| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvopab5 | Structured version Visualization version GIF version | ||
| Description: The value of a function that is expressed as an ordered pair abstraction. (Contributed by NM, 19-Feb-2006.) (Revised by Mario Carneiro, 11-Sep-2015.) |
| Ref | Expression |
|---|---|
| fvopab5.1 | ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
| fvopab5.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| fvopab5 | ⊢ (𝐴 ∈ 𝑉 → (𝐹‘𝐴) = (℩𝑦𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3457 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | df-fv 6489 | . . . 4 ⊢ (𝐹‘𝐴) = (℩𝑧𝐴𝐹𝑧) | |
| 3 | breq2 5093 | . . . . 5 ⊢ (𝑧 = 𝑦 → (𝐴𝐹𝑧 ↔ 𝐴𝐹𝑦)) | |
| 4 | nfcv 2894 | . . . . . 6 ⊢ Ⅎ𝑦𝐴 | |
| 5 | fvopab5.1 | . . . . . . 7 ⊢ 𝐹 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 6 | nfopab2 5160 | . . . . . . 7 ⊢ Ⅎ𝑦{〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 7 | 5, 6 | nfcxfr 2892 | . . . . . 6 ⊢ Ⅎ𝑦𝐹 |
| 8 | nfcv 2894 | . . . . . 6 ⊢ Ⅎ𝑦𝑧 | |
| 9 | 4, 7, 8 | nfbr 5136 | . . . . 5 ⊢ Ⅎ𝑦 𝐴𝐹𝑧 |
| 10 | nfv 1915 | . . . . 5 ⊢ Ⅎ𝑧 𝐴𝐹𝑦 | |
| 11 | 3, 9, 10 | cbviotaw 6444 | . . . 4 ⊢ (℩𝑧𝐴𝐹𝑧) = (℩𝑦𝐴𝐹𝑦) |
| 12 | 2, 11 | eqtri 2754 | . . 3 ⊢ (𝐹‘𝐴) = (℩𝑦𝐴𝐹𝑦) |
| 13 | nfcv 2894 | . . . . . . 7 ⊢ Ⅎ𝑥𝐴 | |
| 14 | nfopab1 5159 | . . . . . . . 8 ⊢ Ⅎ𝑥{〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 15 | 5, 14 | nfcxfr 2892 | . . . . . . 7 ⊢ Ⅎ𝑥𝐹 |
| 16 | nfcv 2894 | . . . . . . 7 ⊢ Ⅎ𝑥𝑦 | |
| 17 | 13, 15, 16 | nfbr 5136 | . . . . . 6 ⊢ Ⅎ𝑥 𝐴𝐹𝑦 |
| 18 | nfv 1915 | . . . . . 6 ⊢ Ⅎ𝑥𝜓 | |
| 19 | 17, 18 | nfbi 1904 | . . . . 5 ⊢ Ⅎ𝑥(𝐴𝐹𝑦 ↔ 𝜓) |
| 20 | breq1 5092 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥𝐹𝑦 ↔ 𝐴𝐹𝑦)) | |
| 21 | fvopab5.2 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 22 | 20, 21 | bibi12d 345 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑥𝐹𝑦 ↔ 𝜑) ↔ (𝐴𝐹𝑦 ↔ 𝜓))) |
| 23 | df-br 5090 | . . . . . 6 ⊢ (𝑥𝐹𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐹) | |
| 24 | 5 | eleq2i 2823 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ 𝐹 ↔ 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑}) |
| 25 | opabidw 5462 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) | |
| 26 | 23, 24, 25 | 3bitri 297 | . . . . 5 ⊢ (𝑥𝐹𝑦 ↔ 𝜑) |
| 27 | 19, 22, 26 | vtoclg1f 3522 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴𝐹𝑦 ↔ 𝜓)) |
| 28 | 27 | iotabidv 6465 | . . 3 ⊢ (𝐴 ∈ V → (℩𝑦𝐴𝐹𝑦) = (℩𝑦𝜓)) |
| 29 | 12, 28 | eqtrid 2778 | . 2 ⊢ (𝐴 ∈ V → (𝐹‘𝐴) = (℩𝑦𝜓)) |
| 30 | 1, 29 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐹‘𝐴) = (℩𝑦𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4579 class class class wbr 5089 {copab 5151 ℩cio 6435 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-iota 6437 df-fv 6489 |
| This theorem is referenced by: ajval 30841 adjval 31870 |
| Copyright terms: Public domain | W3C validator |