Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordtcld2 | Structured version Visualization version GIF version |
Description: An upward ray [𝑃, +∞) is closed. (Contributed by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
ordttopon.3 | ⊢ 𝑋 = dom 𝑅 |
Ref | Expression |
---|---|
ordtcld2 | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥} ∈ (Clsd‘(ordTop‘𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3984 | . . 3 ⊢ {𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥} ⊆ 𝑋 | |
2 | ordttopon.3 | . . . . . 6 ⊢ 𝑋 = dom 𝑅 | |
3 | 2 | ordttopon 21893 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (ordTop‘𝑅) ∈ (TopOn‘𝑋)) |
4 | 3 | adantr 484 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → (ordTop‘𝑅) ∈ (TopOn‘𝑋)) |
5 | toponuni 21614 | . . . 4 ⊢ ((ordTop‘𝑅) ∈ (TopOn‘𝑋) → 𝑋 = ∪ (ordTop‘𝑅)) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → 𝑋 = ∪ (ordTop‘𝑅)) |
7 | 1, 6 | sseqtrid 3944 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥} ⊆ ∪ (ordTop‘𝑅)) |
8 | notrab 4214 | . . . 4 ⊢ (𝑋 ∖ {𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥}) = {𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥} | |
9 | 6 | difeq1d 4027 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → (𝑋 ∖ {𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥}) = (∪ (ordTop‘𝑅) ∖ {𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥})) |
10 | 8, 9 | syl5eqr 2807 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥} = (∪ (ordTop‘𝑅) ∖ {𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥})) |
11 | 2 | ordtopn2 21895 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ ¬ 𝑃𝑅𝑥} ∈ (ordTop‘𝑅)) |
12 | 10, 11 | eqeltrrd 2853 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → (∪ (ordTop‘𝑅) ∖ {𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥}) ∈ (ordTop‘𝑅)) |
13 | topontop 21613 | . . 3 ⊢ ((ordTop‘𝑅) ∈ (TopOn‘𝑋) → (ordTop‘𝑅) ∈ Top) | |
14 | eqid 2758 | . . . 4 ⊢ ∪ (ordTop‘𝑅) = ∪ (ordTop‘𝑅) | |
15 | 14 | iscld 21727 | . . 3 ⊢ ((ordTop‘𝑅) ∈ Top → ({𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥} ∈ (Clsd‘(ordTop‘𝑅)) ↔ ({𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥} ⊆ ∪ (ordTop‘𝑅) ∧ (∪ (ordTop‘𝑅) ∖ {𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥}) ∈ (ordTop‘𝑅)))) |
16 | 4, 13, 15 | 3syl 18 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → ({𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥} ∈ (Clsd‘(ordTop‘𝑅)) ↔ ({𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥} ⊆ ∪ (ordTop‘𝑅) ∧ (∪ (ordTop‘𝑅) ∖ {𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥}) ∈ (ordTop‘𝑅)))) |
17 | 7, 12, 16 | mpbir2and 712 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑃 ∈ 𝑋) → {𝑥 ∈ 𝑋 ∣ 𝑃𝑅𝑥} ∈ (Clsd‘(ordTop‘𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 {crab 3074 ∖ cdif 3855 ⊆ wss 3858 ∪ cuni 4798 class class class wbr 5032 dom cdm 5524 ‘cfv 6335 ordTopcordt 16830 Topctop 21593 TopOnctopon 21610 Clsdccld 21716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-om 7580 df-1o 8112 df-er 8299 df-en 8528 df-fin 8531 df-fi 8908 df-topgen 16775 df-ordt 16832 df-top 21594 df-topon 21611 df-bases 21646 df-cld 21719 |
This theorem is referenced by: ordtcld3 21899 |
Copyright terms: Public domain | W3C validator |