| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordtcld2 | Structured version Visualization version GIF version | ||
| Description: An upward ray [𝑃, +∞) is closed. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| Ref | Expression |
|---|---|
| ordttopon.3 | ⊢ 𝑋 = dom 𝑅 |
| Ref | Expression |
|---|---|
| ordtcld2 | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥} ∈ (Clsd‘(ordTop‘𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 4027 | . . 3 ⊢ {𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥} ⊆ 𝑋 | |
| 2 | ordttopon.3 | . . . . . 6 ⊢ 𝑋 = dom 𝑅 | |
| 3 | 2 | ordttopon 23108 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (ordTop‘𝑅) ∈ (TopOn‘𝑋)) |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → (ordTop‘𝑅) ∈ (TopOn‘𝑋)) |
| 5 | toponuni 22829 | . . . 4 ⊢ ((ordTop‘𝑅) ∈ (TopOn‘𝑋) → 𝑋 = ∪ (ordTop‘𝑅)) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → 𝑋 = ∪ (ordTop‘𝑅)) |
| 7 | 1, 6 | sseqtrid 3972 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥} ⊆ ∪ (ordTop‘𝑅)) |
| 8 | notrab 4269 | . . . 4 ⊢ (𝑋 ∖ {𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥}) = {𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥} | |
| 9 | 6 | difeq1d 4072 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → (𝑋 ∖ {𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥}) = (∪ (ordTop‘𝑅) ∖ {𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥})) |
| 10 | 8, 9 | eqtr3id 2780 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥} = (∪ (ordTop‘𝑅) ∖ {𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥})) |
| 11 | 2 | ordtopn2 23110 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥} ∈ (ordTop‘𝑅)) |
| 12 | 10, 11 | eqeltrrd 2832 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → (∪ (ordTop‘𝑅) ∖ {𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥}) ∈ (ordTop‘𝑅)) |
| 13 | topontop 22828 | . . 3 ⊢ ((ordTop‘𝑅) ∈ (TopOn‘𝑋) → (ordTop‘𝑅) ∈ Top) | |
| 14 | eqid 2731 | . . . 4 ⊢ ∪ (ordTop‘𝑅) = ∪ (ordTop‘𝑅) | |
| 15 | 14 | iscld 22942 | . . 3 ⊢ ((ordTop‘𝑅) ∈ Top → ({𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥} ∈ (Clsd‘(ordTop‘𝑅)) ↔ ({𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥} ⊆ ∪ (ordTop‘𝑅) ∧ (∪ (ordTop‘𝑅) ∖ {𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥}) ∈ (ordTop‘𝑅)))) |
| 16 | 4, 13, 15 | 3syl 18 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → ({𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥} ∈ (Clsd‘(ordTop‘𝑅)) ↔ ({𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥} ⊆ ∪ (ordTop‘𝑅) ∧ (∪ (ordTop‘𝑅) ∖ {𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥}) ∈ (ordTop‘𝑅)))) |
| 17 | 7, 12, 16 | mpbir2and 713 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥} ∈ (Clsd‘(ordTop‘𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 ∖ cdif 3894 ⊆ wss 3897 ∪ cuni 4856 class class class wbr 5089 dom cdm 5614 ‘cfv 6481 ordTopcordt 17403 Topctop 22808 TopOnctopon 22825 Clsdccld 22931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-om 7797 df-1o 8385 df-2o 8386 df-en 8870 df-fin 8873 df-fi 9295 df-topgen 17347 df-ordt 17405 df-top 22809 df-topon 22826 df-bases 22861 df-cld 22934 |
| This theorem is referenced by: ordtcld3 23114 |
| Copyright terms: Public domain | W3C validator |