Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordtcld2 | Structured version Visualization version GIF version |
Description: An upward ray [𝑃, +∞) is closed. (Contributed by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
ordttopon.3 | ⊢ 𝑋 = dom 𝑅 |
Ref | Expression |
---|---|
ordtcld2 | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥} ∈ (Clsd‘(ordTop‘𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 4009 | . . 3 ⊢ {𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥} ⊆ 𝑋 | |
2 | ordttopon.3 | . . . . . 6 ⊢ 𝑋 = dom 𝑅 | |
3 | 2 | ordttopon 22252 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (ordTop‘𝑅) ∈ (TopOn‘𝑋)) |
4 | 3 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → (ordTop‘𝑅) ∈ (TopOn‘𝑋)) |
5 | toponuni 21971 | . . . 4 ⊢ ((ordTop‘𝑅) ∈ (TopOn‘𝑋) → 𝑋 = ∪ (ordTop‘𝑅)) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → 𝑋 = ∪ (ordTop‘𝑅)) |
7 | 1, 6 | sseqtrid 3969 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥} ⊆ ∪ (ordTop‘𝑅)) |
8 | notrab 4242 | . . . 4 ⊢ (𝑋 ∖ {𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥}) = {𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥} | |
9 | 6 | difeq1d 4052 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → (𝑋 ∖ {𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥}) = (∪ (ordTop‘𝑅) ∖ {𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥})) |
10 | 8, 9 | eqtr3id 2793 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥} = (∪ (ordTop‘𝑅) ∖ {𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥})) |
11 | 2 | ordtopn2 22254 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥} ∈ (ordTop‘𝑅)) |
12 | 10, 11 | eqeltrrd 2840 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → (∪ (ordTop‘𝑅) ∖ {𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥}) ∈ (ordTop‘𝑅)) |
13 | topontop 21970 | . . 3 ⊢ ((ordTop‘𝑅) ∈ (TopOn‘𝑋) → (ordTop‘𝑅) ∈ Top) | |
14 | eqid 2738 | . . . 4 ⊢ ∪ (ordTop‘𝑅) = ∪ (ordTop‘𝑅) | |
15 | 14 | iscld 22086 | . . 3 ⊢ ((ordTop‘𝑅) ∈ Top → ({𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥} ∈ (Clsd‘(ordTop‘𝑅)) ↔ ({𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥} ⊆ ∪ (ordTop‘𝑅) ∧ (∪ (ordTop‘𝑅) ∖ {𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥}) ∈ (ordTop‘𝑅)))) |
16 | 4, 13, 15 | 3syl 18 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → ({𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥} ∈ (Clsd‘(ordTop‘𝑅)) ↔ ({𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥} ⊆ ∪ (ordTop‘𝑅) ∧ (∪ (ordTop‘𝑅) ∖ {𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥}) ∈ (ordTop‘𝑅)))) |
17 | 7, 12, 16 | mpbir2and 709 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥} ∈ (Clsd‘(ordTop‘𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3067 ∖ cdif 3880 ⊆ wss 3883 ∪ cuni 4836 class class class wbr 5070 dom cdm 5580 ‘cfv 6418 ordTopcordt 17127 Topctop 21950 TopOnctopon 21967 Clsdccld 22075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-om 7688 df-1o 8267 df-er 8456 df-en 8692 df-fin 8695 df-fi 9100 df-topgen 17071 df-ordt 17129 df-top 21951 df-topon 21968 df-bases 22004 df-cld 22078 |
This theorem is referenced by: ordtcld3 22258 |
Copyright terms: Public domain | W3C validator |