑦 ↔ ∀𝑥∃*𝑦𝜑)
115, 10bitri 278 1 (Fun {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∀𝑥∃*𝑦𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wal 1536  wcel 2111  ∃*wmo 2555  cop 4528   class class class wbr 5032  {copab 5094  Rel wrel 5529  Fun wfun 6329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pr 5298
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ral 3075  df-v 3411  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-sn 4523  df-pr 4525  df-op 4529  df-br 5033  df-opab 5095  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-fun 6337
This theorem is referenced by:  funopabeq  6371  funco  6375  isarep2  6424  mptfnf  6466  fnopabg  6468  opabiotafun  6733  fvopab3ig  6755  opabex  6974  funoprabg  7267  zfrep6  7660  tz7.44lem1  8051  pwfir  8744  ajfuni  28741  funadj  29768  abrexdomjm  30374  satfv0fun  32849  satffunlem1lem1  32880  satffunlem2lem1  32882  abrexdom  35470
  Copyright terms: Public domain W3C validator