| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funopab | Structured version Visualization version GIF version | ||
| Description: A class of ordered pairs is a function when there is at most one second member for each pair. (Contributed by NM, 16-May-1995.) |
| Ref | Expression |
|---|---|
| funopab | ⊢ (Fun {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∀𝑥∃*𝑦𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relopabv 5800 | . . 3 ⊢ Rel {〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 2 | nfopab1 5189 | . . . 4 ⊢ Ⅎ𝑥{〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 3 | nfopab2 5190 | . . . 4 ⊢ Ⅎ𝑦{〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 4 | 2, 3 | dffun6f 6549 | . . 3 ⊢ (Fun {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ (Rel {〈𝑥, 𝑦〉 ∣ 𝜑} ∧ ∀𝑥∃*𝑦 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦)) |
| 5 | 1, 4 | mpbiran 709 | . 2 ⊢ (Fun {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∀𝑥∃*𝑦 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦) |
| 6 | df-br 5120 | . . . . 5 ⊢ (𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) | |
| 7 | opabidw 5499 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) | |
| 8 | 6, 7 | bitri 275 | . . . 4 ⊢ (𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ 𝜑) |
| 9 | 8 | mobii 2547 | . . 3 ⊢ (∃*𝑦 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ ∃*𝑦𝜑) |
| 10 | 9 | albii 1819 | . 2 ⊢ (∀𝑥∃*𝑦 𝑥{〈𝑥, 𝑦〉 ∣ 𝜑}𝑦 ↔ ∀𝑥∃*𝑦𝜑) |
| 11 | 5, 10 | bitri 275 | 1 ⊢ (Fun {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∀𝑥∃*𝑦𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 ∈ wcel 2108 ∃*wmo 2537 〈cop 4607 class class class wbr 5119 {copab 5181 Rel wrel 5659 Fun wfun 6525 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-fun 6533 |
| This theorem is referenced by: funopabeq 6572 funco 6576 isarep2 6628 mptfnf 6673 fnopabg 6675 opabiotafun 6959 fvopab3ig 6982 opabex 7212 funoprabg 7528 zfrep6 7953 tz7.44lem1 8419 pwfir 9327 ajfuni 30840 funadj 31867 abrexdomjm 32488 fineqvrep 35126 satfv0fun 35393 satffunlem1lem1 35424 satffunlem2lem1 35426 abrexdom 37754 modelaxreplem2 45004 |
| Copyright terms: Public domain | W3C validator |