MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvopab5 Structured version   Visualization version   GIF version

Theorem fvopab5 6907
Description: The value of a function that is expressed as an ordered pair abstraction. (Contributed by NM, 19-Feb-2006.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
fvopab5.1 𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
fvopab5.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
fvopab5 (𝐴𝑉 → (𝐹𝐴) = (℩𝑦𝜓))
Distinct variable groups:   𝑥,𝑦,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝐹(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem fvopab5
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elex 3450 . 2 (𝐴𝑉𝐴 ∈ V)
2 df-fv 6441 . . . 4 (𝐹𝐴) = (℩𝑧𝐴𝐹𝑧)
3 breq2 5078 . . . . 5 (𝑧 = 𝑦 → (𝐴𝐹𝑧𝐴𝐹𝑦))
4 nfcv 2907 . . . . . 6 𝑦𝐴
5 fvopab5.1 . . . . . . 7 𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
6 nfopab2 5145 . . . . . . 7 𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑}
75, 6nfcxfr 2905 . . . . . 6 𝑦𝐹
8 nfcv 2907 . . . . . 6 𝑦𝑧
94, 7, 8nfbr 5121 . . . . 5 𝑦 𝐴𝐹𝑧
10 nfv 1917 . . . . 5 𝑧 𝐴𝐹𝑦
113, 9, 10cbviotaw 6398 . . . 4 (℩𝑧𝐴𝐹𝑧) = (℩𝑦𝐴𝐹𝑦)
122, 11eqtri 2766 . . 3 (𝐹𝐴) = (℩𝑦𝐴𝐹𝑦)
13 nfcv 2907 . . . . . . 7 𝑥𝐴
14 nfopab1 5144 . . . . . . . 8 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}
155, 14nfcxfr 2905 . . . . . . 7 𝑥𝐹
16 nfcv 2907 . . . . . . 7 𝑥𝑦
1713, 15, 16nfbr 5121 . . . . . 6 𝑥 𝐴𝐹𝑦
18 nfv 1917 . . . . . 6 𝑥𝜓
1917, 18nfbi 1906 . . . . 5 𝑥(𝐴𝐹𝑦𝜓)
20 breq1 5077 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝐹𝑦𝐴𝐹𝑦))
21 fvopab5.2 . . . . . 6 (𝑥 = 𝐴 → (𝜑𝜓))
2220, 21bibi12d 346 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝐹𝑦𝜑) ↔ (𝐴𝐹𝑦𝜓)))
23 df-br 5075 . . . . . 6 (𝑥𝐹𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐹)
245eleq2i 2830 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
25 opabidw 5437 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑)
2623, 24, 253bitri 297 . . . . 5 (𝑥𝐹𝑦𝜑)
2719, 22, 26vtoclg1f 3504 . . . 4 (𝐴 ∈ V → (𝐴𝐹𝑦𝜓))
2827iotabidv 6417 . . 3 (𝐴 ∈ V → (℩𝑦𝐴𝐹𝑦) = (℩𝑦𝜓))
2912, 28eqtrid 2790 . 2 (𝐴 ∈ V → (𝐹𝐴) = (℩𝑦𝜓))
301, 29syl 17 1 (𝐴𝑉 → (𝐹𝐴) = (℩𝑦𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106  Vcvv 3432  cop 4567   class class class wbr 5074  {copab 5136  cio 6389  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-iota 6391  df-fv 6441
This theorem is referenced by:  ajval  29223  adjval  30252
  Copyright terms: Public domain W3C validator