MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtcld2 Structured version   Visualization version   GIF version

Theorem ordtcld2 23222
Description: An upward ray [𝑃, +∞) is closed. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ordttopon.3 𝑋 = dom 𝑅
Assertion
Ref Expression
ordtcld2 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋𝑃𝑅𝑥} ∈ (Clsd‘(ordTop‘𝑅)))
Distinct variable groups:   𝑥,𝑃   𝑥,𝑅   𝑥,𝑉   𝑥,𝑋

Proof of Theorem ordtcld2
StepHypRef Expression
1 ssrab2 4090 . . 3 {𝑥𝑋𝑃𝑅𝑥} ⊆ 𝑋
2 ordttopon.3 . . . . . 6 𝑋 = dom 𝑅
32ordttopon 23217 . . . . 5 (𝑅𝑉 → (ordTop‘𝑅) ∈ (TopOn‘𝑋))
43adantr 480 . . . 4 ((𝑅𝑉𝑃𝑋) → (ordTop‘𝑅) ∈ (TopOn‘𝑋))
5 toponuni 22936 . . . 4 ((ordTop‘𝑅) ∈ (TopOn‘𝑋) → 𝑋 = (ordTop‘𝑅))
64, 5syl 17 . . 3 ((𝑅𝑉𝑃𝑋) → 𝑋 = (ordTop‘𝑅))
71, 6sseqtrid 4048 . 2 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋𝑃𝑅𝑥} ⊆ (ordTop‘𝑅))
8 notrab 4328 . . . 4 (𝑋 ∖ {𝑥𝑋𝑃𝑅𝑥}) = {𝑥𝑋 ∣ ¬ 𝑃𝑅𝑥}
96difeq1d 4135 . . . 4 ((𝑅𝑉𝑃𝑋) → (𝑋 ∖ {𝑥𝑋𝑃𝑅𝑥}) = ( (ordTop‘𝑅) ∖ {𝑥𝑋𝑃𝑅𝑥}))
108, 9eqtr3id 2789 . . 3 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋 ∣ ¬ 𝑃𝑅𝑥} = ( (ordTop‘𝑅) ∖ {𝑥𝑋𝑃𝑅𝑥}))
112ordtopn2 23219 . . 3 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋 ∣ ¬ 𝑃𝑅𝑥} ∈ (ordTop‘𝑅))
1210, 11eqeltrrd 2840 . 2 ((𝑅𝑉𝑃𝑋) → ( (ordTop‘𝑅) ∖ {𝑥𝑋𝑃𝑅𝑥}) ∈ (ordTop‘𝑅))
13 topontop 22935 . . 3 ((ordTop‘𝑅) ∈ (TopOn‘𝑋) → (ordTop‘𝑅) ∈ Top)
14 eqid 2735 . . . 4 (ordTop‘𝑅) = (ordTop‘𝑅)
1514iscld 23051 . . 3 ((ordTop‘𝑅) ∈ Top → ({𝑥𝑋𝑃𝑅𝑥} ∈ (Clsd‘(ordTop‘𝑅)) ↔ ({𝑥𝑋𝑃𝑅𝑥} ⊆ (ordTop‘𝑅) ∧ ( (ordTop‘𝑅) ∖ {𝑥𝑋𝑃𝑅𝑥}) ∈ (ordTop‘𝑅))))
164, 13, 153syl 18 . 2 ((𝑅𝑉𝑃𝑋) → ({𝑥𝑋𝑃𝑅𝑥} ∈ (Clsd‘(ordTop‘𝑅)) ↔ ({𝑥𝑋𝑃𝑅𝑥} ⊆ (ordTop‘𝑅) ∧ ( (ordTop‘𝑅) ∖ {𝑥𝑋𝑃𝑅𝑥}) ∈ (ordTop‘𝑅))))
177, 12, 16mpbir2and 713 1 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋𝑃𝑅𝑥} ∈ (Clsd‘(ordTop‘𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  {crab 3433  cdif 3960  wss 3963   cuni 4912   class class class wbr 5148  dom cdm 5689  cfv 6563  ordTopcordt 17546  Topctop 22915  TopOnctopon 22932  Clsdccld 23040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-om 7888  df-1o 8505  df-2o 8506  df-en 8985  df-fin 8988  df-fi 9449  df-topgen 17490  df-ordt 17548  df-top 22916  df-topon 22933  df-bases 22969  df-cld 23043
This theorem is referenced by:  ordtcld3  23223
  Copyright terms: Public domain W3C validator