MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtcld2 Structured version   Visualization version   GIF version

Theorem ordtcld2 23083
Description: An upward ray [𝑃, +∞) is closed. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ordttopon.3 𝑋 = dom 𝑅
Assertion
Ref Expression
ordtcld2 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋𝑃𝑅𝑥} ∈ (Clsd‘(ordTop‘𝑅)))
Distinct variable groups:   𝑥,𝑃   𝑥,𝑅   𝑥,𝑉   𝑥,𝑋

Proof of Theorem ordtcld2
StepHypRef Expression
1 ssrab2 4031 . . 3 {𝑥𝑋𝑃𝑅𝑥} ⊆ 𝑋
2 ordttopon.3 . . . . . 6 𝑋 = dom 𝑅
32ordttopon 23078 . . . . 5 (𝑅𝑉 → (ordTop‘𝑅) ∈ (TopOn‘𝑋))
43adantr 480 . . . 4 ((𝑅𝑉𝑃𝑋) → (ordTop‘𝑅) ∈ (TopOn‘𝑋))
5 toponuni 22799 . . . 4 ((ordTop‘𝑅) ∈ (TopOn‘𝑋) → 𝑋 = (ordTop‘𝑅))
64, 5syl 17 . . 3 ((𝑅𝑉𝑃𝑋) → 𝑋 = (ordTop‘𝑅))
71, 6sseqtrid 3978 . 2 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋𝑃𝑅𝑥} ⊆ (ordTop‘𝑅))
8 notrab 4273 . . . 4 (𝑋 ∖ {𝑥𝑋𝑃𝑅𝑥}) = {𝑥𝑋 ∣ ¬ 𝑃𝑅𝑥}
96difeq1d 4076 . . . 4 ((𝑅𝑉𝑃𝑋) → (𝑋 ∖ {𝑥𝑋𝑃𝑅𝑥}) = ( (ordTop‘𝑅) ∖ {𝑥𝑋𝑃𝑅𝑥}))
108, 9eqtr3id 2778 . . 3 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋 ∣ ¬ 𝑃𝑅𝑥} = ( (ordTop‘𝑅) ∖ {𝑥𝑋𝑃𝑅𝑥}))
112ordtopn2 23080 . . 3 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋 ∣ ¬ 𝑃𝑅𝑥} ∈ (ordTop‘𝑅))
1210, 11eqeltrrd 2829 . 2 ((𝑅𝑉𝑃𝑋) → ( (ordTop‘𝑅) ∖ {𝑥𝑋𝑃𝑅𝑥}) ∈ (ordTop‘𝑅))
13 topontop 22798 . . 3 ((ordTop‘𝑅) ∈ (TopOn‘𝑋) → (ordTop‘𝑅) ∈ Top)
14 eqid 2729 . . . 4 (ordTop‘𝑅) = (ordTop‘𝑅)
1514iscld 22912 . . 3 ((ordTop‘𝑅) ∈ Top → ({𝑥𝑋𝑃𝑅𝑥} ∈ (Clsd‘(ordTop‘𝑅)) ↔ ({𝑥𝑋𝑃𝑅𝑥} ⊆ (ordTop‘𝑅) ∧ ( (ordTop‘𝑅) ∖ {𝑥𝑋𝑃𝑅𝑥}) ∈ (ordTop‘𝑅))))
164, 13, 153syl 18 . 2 ((𝑅𝑉𝑃𝑋) → ({𝑥𝑋𝑃𝑅𝑥} ∈ (Clsd‘(ordTop‘𝑅)) ↔ ({𝑥𝑋𝑃𝑅𝑥} ⊆ (ordTop‘𝑅) ∧ ( (ordTop‘𝑅) ∖ {𝑥𝑋𝑃𝑅𝑥}) ∈ (ordTop‘𝑅))))
177, 12, 16mpbir2and 713 1 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋𝑃𝑅𝑥} ∈ (Clsd‘(ordTop‘𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3394  cdif 3900  wss 3903   cuni 4858   class class class wbr 5092  dom cdm 5619  cfv 6482  ordTopcordt 17403  Topctop 22778  TopOnctopon 22795  Clsdccld 22901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-om 7800  df-1o 8388  df-2o 8389  df-en 8873  df-fin 8876  df-fi 9301  df-topgen 17347  df-ordt 17405  df-top 22779  df-topon 22796  df-bases 22831  df-cld 22904
This theorem is referenced by:  ordtcld3  23084
  Copyright terms: Public domain W3C validator